Retrieved from http://captainslog.aero/?p=1395
Welcome to the Controlled Flight Into Terrain (CFIT) Education and Training Aid

Preventing CFIT accidents is the major goal of this training aid. The training aid includes a document (two volumes) and a video. They are stored on this CD-ROM to provide a readily available source of information and to easily enable the user to develop a program to prevent CFIT accidents. This training aid was developed by an international CFIT Task Force composed of representatives from organizations that possess extensive aviation expertise: airplane manufacturers, aviation training organizations, airplane equipment manufacturers, airlines, pilot groups and government and regulatory agencies.

The document includes five sections. Section One provides top-level management with a concise, broad view of the document. Section Two identifies areas where those people who govern, regulate, and run the industry can best put their efforts to prevent CFIT. Section Three provides the history of CFIT, along with causal factors, traps and solutions. This section is specifically aimed at the operator end of the scale. Section Four provides specific academic and simulator training programs aimed at informing the flight crews of their responsibilities and duties in preventing CFIT. Appendices include ground briefings, video script, and airplane-specific examples of the CFIT escape maneuver. Section Five contains selected readings, including the latest CFIT accident/incident information. The video “CFIT: An Encounter Avoided” addresses the CFIT problem in its entirety.

Management is encouraged to take appropriate steps to ensure that a viable, effective CFIT training program is in place within its organization.
MESSAGE FROM THE PRESIDENT OF THE COUNCIL
OF THE INTERNATIONAL CIVIL AVIATION ORGANIZATION (ICAO)

I wish to express my sincere appreciation for the work completed in the preparation of the controlled flight into terrain (CFIT) prevention material by the International Civil Aviation Organization (ICAO) and the Industry Controlled Flight Into Terrain (CFIT) Task Force. It has always been by conviction that all personnel involved in civil aviation must understand the CFIT problem and must be aware of the risk of such accidents. The training aid will provide a major contribution to the prevention of CFIT. I strongly recommend that those in positions of responsibility in civil aviation apply the recommendations of the CFIT Task Force and make the best use of this education and training aid. ICAO will continue to assist States in their efforts and provide, through its Annexes, the regulatory framework which will permit the improvement of the use of ground proximity warning system (GPWS) in operations worldwide.

Assad Kotaite
This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.
Table of Contents

Section	**Page**
References | v
Units of Measurement | v
Acronyms | v
Glossary | vii

1 | Overview for Management | 1.1
2.0 | Introduction | 1.1
2.1 | Recommendations to Decision Makers | 2.2
2.1.1 | Measurement and Evaluation of System Performance | 2.2
2.1.2 | Use of Autopilots | 2.2
2.1.3 | Acceptance of ATC Clearances | 2.2
2.1.4 | Chart Supply | 2.3
2.1.5 | Use of Checklists | 2.3
2.1.6 | Allocation of Flight Crew Duties, Use of Monitored Approach Procedures | 2.3
2.1.7 | Rate of Descent Policy | 2.3
2.1.8 | Route and Destination Familiarization | 2.3
2.1.9 | Stabilized Approaches | 2.3
2.1.10 | Crew Resource Management | 2.4
2.1.11 | Standard Operating Procedures | 2.4
2.2 | Communication | 2.4
2.3 | Short-Term Goals | 2.4
2.3.1 | ATC Issues | 2.5
2.3.2 | Sharing Information | 2.5
2.3.3 | Standard Operating Procedures | 2.5
2.3.4 | Ground Proximity Warning System Installation and Modification Updates | 2.5
2.3.5 | CFIT Accident Prevention Training Program | 2.5
2.3.6 | Approach Procedure Design and Specifications | 2.6
2.3.7 | Barometric Altimetry | 2.6
2.4 | Long-Term Solutions | 2.6

3 | Operators Guide | 3.1
3.0 | Introduction | 3.1
3.0.1 | Operators Guide Objectives | 3.2
3.1 | CFIT Accidents | 3.2
3.1.1 | The Positive Results of the GPWS | 3.4
3.1.2 | GPWS Initial Reliability and Follow-On Improvements | 3.5
3.1.3 | Industry Support Required for GPWS | 3.7
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Operators Guide (continued)</td>
</tr>
<tr>
<td>3.2</td>
<td>CFIT and the Flight Crew</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Causes for CFIT Accidents</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Factors That Contribute to CFIT</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Altimeter Setting Units of Measurement Factors</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Altimeter Settings Factors</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Safe Altitudes</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Air Traffic Control Factors</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>Flight Crew Complacency</td>
</tr>
<tr>
<td>3.2.2.6</td>
<td>Procedural Factors Associated With CFIT</td>
</tr>
<tr>
<td>3.2.2.7</td>
<td>Descent, Approach, and Landing Factors</td>
</tr>
<tr>
<td>3.2.2.8</td>
<td>Autoflight System Factors</td>
</tr>
<tr>
<td>3.2.2.9</td>
<td>Training Factors</td>
</tr>
<tr>
<td>3.3</td>
<td>CFIT Prevention</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Minimum Safe Altitude Warning System (MSAWS)</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Crew Briefings</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Autoflight Systems</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Route and Destination Familiarization</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Altitude Awareness</td>
</tr>
<tr>
<td>3.3.6</td>
<td>The Use of Callouts</td>
</tr>
<tr>
<td>3.3.7</td>
<td>GPWS Warning Escape Maneuver</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Charts</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Training</td>
</tr>
<tr>
<td>3.4</td>
<td>CFIT Traps</td>
</tr>
<tr>
<td>4</td>
<td>Example CFIT Training Program</td>
</tr>
<tr>
<td>4.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.1</td>
<td>Academic Training Program</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Academic Training Objectives</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Academic Training Program Modules</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Academic Training Syllabus</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Additional Academic Training Resources</td>
</tr>
<tr>
<td>4.2</td>
<td>CFIT Simulator Training Program</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Simulator Training Objectives</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Simulator Training Syllabus</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Pilot Simulator briefing</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Generic GPWS Warning Escape Maneuver</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Simulator Exercises</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Exercise 1: VMC Initial Introduction of Potential CFIT</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Exercise 2: IMC Potential CFIT Encounter</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Pilot Requirements</td>
</tr>
<tr>
<td>4.3</td>
<td>Simulator Implementation</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Simulator Fidelity Check</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Computer Analysis/Simulator Study Data Requirements</td>
</tr>
<tr>
<td>4.4</td>
<td>Appendix 4-A Instructor Pilot Syllabus Briefing Supplement</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Appendix 4-B Operators Guide to CFIT Questions</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Appendix 4-C CFIT Safety Briefing</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Appendix 4-D Escape Maneuvers</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Appendix 4-E Video Script: “CFIT: An Encounter Avoided”</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>5.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.1</td>
<td>General Goals and Objectives</td>
</tr>
<tr>
<td>5.2</td>
<td>Overview of Background Information</td>
</tr>
<tr>
<td>5.3</td>
<td>Flight Into Terrain Update by Don Bateman</td>
</tr>
<tr>
<td></td>
<td>List of CFIT Accidents/Incidents Examples in this Report</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
</tr>
</tbody>
</table>
Units of Measurement

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>degree (temperature)</td>
</tr>
<tr>
<td>deg</td>
<td>degree (angle)</td>
</tr>
<tr>
<td>deg/s</td>
<td>degrees per second</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>ft/min</td>
<td>feet per minute</td>
</tr>
<tr>
<td>ft/s</td>
<td>feet per second</td>
</tr>
<tr>
<td>hPa</td>
<td>hectoPascal</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>in</td>
<td>inch</td>
</tr>
<tr>
<td>inHg</td>
<td>inches of mercury</td>
</tr>
<tr>
<td>kt</td>
<td>knot</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mbar</td>
<td>millibar</td>
</tr>
<tr>
<td>mi</td>
<td>mile</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>nm</td>
<td>nautical mile</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
</tbody>
</table>

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>automatic direction finding</td>
</tr>
<tr>
<td>AGL</td>
<td>above ground level</td>
</tr>
<tr>
<td>ASRS</td>
<td>Aviation Safety Reporting System</td>
</tr>
<tr>
<td>ATC</td>
<td>air traffic control</td>
</tr>
<tr>
<td>ATCRBS</td>
<td>Air Traffic Control Radar Beacon System</td>
</tr>
<tr>
<td>ATIS</td>
<td>automatic terminal information service</td>
</tr>
<tr>
<td>CFIT</td>
<td>Controlled Flight Into Terrain</td>
</tr>
<tr>
<td>CRM</td>
<td>Crew Resource Management</td>
</tr>
<tr>
<td>DA/H</td>
<td>decision altitude/height</td>
</tr>
<tr>
<td>EAS</td>
<td>Emergency Safe Altitude</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAF</td>
<td>final approach fix</td>
</tr>
<tr>
<td>FMC</td>
<td>flight management computer</td>
</tr>
<tr>
<td>FMS</td>
<td>flight management system</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPWS</td>
<td>Ground Proximity Warning System</td>
</tr>
<tr>
<td>HAA</td>
<td>Height Above Airport</td>
</tr>
<tr>
<td>HAT</td>
<td>Height Above Touchdown</td>
</tr>
<tr>
<td>IAF</td>
<td>initial approach fix</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IFR</td>
<td>instrument flight rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IMC</td>
<td>instrument meteorological conditions</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>MAP</td>
<td>Missed Approach Point</td>
</tr>
<tr>
<td>MCA</td>
<td>Minimum Crossing Altitude</td>
</tr>
<tr>
<td>MDA/H</td>
<td>minimum descent altitude/height</td>
</tr>
<tr>
<td>MEA</td>
<td>Minimum Enroute Altitude</td>
</tr>
<tr>
<td>MIA</td>
<td>Minimum IFR Altitude</td>
</tr>
<tr>
<td>MOCA</td>
<td>Minimum Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>MRA</td>
<td>Minimum Reception Altitude</td>
</tr>
<tr>
<td>MSA</td>
<td>Minimum Safe Altitude</td>
</tr>
<tr>
<td>MSAWS</td>
<td>Minimum Safe Altitude Warning System</td>
</tr>
<tr>
<td>MSL</td>
<td>mean sea level</td>
</tr>
<tr>
<td>MVA</td>
<td>Minimum Vectoring Altitude</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice To Airmen</td>
</tr>
<tr>
<td>PANS-OPS</td>
<td>Procedures for Air Navigation Services - Aircraft Operations</td>
</tr>
<tr>
<td>PAPI</td>
<td>precision approach path indicator</td>
</tr>
<tr>
<td>PAR</td>
<td>precision approach radar</td>
</tr>
<tr>
<td>PT</td>
<td>procedure turn</td>
</tr>
<tr>
<td>RVV</td>
<td>runway visibility point</td>
</tr>
<tr>
<td>SID</td>
<td>standard instrument departure</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>STAR</td>
<td>standard terminal arrival</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Alert and Collision Avoidance System</td>
</tr>
<tr>
<td>TCH</td>
<td>threshold crossing height</td>
</tr>
<tr>
<td>TERPS</td>
<td>Terminal Instrument Procedures</td>
</tr>
<tr>
<td>VASI</td>
<td>Visual Approach Slope Indicator</td>
</tr>
<tr>
<td>VDP</td>
<td>visual descent point</td>
</tr>
<tr>
<td>VFR</td>
<td>visual flight rules</td>
</tr>
<tr>
<td>VMC</td>
<td>visual meteorological conditions</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Radio</td>
</tr>
<tr>
<td>VOR/DME</td>
<td>VOR Distance Measuring Equipment</td>
</tr>
</tbody>
</table>
CFIT Glossary

Certain definitions are needed to explain the concepts discussed in this training aid. Some of the definitions are from regulatory documents or other references, and some are defined in the aid. Not all of the defined words or phrases are used within the training aid; however, they are associated with the subject of CFIT and are included to provide a readily available source for the reader.

Altitude (USA)
The height of a level, point, or object measured in feet Above Ground Level (AGL) or from Mean Sea Level (MSL).
1. MSL Altitude - Altitude expressed in feet measured from mean sea level.
2. AGL Altitude - Altitude expressed in feet measured above ground level.
3. Indicated Altitude - The altitude as shown by an altimeter. On a pressure or barometric altimeter it is altitude as shown uncorrected for instrument error and uncompensated for variation from standard atmospheric conditions.

Altitude (ICAO)
The vertical distance of a level, a point, or an object considered as a point, measured from mean sea level (MSL).

Appropriate Obstacle Clearance Minimum Altitude
Any of the following:
1. Minimum IFR Altitude (MIA)
2. Minimum Enroute Altitude (MEA)
3. Minimum Obstruction Clearance Altitude (MOCA)
4. Minimum Vectoring Altitude (MVA)

Appropriate Terrain Clearance Minimum Altitude
Any of the following:
1. Minimum IFR Altitude (MIA)
2. Minimum Enroute Altitude (MEA)
3. Minimum Obstruction Clearance Altitude (MOCA)
4. Minimum Vectoring Altitude (MVA)

Automatic Terminal Information Service (ATIS)
The provision of current, routine information to arriving and departing airplanes by means of continuous and repetitive broadcasts throughout the day or a specified portion of the day.

Ceiling
The heights above the earth’s surface of the lowest layer of clouds or obscuring phenomena that is reported as “broken,” “overcast,” or “obscuration,” and not classified as “thin” or “partial.”

CFIT (Controlled Flight Into Terrain)
An event where a mechanically normally functioning airplane is inadvertently flown into the ground, water, or an obstacle.

Controlled Airspace
An airspace of defined dimensions within which air traffic control service is provided to IFR flights and VFR flights in accordance with the airspace classification.

Decision Height (DH) (USA)
With respect to the operation of aircraft, means the height at which a decision must be made, during an ILS or PAR instrument approach, to either continue the approach or to execute a missed approach.

Decision Altitude/Height (DA/H) (ICAO)
A specified altitude or height (A/H) in the precision approach at which a missed approach must be initiated if the required visual reference to continue the approach has not been established.

Note 1: Decision altitude (DA) is referenced to mean sea level (MSL) and decision height (DH) is referenced to the threshold elevation.

Note 2: The required visual reference means that section of the visual aids or of the approach area that should have been in view for sufficient time for the pilot to have made an assessment of the airplane position and rate of change of position, in relation to the desired flight path.
Direct

Straight line flight between two navigational aids, fixes, points, or any combination thereof. When used by pilots in describing off airway routes, points defining direct route segments become compulsory reporting points, unless the airplane is under radar contact.

Distance Measuring Equipment (DME)

Equipment (airborne and ground) used to measure, in nautical miles, the slant range distance of an aircraft from the DME navigational aid.

Final Approach

The part of an instrument approach procedure that commences at the specified final approach fix, or point, or where such a fix or point is not specified.
1. At the end of the last procedure turn, base turn, or inbound turn of a racetrack procedure, if specified; or
2. At the point of interception of the last track specified in the approach procedure; ends at a point in the vicinity of an aerodrome from which:
 a. A landing can be made; or
 b. A missed approach procedure is initiated.

Final Approach Fix (FAF)

The fix from which the final approach (IFR) to an airport is executed and that identifies the beginning of the final approach segment.

Fix

A geographical position determined by visual reference to the surface, by reference to one or more radio NAVAIDs, by celestial plotting, or by another navigational device.

Flight Crew or Flight Crew Member

A pilot, flight engineer or flight navigator assigned to duty in an aircraft during flight time.

Flight Level

A level of constant atmospheric pressure related to a reference datum of 29.92 inches of mercury. Each is stated in three digits that represent hundreds of feet. For example, Flight Level 250 represents a barometric altimeter indication of 25,000 ft; flight level 255, an indication of 25,500 ft.

Flight Management Systems (FMS)

A computer system that uses a large database to allow routes to be preprogrammed and fed into the system by means of a data loader. The system is constantly updated with respect to position accuracy by reference to conventional navigation aids. The sophisticated program and its associated data base ensures that the most appropriate aids are automatically selected during the information update cycle.

Flight Recorder

A general term applied to any instrument or device that records information about the performance of an aircraft in flight or about conditions encountered in flight.

Glide Slope

Provides vertical guidance for airplanes during approach and landing. The glide slope/glide path is based on the following:
1. Electronic components emitting signals that provide vertical guidance by reference to airborne instruments during instrument approaches, such as ILS/MLS, or
2. Visual ground aids, such as VASI, that provide vertical guidance for a VFR approach or for the visual portion of an instrument approach and landing.
3. Precision Approach Radar (PAR). Used by ATC to inform an airplane making a PAR approach of its vertical position (elevation) relative to the descent profile.

Glide Path (ICAO)

A descent profile determined for vertical guidance during a final approach.

Glide Slope Intercept Altitude

The minimum altitude to intercept the glide slope/glide path on a precision approach.

Global Positioning System (GPS)

A space-base radio positioning, navigation, and time-transfer system. The system provides highly accurate position and velocity information, and precise time, on a continuous global basis, to an unlimited number of properly equipped users.
Height Above Airport (HAA)
The height of the Minimum Descent Altitude above the published airport elevation. This is published in conjunction with circling minimums.

Height Above Touchdown (HAT)
The height of the Decision Height or Minimum Descent Altitude above the highest runway elevation in the touchdown zone (first 3,000 ft of the runway). HAT is published on instrument approach charts in conjunction with all straight-in minimums.

IFR (Instrument Flight Rules) Aircraft
An airplane conducting flight in accordance with instrument flight rules.

IFR Conditions
Weather conditions below the minimum for flight under visual flight rules.

ILS (Instrument Landing System) Categories
1. ILS Category I - An ILS approach procedure that provides for approach to a height above touchdown of not less than 200 ft and with runway visual range of not less than 1,800 ft.
2. ILS Category II - An ILS approach procedure that provides for approach to a height above touchdown of not less than 100 ft and with runway visual range of not less than 1,200 ft.
3. ILS Category III—
 a. IIIA - An ILS approach procedure that provides for approach without a decision height minimum and with runway visual range of not less than 700 ft.
 b. IIIB - An ILS approach procedure that provides for approach without a decision height minimum and with runway visual range of not less than 150 ft.
 c. IIIC - An ILS approach procedure that provides for approach without a decision height minimum and without runway visual range minimum.

Inertial Navigation System (INS)
An RNAV system that is a form of self-contained navigation.

Initial Approach Fix (IAF)
The fixes depicted on instrument approach procedure charts that identify the beginning of the initial approach segment(s).

Instrument Flight Rules (IFR)
Rules governing the procedures for conducting instrument flight. Also a term used by pilots and controllers to indicate the type of flight plan.

Instrument Landing System (ILS)
A precision instrument approach system that normally consists of the following electronic components and visual aids:
1. Localizer.
2. Glide slope.
3. Outer marker.
4. Middle marker.
5. Approach lights.

Instrument Meteorological Conditions (IMC)
Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling less than the minimums specified for visual meteorological conditions.

International Civil Aviation Organization (ICAO)
A specialized agency of the United Nations whose objectives are to develop the principles and techniques of international air navigation and foster planning and development of international civil air transport.

Landing Minimums
The minimum visibility prescribed for landing a civil airplane while using an instrument approach procedure.
1. Straight-in landing minimums - A statement of MDA and visibility, or DH and visibility, required for a straight-in landing on a specified runway, or
2. Circling minimums - A statement of MDA and visibility required for the circle-to-land maneuver.
Descent below the established MDA or DH is not authorized during an approach unless the airplane is in a position from which a normal approach to the runway of intended landing can be made and adequate visual reference to required visual cues is maintained.

Localizer
The component of an ILS that provides course guidance to the runway.

MCA (Minimum Crossing Altitude)
The lowest altitude at certain fixes at which an airplane must cross when proceeding in the direction of a higher minimum enroute IFR altitude (MEA).

MDA (Minimum Descent Altitude)
The lowest altitude, expressed in feet above mean sea level, to which descent is authorized on final approach or during circle-to-land maneuvering in execution of a standard instrument approach procedure where no electronic glideslope is provided.

MEA (Minimum Enroute IFR Altitude)
The lowest published altitude between radio fixes that ensures acceptable navigational signal coverage and meets obstacle clearance requirements between those fixes.

MOCA (Minimum Obstruction Clearance Altitude)
The lowest published altitude in effect between radio fixes on VOR airways, off airway routes, or route segments that meets obstacle clearance requirements for the entire route segment and that ensures acceptable navigational signal coverage only within 25 statute (22 nautical) miles of a VOR.

MRA (Minimum Reception Altitude)
The lowest altitude at which an intersection can be determined.

MSA (Minimum Safe Altitude)
1. The minimum altitude specified in FAR Part 91 for various aircraft operations.
2. Altitudes depicted on approach charts that provide at least 1,000 ft of obstacle clearance for emergency use within a specified distance from the navigation facility upon which a procedure is predicated. These altitudes will be identified as Minimum Sector Altitudes or Emergency Safe Altitudes and are established as follows:
 a. Minimum Sector Altitudes - Altitudes depicted on approach charts that provide at least 1,000 ft of obstacle clearance within a 25-mi radius of the navigation facility upon which the procedure is predicated. Sectors depicted on approach charts must be at least 90 deg in scope. These altitudes are for emergency use only and do not necessarily ensure acceptable navigational signal coverage.
 b. Emergency Safe Altitudes - Altitudes depicted on approach charts that provide at least 1,000 ft of obstacle clearance in nonmountainous areas and 2,000 ft of obstacle clearance in designated mountainous areas within a 100-mi radius of the navigation facility upon which the procedure is predicated and normally used only in military procedures. These altitudes are identified on published procedures as “Emergency Safe Altitudes.”

Minimums
Weather condition requirements established for a particular operation or type of operation.

MVA - (Minimum Vectoring Altitude)
The lowest MSL altitude at which an IFR aircraft will be vectored by a radar controller, except as otherwise authorized for radar approaches, departures, and missed approaches. The altitude meets IFR obstacle clearance criteria.
Missed Approach

1. A maneuver conducted by a pilot when an instrument approach cannot be completed to a landing. The route of flight and altitude are shown on instrument approach procedure charts. A pilot executing a missed approach prior to the Missed Approach Point (MAP) must continue along the final approach to the MAP. The pilot may climb immediately to the altitude specified in the missed approach procedure.
2. A term used by the pilot to inform ATC that he is executing the missed approach.
3. At locations where ATC radar service is provided, the pilot should conform to radar vectors when provided by ATC in lieu of the published missed approach procedure.

MAP (Missed Approach Point)
A point prescribed in each instrument approach procedure at which a missed approach procedure shall be executed if the required visual reference does not exist.

Obstacle
An existing object, object of natural growth, or terrain at a fixed geographical location or that may be expected at a fixed location within a prescribed area with reference to which vertical clearance is or must be provided during flight operation.

Night
The time between the end of evening civil twilight and the beginning of morning civil twilight, as published in the American Air Almanac, converted to local time.

Nonprecision Approach Procedure
A standard instrument approach procedure in which no electronic glide slope is provided.

NOTAM - Notice To Airmen
A notice containing information (not known sufficiently in advance to publicize by other means) concerning the establishment, condition, or change in any component (facility, service, or procedure of, or hazard in the National Airspace System), the timely knowledge of which is essential to personnel concerned with flight operations.

Off Course
A term used to describe a situation in which an airplane has reported a position fix or is observed on radar at a point not on the ATC approved route of flight.

Off Route Vector
A vector by ATC that takes an aircraft off a previously assigned route. Altitudes assigned by ATC during such vectors provide required obstacle clearance.

Operators
The people who are involved in all operations functions required for the flight of commercial airplanes that carry at least 10 passengers, including airplanes involved in cargo operations. This includes such functions as air traffic systems, flight crew, flight dispatch, flight scheduling, flight training, and other supporting flight operations functions.

Precision Approach Path Indicator (PAPI)
An airport lighting facility providing vertical visual approach slope guidance to airplanes during approach to landing by radiating a directional pattern of high-intensity red and white focused light beams. Four PAPI units located on one side or on both sides of the runway adjacent to the glide slope origin indicate to the pilot that he or she is (1) “on path” if he or she sees (from each set of units) two reds and two whites, (2) marginally below or marginally above if he or she sees three reds and one white or three whites and one red (respectively), or (3) below or above if he or she sees four reds or four whites (respectively).
Precision Approach Procedure
A standard instrument approach procedure in which an electronic glide slope/glide path is provided.

Procedure Turn (PT)
The maneuver prescribed when it is necessary to reverse direction to establish an airplane on the intermediate approach segment or final approach course. The outbound course, direction of turn, distance within which the turn must be completed, and minimum altitude are specified in the procedure.

Procedure Turn Inbound
That point of a procedure turn maneuver where course reversal has been completed and an airplane is established inbound on the intermediate approach segment or final approach course. A report of “procedure turn inbound” is normally used by ATC as a position report for separation purposes.

QNE
The barometric pressure used for the standard altimeter setting (29.92 inches of mercury or 1013.2 hectoPascals).

QNH
The barometric pressure as reported by a particular station.

Radar Approach
An instrument approach procedure that utilizes Precision Approach Radar (PAR) or Airport Surveillance Radar (ASR).

Radar Contact
Used by ATC to inform an airplane that it is identified on the radar display and that radar flight following will be provided until radar identification is terminated. Radar service may also be provided within the limits of necessity and capability. When a pilot is informed of “radar contact,” he automatically discontinues reporting over compulsory reporting points.

Radar Vectoring
Provision of navigational guidance to airplanes in the form of specific headings, based on the use of radar.

Radio Altimeter
Airplane equipment that makes use of the reflection of radio waves from the ground to determine the height of the airplane above the surface.

RNAV Approach
An instrument approach procedure that relies on airplane area navigation equipment for navigational guidance.

Runway Profile Descent
An instrument flight rules (IFR) air traffic control arrival procedure to a runway published for pilot use in graphic and/or textual form and may be associated with a STAR. Runway Profile Descents provide routing and may depict crossing altitudes, speed restrictions, and headings to be flown from the enroute structure to the point where the pilot will receive clearance for and execute an instrument approach procedure. A Runway Profile Descent may apply to more than one runway if so stated on the chart.

Special VFR Conditions
Meteorological conditions that are less than those required for basic VFR flight in Class B, C, D, or E surface areas and in which some airplanes are permitted flight under visual flight rules.

Standard Instrument Departure (SID)
A preplanned instrument flight rule (IFR) air traffic control departure procedure printed for pilot use in graphic and/or textual form. SIDs provide transition from the terminal to the appropriate enroute structure.

Standard Terminal Arrival (STAR)
A preplanned instrument flight rule (IFR) air traffic control arrival procedure published for pilot use in graphic and/or textual form. STARs provide transition from the enroute structure to an outer fix or an instrument approach fix/arrival waypoint in the terminal area.
Threshold
The beginning of that portion of the runway usable for landing.

Threshold Crossing Height (TCH)
The theoretical height above the runway threshold at which the airplane’s glide slope antenna would be if the airplane maintains the trajectory established by the mean ILS glide slope or MLS glide path.

Touchdown Zone
The first 3,000 ft of the runway beginning at the threshold.

Traffic Alert and Collision Avoidance System (TCAS)
An airborne collision avoidance system based on radar beacon signals that operates independent of ground-based equipment. TCAS-I generates traffic advisories only. TCAS-II generates traffic advisories and resolution (collision avoidance) advisories in the vertical plane.

Transponder
The airborne radar beacon receiver/transmitter portion of the Air Traffic Control Radar Beacon System (ATCRBS) that automatically receives radio signals from interrogators on the ground and selectively replies with a specific reply pulse or pulse group only to those interrogations being received on the mode to which it is set to respond.

Turbojet Aircraft
Airplanes having a jet engine in which the energy of the jet operates a turbine that in turn operates the air compressor.

Turboprop Aircraft
Airplanes having a jet engine in which the energy of the jet operates a turbine that drives the propeller.

Visual Approach Slope Indicator (VASI)
An airport lighting facility providing vertical visual approach slope guidance to airplanes during approach to landing by radiating a directional pattern of high intensity red and white focused light beams that indicate to the pilot that he is “on path” if he sees red/white, “above path” if whiter/white, and “below path” if red/red. Some airports serving large airplanes have three-bar VASIs that provide two visual glidepaths to the same runway.

Visual Descent Point (VDP)
A defined point on the final approach course of a nonprecision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced, provided the approach threshold of that runway, or approach lights, or other markings identifiable with the approach end of that runway are clearly visible to the pilot.

Vector
A heading issued to an airplane to provide navigational guidance by radar.

Visibility
The ability, as determined by atmospheric conditions and expressed in units of distance, to see and identify prominent unlighted objects by day and prominent lighted objects by night. Visibility is reported as statute miles, hundreds of feet or meters.

1. **Flight Visibility** - The average forward horizontal distance from the cockpit of an aircraft in flight, at which prominent unlighted objects may be seen and identified by day and prominent lighted objects may be seen and identified by night.
2. **Ground Visibility** - Prevailing horizontal visibility near the earth’s surface as reported by the United States National Weather Service or an accredited observer.
3. **Prevailing Visibility** - The greatest horizontal visibility equaled or exceeded throughout at least half the horizon circle which need not necessarily be continuous.
4. **Runway Visibility Value (RVV)** - The visibility determined for a particular runway by a transmissometer. A meter provides a continuous indication of the visibility (reported in miles or fractions of miles) for the runway. RVV is used in lieu of prevailing visibility in determining minimums for a particular runway.
5. **Runway Visual Range (RVR)** - An instrumentally derived value, based on standard calibrations, that represents the horizontal distance a
pilot will see down the runway from the approach end. It is based on the sighting of either high-intensity runway lights or on the visual contrast of other targets, whichever yields the greater visual range. RVR, in contrast to prevailing or runway visibility, is based on what a pilot in a moving aircraft should see looking down the runway. RVR is horizontal visual range, not slant visual range. It is based on the measurement of a transmissometer made near the touchdown point of the instrument runway and is reported in hundreds of feet. RVR is used in lieu of RVV and/or prevailing visibility in determining minimums for a particular runway.

a. Touchdown RVR - The RVR visibility readout values obtained from RVR equipment serving the runway touchdown zone.

b. Mid-RVR - The RVR readout values obtained from RVR equipment located midfield of the runway.

c. Rollout RVR - The RVR readout values obtained from RVR equipment located nearest the rollout end of the runway.

Visual Approach

An approach conducted on an instrument flight rules (IFR) flight plan that authorizes the pilot to proceed visually and clear of clouds to the airport. The pilot must, at all times, have either the airport or the preceding aircraft in sight. This approach must be authorized and under the control of the appropriate air traffic control facility. Reported weather at the airport must be ceiling at or above 1,000 ft and visibility of 3 mi or greater.

Visual Flight Rules (VFR)

Rules that govern the procedures for conducting flight under visual conditions.

Visual Meteorological Conditions (VMC)

Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling equal to or better than specified minimums.

VHF Omnidirectional Range Stations (VOR)

A ground-based electronic navigation aid transmitting very high frequency navigation signals, 360deg in azimuth, oriented from magnetic north. Used as the basis for navigation in the National Airspace System. The VOR periodically identifies itself by Morse Code, and it may have an additional voice identification feature.

Waypoint

A predetermined geographical position used for route/instrument approach definition, or progress reporting purposes, that is defined relative to a VORTAC station or in terms of latitude/longitude coordinates.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1 General Goals and Objectives</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2 Documentation Overview</td>
<td>1.2</td>
</tr>
<tr>
<td>1.3 Industry Consensus</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4 Resource Utilization</td>
<td>1.3</td>
</tr>
<tr>
<td>1.5 Conclusion</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Section 1

1.0 Introduction

Controlled Flight Into Terrain (CFIT) has been and continues to be the dominant reason for accidents involving airplane hull losses and fatalities. CFIT is defined as an event in which a mechanically normally functioning airplane is inadvertently flown into the ground, water, or an obstacle. Since the beginning of commercial jet operations, more than 9,000 people have died worldwide because of CFIT. It is imperative that the CFIT accident rate be lowered. This is essential because the number of commercial airplane departures is increasing greatly. If the current rate is applied to the forecast number of departures, CFIT could cause one major airline hull loss, and associated fatalities, per week by the year 2010.

The Flight Safety Foundation organized an international CFIT Task Force in 1993 that was dedicated to reducing CFIT accidents. Five teams were formed to study the causes and factors of CFIT accidents and make recommendations to prevent these accidents. The Task Force was composed of representatives from organizations that possess extensive aviation expertise: airplane manufacturers, aviation training organizations, airplane equipment manufacturers, airlines, pilot groups, and government and regulatory agencies. This document, the CFIT Education and Training Aid, is one product of the Task Force’s overall effort to reduce CFIT accidents.

Because of the number of factors that contribute to CFIT accidents, the Task Force Training and Procedures Team concluded that operators must be made aware of the CFIT problem as well as trained to avoid these accidents. Therefore, this CFIT Education and Training Aid was produced for operators. However, the Task Force also recognized that in a great many CFIT accidents, systemic factors made the flight crew the final link in the accident chain of events. Thus, in order to significantly reduce CFIT accidents, existing aviation systems must also be improved. Many of these potential system improvements are addressed in Section 2, Decision Makers Guide.

The responsibility for aviation safety within a company is at the top level of management. There must be a commitment at this level to reducing CFIT accidents. This is where the safety culture is established, and this is where many of the contributing factors to a CFIT accident must be eliminated. Typically, the role of management is to ensure the survival of the company. If, in fact, the current accident rate remains unchanged and departures continue to increase, public confidence in air transportation could be lost, first in individual companies and eventually in the total industry. Furthermore, lack of public confidence and government intervention alone could place an airline company in jeopardy. It is hoped by the Task Force that when the CFIT accident problem is put in this perspective, management will be convinced to support the education and training identified in this aid as an integral part of its overall accident prevention program.

The cost of implementing the CFIT training presented in this training aid is expected to be minimal. Regardless of how operators adopt this material, a significant return is expected on funds spent on CFIT prevention. The CFIT accident rate has been greatly reduced in some areas of the world where specific CFIT training is already occurring and there is a common effort between the ground and flight infrastructures. Operators who are currently offering credible training will find the addition of these suggestions to be principally a change in emphasis rather than an overall replacement of existing training. Other operators may find that using this aid will add only slightly to their training budgets.

Effective training to improve CFIT awareness and knowledge will help eliminate CFIT accidents and incidents. This training aid, together with the accompanying video, is intended to assist all operators in creating or updating their own individual CFIT prevention training programs. Management must ensure that a viable and effective CFIT accident prevention program is in place within its organization.
1.1 General Goals and Objectives

Preventing CFIT is the major goal of this training aid. This goal can be accomplished by improving the knowledge and the decision making of the people who operate the aviation system. Operators and flight crews will benefit from increased knowledge and awareness of the factors involved in preventing CFIT.

Objectives in support of this goal are to:
• Educate both operational and management personnel on CFIT hazards.
• Provide specific, appropriate educational material.
• Propose an example training program that will provide a basis for individual operators to formulate training programs.
• Provide managers with an effective CFIT avoidance strategy by adoption of appropriate operating policies, procedures, and airplane equipment.

The Flight Safety Foundation has other CFIT avoidance materials available. Included are the CFIT Awareness Checklist, various videos, and other written material. (Flight Safety Foundation, 601 Madison Street, Suite 300, Alexandria, VA 22314, USA telephone: 703-739-6700, fax: 703-739-6708)

1.2 Documentation Overview

This CFIT Education and Training Aid includes the following sections:

Section One: Overview for Management
• Provides top-level management with a concise, broad view of the document.

Section Two: Decision Makers Guide
• Identifies areas where those people who govern, regulate, and run the industry can best put their efforts to prevent CFIT.

Section Three: Operators Guide
• Provides the history of CFIT, along with causal factors, traps, and solutions. This section is specifically aimed at the operator end of the scale.

Section Four: Example CFIT Training Program
• Provides specific academic and simulator training programs aimed at informing the flight crews of their responsibilities and duties in preventing CFIT. Appendices include ground briefings, video script, and airplane-specific examples of the CFIT escape maneuver.

Section Five: CFIT Background Material
• Contains selected readings, including the latest CFIT accident/incident information.

1.3 Industry Consensus

The educational material and recommendations provided in this training aid were developed by the CFIT Task Force Training and Procedures Team. Through an extensive multiple review process, the team achieved a consensus within the air transportation industry to include representatives from organizations possessing extensive aviation expertise: airplane manufacturers, aviation training organizations, airplane equipment manufacturers, airlines, pilot groups, and government and regulatory agencies. The participants in the development and/or review of this training aid include the following:

Airbus Industries
Airline Pilot Association
Air Transport Association
Alaska Airlines
AlliedSignal Corporation
America West Airlines
American Airlines
The Boeing Company
Britannia Airways
British Airways
Civil Aviation Authority—United Kingdom
Delta Air Lines
Federal Aviation Administration
Flight Safety Foundation
FlightSafety International
Gulfstream Aerospace
Honeywell Technology
International Air Transport Association
International Civil Aviation Organization
Intl. Federation of Airline Pilots Association
Japan Air Lines
Jeppesen-Sanderson
Joint Aviation Authorities—Europe
Lockheed Martin
McDonnell Douglas Corporation
National Business Aircraft Association
National Transportation Safety Board
Regional Aircraft Association
Scandinavian Airlines System
United Airlines
USAir
VARIG Brazilian Airlines
1.4 Resource Utilization

This training aid is designed for use in its current form or as a basis for operators to modify existing CFIT training programs. Operators should use both the academic and simulator training programs to achieve a well-balanced, effective CFIT training program.

For some operators, the adoption of the CFIT Education and Training Aid into their existing training programs will require little more than a shift in emphasis. For others, especially those in the process of formulating complete training programs, this training aid will readily provide the foundation for a thorough and efficient program.

The allocation of training time for CFIT within both recurrent and transition programs will vary with each operator. Integration into a typical program is expected to take up to 5 min in each of two simulator sessions and at least 0.5 hr of academic training. The academic program should precede the simulator program.

1.5 Conclusion

Effective training to improve CFIT knowledge and awareness will help to reduce CFIT accidents. This document and the accompanying video are intended to assist all operators in creating or updating their own individual CFIT training. Management is encouraged to take appropriate steps to ensure that a viable, effective CFIT training program is in place within its organization.
Decision Makers Guide

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>2.1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>2.1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>2.1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>2.1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>2.1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>2.1.6</td>
<td>2.3</td>
</tr>
<tr>
<td>2.1.7</td>
<td>2.3</td>
</tr>
<tr>
<td>2.1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>2.1.9</td>
<td>2.3</td>
</tr>
<tr>
<td>2.1.10</td>
<td>2.4</td>
</tr>
<tr>
<td>2.1.11</td>
<td>2.4</td>
</tr>
<tr>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>2.3.1</td>
<td>2.5</td>
</tr>
<tr>
<td>2.3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>2.3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>2.3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>2.3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>2.3.6</td>
<td>2.6</td>
</tr>
<tr>
<td>2.3.7</td>
<td>2.6</td>
</tr>
<tr>
<td>2.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>
2.0 Introduction

In any critical review of Controlled Flight Into Terrain (CFIT) incidents or accidents, it becomes evident that there many interrelated factors that contribute to the causes of CFIT accidents. All of these factors are derived from some level of decision making. It is accepted that the flight crew is the last line of defense in preventing a CFIT accident, and that they make operational decisions that are critical to a safe flight. However, this section will address the responsibility and influence associated with higher level decision making.

For the purposes of this discussion, Decision Makers are those people and organizations who make or influence policy matters. They are:

- Political leaders.
- Aviation regulatory agencies, including air traffic control (ATC) authorities.
- International aviation organizations.
- Airline management.
- National safety advisory and investigation agencies.
- Pilot associations and unions.
- Aircraft manufacturers.
- Aircraft lessors.
- Aircraft insurers.
- Financial institutions.

Many contributing factors associated with CFIT accidents are embedded in policies and decisions made by these Decision Makers. Therefore, the goals of this CFIT Education and Training Aid can only be achieved with the endorsement and support of Decision Makers, not just the flight crews and other operators. In fact, many recommendations or strategies made in Section 3, Operators Guide, can only be successful if they are supported and implemented by the Decision Makers.

The underlying goal of all aviation industry Decision Makers should be system safety; the public expects it and assumes it. The reality is that humans make errors and always will, and, therefore, there will always be some level of risk associated with the aviation industry. The goal at the Decision Makers level must be management of this risk. Each level of authority has the capacity to implement the recommended CFIT avoidance strategies and achieve worthwhile results independently of other levels. When all levels do so in coordination with one another, the maximum effect can be achieved.

Reducing CFIT accidents requires recognition that such accidents are system induced; that is, that they are generated by shortcomings in the aviation system, including deficiencies in the organizations that constitute that system. In discussing the principle of joint causation and the influence of the organization, Arostegui and Maurino state: “Such understanding will preclude the piecemeal approaches based on design, training, or regulations which have plagued past safety initiatives. Looking into the organizational context will permit one to evaluate whether organizational objectives and goals are consistent or conflicting with the design of the organization, and whether operational personnel have been provided with the necessary means to achieve such goals.”

While we acknowledge the broadness in the spectrum of those organizations we include as Decision Makers, it is important not to overlook the great influence that airline management has on safety in general, and specifically on preventing CFIT accidents. Airline management creates the safety culture of the organization. This culture then affects everyone within the organization. In an article by the ICARUS Committee, safety is placed in perspective with other organization goals: “Accidents and incidents are preventable through effective management: doing so is cost effective.

1 Human Factors and Training Issues in CFIT Accidents and Incidents, Captain Roberto Arostegui and Captain Daniel Maurino.
An airline is formed to achieve practical objectives. Although frequently so stated, safety is not, in fact, the primary objective. The airline’s objectives are related to production: transporting passengers or transporting goods and producing profits. Safety fits into the objectives, but in a supporting role: to achieve the production objectives without harm to human life or damage to property. Management must put safety into perspective, and must make rational decisions about where safety can help meet the objectives of the organization. From an organizational perspective, safety is a method of conserving all forms of resources, including controlling costs. Safety allows the organization to pursue its production objectives without harm to human life or damage to equipment. Safety helps management achieve objectives with the least risk.”

This article also makes the point that, historically, safety initiatives have originated at the institutional levels closest to the accident, i.e., operators. This has improved performance, and it has resulted in enhanced aviation safety; however, the industry has reached the point of diminishing returns from this approach. A greater expenditure of resources at the operational end of the system will not result in proportionate safety benefits. Therefore, it is now necessary for prevention strategies to take into account the total aviation industry and infrastructure.

2.1 Recommendations to Decision Makers

Section 3, Operators Guide, contains many recommendations that, when implemented, can mitigate CFIT accident risk by addressing systemic and other factors that lead to this type of accident. Systemic problems may remain undetected for years before they surface as a contributing factor of a CFIT accident. What may initially appear to be an operational breakdown in reality may have been the result of omitting CFIT prevention training from the overall training program or perhaps having a marginal safety awareness program within the organization.

Decision Makers must be involved in order to implement these recommendations, as well as those applicable to nonoperators. In order to provide consistency and ease of identification, most of the recommendations are summarized in this Decision Makers section. A full report of the Training and Procedures Work Group and Aircraft Equipment Team is included in Section 5. Decision Makers should review these items and the other information included in these secs. 3 and 5 and incorporate the policies and recommendations into their organizations, if appropriate.

2.1.1 Measurement and Evaluation of System Performance

Many operators currently have insufficient methods to provide systems and infrastructure for monitoring and evaluating the operational performance of management, flight crews, and equipment. All operators should provide these systems, with the objective of enhancing operational integrity. This can be accomplished by means of some, or preferably, all, of the following:

- Flight data recorder analysis.
- Quick access recorder analysis.
- Flight Operations Quality Assurance Programs.
- Databases for safety analysis.
- Defined criteria for safety reporting.
- Establishment and encouragement of a “no blame” reporting culture.
- Effective application by the management process/culture of accumulated data.
- Implementation of an independent quality audit function to achieve operational integrity.

2.1.2 Use of Autopilots

Flight crews do not take full advantage of automatic systems to manage the progress of a flight and reduce workload. The use of autopilots is encouraged during all approaches and missed approaches, in instrument meteorological conditions (IMC), when suitable equipment is installed. It is incumbent upon operators to develop specific procedures for the use of autopilots and autothrottles during precision approaches, nonprecision approaches, and missed approaches and to provide simulator-based training in the use of these procedures to all flight crews. Autopilot and autothrottle functionality and limitations also need to be thoroughly understood by flight crews.

2.1.3 Acceptance of ATC Clearances

From time to time, ATC issues flawed instructions that do not ensure adequate terrain clearance. Such clearances are too often accepted by flight crews without considering consequences and/or questioning instructions. Flight crews should not as-
assume that ATC clearances will ensure terrain clearance. If an ATC clearance is given that conflicts with the flight crew assessment of terrain criteria relative to known position, the clearance should be questioned and, if necessary, refused, and suitable action should be taken. Training programs should address this issue.

2.1.4 Chart Supply
The failure of operators to provide flight crews with adequate supplies of current navigation and approach charts is a significant barrier to safety. In some instances, current charting standards do not provide adequate information to flight crews about potential terrain hazards, or they are so complex as to make clear interpretation difficult. Each flight crew should be provided with accurate, current charts with clear depiction of hazardous terrain and minimum safe altitudes. Such charts should depict hazardous terrain or minimum safe altitudes, preferably in color, in a manner that is easy to recognize, understand, and read under cockpit lighting at night. Electronic displays should resemble printed charts to the maximum extent feasible.

2.1.5 Use of Checklists
Poorly conceived procedures for use of checklists can result in task saturation of flight crews during critical phases of flight. Incidents and accidents have occurred as a result of noncompletion of relevant checklist(s). It is recommended that a detailed policy on the use of checklists be formulated by each operator and that a strict discipline regarding their use be maintained. Such policies should require that checklists be completed early in the approach phase to minimize distraction while maneuvering close to the ground. In the absence of other guidance, checklists should be completed no later than 1,000 ft AGL.

2.1.6 Allocation of Flight Crew Duties, Use of Monitored Approach Procedures
The majority of CFIT incidents/accidents are known to occur in IMC and at night, when the pilot flying the approach also lands the aircraft. Proper management of flight crew workload at night and during IMC requires that precise and unambiguous procedures be established. It is recommended that operators consider adopting a monitored approach procedure during approaches and missed approaches conducted in these conditions. In this case, the First Officer will fly approaches and missed approaches. The Captain will monitor approach progress and subsequently land the aircraft after obtaining sufficient visual reference.

2.1.7 Rate of Descent Policy
High rates of descent in close proximity to terrain are dangerous. They result in increased risk of CFIT, high flight crew workload, and reduced margins of safety. A policy should be established that restricts the rate of descent allowed within a prescribed vertical distance of (1) the applicable Minimum Enroute Altitude (MEA) and (2) the Minimum Sector Altitude, as defined by ICAO Procedures for Air Navigation Services—Aircraft Operations/Terminal Instrument Procedures (PANS-OPS/TERPS). As an example, the restriction could be 2,000 ft/min maximum rate of descent at or below 2,000 ft above either of these altitudes.

2.1.8 Route and Destination Familiarization
Flight crews may be inadequately prepared for CFIT critical conditions, both enroute and at destination. Flight crews should be provided with adequate means to become familiar with enroute and destination conditions for routes deemed CFIT critical. One or more of the following methods are considered acceptable for this purpose:
• When making first flights along routes or to destinations deemed CFIT critical, Captains should be accompanied by another pilot familiar with the conditions.
• Suitable simulators can be used to familiarize flight crews with airport critical conditions when those simulators can realistically depict the procedural requirements expected of flight crew members.
• Written guidance, dispatch briefing material, and video familiarization using actual or simulated representations of destination and alternatives should be provided.

2.1.9 Stabilized Approaches
Unstable approaches contribute to many incidents/accidents. Pilots should establish a stabilized approach profile for all instrument and visual approaches. A stabilized approach has the following characteristics:
• A constant rate of descent along an approximate 3-deg approach path that intersects the landing runway approximately 1,000 ft beyond the approach end and begins not later than the final approach fix or equivalent position.
• Flight from an established height above touchdown should be in a landing configuration with appropriate and stable airspeed, power setting, trim, and constant rate of descent and on the defined descent profile.
• Normally, a stabilized approach configuration should be achieved no later than 1,000 ft AGL in IMC. However, in all cases if a stabilized approach is not achieved by 500 ft AGL, an immediate missed approach shall be initiated.

2.1.10 Crew Resource Management
Decision Makers should support effective Crew Resource Management (CRM) and ensure that it is the normal way that flight crews operate within their organization. This is essential for safe, orderly, and profitable operation of an airline’s flights.

2.1.11 Standard Operating Procedures
Many studies show that airlines with established, well thought out and implemented standard operating procedures (SOP) have consistently safer operations. Clear, concise, and understandable SOPs need to be developed by each airline. Through these procedures and behaviors, the airline sets the standards that the flight crews are required to follow. Flight crews, on the other hand, must be able to inform management when these procedures are not producing the desired results.

All levels of decision making throughout the airlines must ensure that appropriate SOPs are in place and flight crews are trained to use them. These SOPs must address not only the needs of the airline, but the responsibilities of both management and operations. If these policies are not understood by either party, changes must be proposed, agreed to by all concerned, and implemented. Remember, this is an ongoing process. As situations change, the policies must be reevaluated for comparable change. Flight crews need to know what is required of them.

2.2 Communication
The link between Decision Makers and operations is communication and training. This should be two-way communication. Decision Makers are responsible for the broad scope of the operation, and they set the tone for the everyday routine. They must listen to those people who accomplish the day-to-day tasks, take appropriate action based on data obtained from operational performance monitoring systems, and be able to adjust the overall scope to meet the operational challenges.

All who are involved in the aviation industry must work as a team to prevent CFIT. This includes the flight crew and cabin staff, the mechanic, the airline CEO, the cockpit designer, ATC, the airplane manufacturers, and perhaps a nation’s elected or appointed official or a sales representative. To fix systemic problems, it takes a broad approach that includes many people. All of these people have a vested interest in the success of aviation, all are rightfully proud of their contribution to the common goal, and all are inexorably tied to one another. We are all in this together. We share the successes. We must also shoulder the responsibility for the shortcomings. We must work to mold everyone into a highly professional and dedicated team.

Managing flight crew resources means the dissemination of information—integrating and using the entire flight crew aboard an airplane to bring about a safe and smoothly running flight. This CFIT team concept is just as applicable to the broad spectrum of the aviation industry as it is to the flight crew of a single airplane. With everyone’s commitment, this industry can make airplane travel even safer than it is now.

2.3 Short-Term Goals
To help stop CFIT from continuing to claim lives, the entire aviation industry should work together to institute some immediate measures.
2.3.1 ATC Issues

At the highest levels, there should be a commitment to installation of modern communication facilities throughout the world. Upgraded radio communication, radar, civilian air traffic control of the airways, addition of precision instrument approaches and addition of VASI or PAPI lights to runways, and standardization of approach design criteria and procedures should also be implemented. Language training for both flight crews and air traffic controllers should be improved and intensified to enhance ATC’s ability to absorb the increasing number of airplanes. If this is not possible, then remedial measures should be considered.

2.3.2 Sharing Information

Airline management, ATC, and regulatory agencies can do their part by being more open with information. Any mistrust between these parties needs to be addressed. Change occurs even faster today than just 5 years ago, and the rate is increasing. All parties involved need to be more open to the new technologies and thinking. Safety in aviation comes about, in part, by freely sharing information. This means allowing flight crews to learn from others’ experiences. Currently, the exchange of this information is too highly restricted, partly because some management policies tend to blame first and think about safety next and partly because people don’t like to admit to certain shortcomings.

If we learn from the mistakes of others, then it seems logical to institute, within all air carriers, an incident reporting system that will deliver information, but without stigma. One of the largest international carriers in the world has used this system for years and has nothing but praise for the results. This airline can confidentially track trends with the use of flight data recordings and subsequent analysis. The dissemination of this information along with flight crew reports of incidents and potential incidents can prevent accidents. Lives are being saved at little or no cost to the carrier. This is not just a task for the airline managers. Flight crews need to support this initiative and be given assurance that inappropriate punitive action will not be taken as a result. The various industry associations also need to embrace the idea that shared information will improve safety.

2.3.3 Standard Operating Procedures

There are some airlines that do not currently have good SOPs. This can be resolved in a very short time. While some airlines consider SOPs proprietary, it should be possible to share most of the basic information with those airlines that need to establish SOPs.

2.3.4 Ground Proximity Warning System Installation and Modification Updates

The installation of the Ground Proximity Warning System (GPWS) on all airplanes in a carrier’s fleet can reduce CFIT accidents. It is one of the major weapons in the growing arsenal of CFIT prevention methods. Every airplane in every fleet in the world should be equipped with a fully functioning GPWS. Airplanes currently using the original Mark I GPWS should be retrofitted with the newer, updated GPWS equipment to take advantage of technology improvements. Incorporate automatic radio altitude voice callouts to improve terrain awareness. This will give our flight crews and passengers the best chance for survival.

2.3.5 CFIT Accident Prevention Training Program

Airlines that are considered the safest in the industry all have a complete training program that includes CFIT prevention. Most are already teaching their flight crews about the factors and causes of CFIT accidents as well as techniques to avoid getting into these situations in the first place. These airlines make sure that all of their flight crews understand the need for thorough briefings, professional flying, and CRM.

This training aid includes a full training program with both academic and simulator training. An instructor briefing supplement, CFIT safety briefing, and questions are also part of the Example CFIT Training Program section in this training aid. Airlines that currently have a CFIT education and prevention training program in place should review the contents of the Example CFIT Training Program and choose those areas that they deem appropriate for supplementing their current training. Those airlines that do not include CFIT prevention in their training program are encour-
aged to use the entire Example CFIT Training Program to ensure that their flight crews understand the threat posed by CFIT.

2.3.6 Approach Procedure Design and Specifications

The improved design of the nonprecision approach can be accomplished at little cost. This objective can be met by the simplification of the nonprecision approach, the specification of a stabilized approach, and the provision of a nominal 3-deg glide path.

Specifications for approach criteria are contained in ICAO PANS-OPS and U.S. TERPS. There are many instrument approaches being used by airlines that do not comply with either of these specifications. Organizations, states, regulatory agencies, and others who are responsible for designing instrument approaches should adopt these standardized specifications.

Additionally, significant terrain around airports should be depicted on color contour approach chart products. Flight crew situational awareness would be greatly enhanced.

2.3.7 Barometric Altimetry

The loss of vertical situational awareness is the cause of many CFIT accidents. The contributing factors associated with this cause often have to do with the barometric altimeter. These factors range from misinterpretation of the three-pointer and drum-pointer altimeter to confusion resulting from the use of different altitude and height reference systems, as well as altimeter setting units of measurement. Flight crew training is now used as a means of solving this problem, but consideration should be given to discontinuing the use of some altimeter designs and standardizing the use of altitude and height reference systems and altimeter setting units of measurement.

2.4 Long-Term Solutions

The CFIT Training and Procedures Working Group believes that a long-term solution to CFIT is in communication and training. The management structure must permit a free flow of information in all directions. This would allow the timely passing of information about safety issues that will help prevent CFIT accidents and incidents. Equally important is a comprehensive CFIT prevention training program. All carriers should implement and maintain intensive initial and recurrent ground and simulator training that covers CFIT prevention strategies.

Decision Makers control many of the systemic solutions for preventing CFIT accidents. A detailed analysis that includes the subjects covered in this section should be made, and appropriate action should be taken.
CFIT Operators Guide

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 Introduction</td>
<td>3.1</td>
</tr>
<tr>
<td>3.0.1 Operators Guide Objectives</td>
<td>3.2</td>
</tr>
<tr>
<td>3.1 CFIT Accidents</td>
<td>3.2</td>
</tr>
<tr>
<td>3.1.1 The Positive Results of the Ground Proximity Warning System (GPWS)</td>
<td>3.4</td>
</tr>
<tr>
<td>3.1.2 GPWS Initial Reliability and Follow-On Improvements</td>
<td>3.5</td>
</tr>
<tr>
<td>3.1.3 Industry Support Required for GPWS</td>
<td>3.7</td>
</tr>
<tr>
<td>3.2 CFIT and the Flight Crew</td>
<td>3.8</td>
</tr>
<tr>
<td>3.2.1 Causes for CFIT Accidents</td>
<td>3.8</td>
</tr>
<tr>
<td>3.2.2 Factors That Contribute to CFIT</td>
<td>3.8</td>
</tr>
<tr>
<td>3.2.2.1 Altimeter Setting Units of Measurement Factors</td>
<td>3.9</td>
</tr>
<tr>
<td>3.2.2.2 Altimeter Settings Factors</td>
<td>3.9</td>
</tr>
<tr>
<td>3.2.2.3 Safe Altitudes</td>
<td>3.10</td>
</tr>
<tr>
<td>3.2.2.4 Air Traffic Control Factors</td>
<td>3.10</td>
</tr>
<tr>
<td>3.2.2.5 Flight Crew Complacency</td>
<td>3.11</td>
</tr>
<tr>
<td>3.2.2.6 Procedural Factors Associated With CFIT</td>
<td>3.12</td>
</tr>
<tr>
<td>3.2.2.7 Descent, Approach, and Landing Factors</td>
<td>3.13</td>
</tr>
<tr>
<td>3.2.2.8 Autoflight System Factors</td>
<td>3.17</td>
</tr>
<tr>
<td>3.2.2.9 Training Factors</td>
<td>3.17</td>
</tr>
<tr>
<td>3.3 CFIT Prevention</td>
<td>3.18</td>
</tr>
<tr>
<td>3.3.1 Minimum Safe Altitude Warning System (MSAWS)</td>
<td>3.18</td>
</tr>
<tr>
<td>3.3.2 Crew Briefings</td>
<td>3.19</td>
</tr>
<tr>
<td>3.3.3 Autoflight Systems</td>
<td>3.20</td>
</tr>
<tr>
<td>3.3.4 Route and Destination Familiarization</td>
<td>3.20</td>
</tr>
<tr>
<td>3.3.5 Altitude Awareness</td>
<td>3.20</td>
</tr>
<tr>
<td>3.3.6 The Use of Callouts</td>
<td>3.20</td>
</tr>
<tr>
<td>3.3.7 GPWS Warning Escape Maneuver</td>
<td>3.21</td>
</tr>
<tr>
<td>3.3.8 Charts</td>
<td>3.21</td>
</tr>
<tr>
<td>3.3.9 Training</td>
<td>3.21</td>
</tr>
<tr>
<td>3.4 CFIT Traps</td>
<td>3.21</td>
</tr>
</tbody>
</table>
3.0 Introduction

This Operators Guide is Section 3 of the five-section Controlled Flight Into Terrain (CFIT) Education and Training Aid. Other sections include the Overview for Management, Decision Makers Guide, Example CFIT Training Program, and CFIT Background Material.

For the purposes of the CFIT Education and Training Aid, the term “operators” refers to the people involved in all operations functions required for the flight of commercial airplanes carrying at least 10 passengers, including airplanes involved in cargo operations. “Operators” is a broad term that includes such functions as air traffic systems, flight crew, flight dispatch, flight scheduling, flight training, and other supporting flight operations functions.

The goal of this training aid is to reduce the number of CFIT accidents. This can be accomplished by improving the knowledge and decision making of those who manage and fly within the international aviation system. This Operators Guide targets these people.

The material and recommendations provided in the CFIT Education and Training Aid were developed through an extensive review process to achieve consensus within the international aviation industry.

Portions of the data used in this aid came from the NASA Aviation Safety Reporting System (ASRS). While these are not objective reports, they are an excellent source of CFIT factors that can and have occurred. Even though ASRS reports may contain some unintentional inaccuracy, the CFIT Industry Team has included the information because its value exceeds the risk of editorial comment or inaccurate conclusions.
3.0.1 Operators Guide Objectives

The objective of the Operators Guide is to summarize and communicate key information that is relevant to operators. This Operators Guide:
- Indicates the magnitude of CFIT accidents.
- Identifies the causes of CFIT accidents.
- Identifies factors that contribute to CFIT accidents.
- Provides solutions and recommendations that, when implemented, can prevent CFIT accidents.

3.1 CFIT Accidents

A CFIT accident is defined as an event where a mechanically normally functioning airplane is inadvertently flown into the ground, water, or an obstacle. These accidents have a history as old as flight itself. In the early days of reciprocating engine commercial airplanes, fully half of all accidents were attributable to CFIT. Since the beginning of commercial jet operations, more than 9,000 people have died worldwide because of CFIT.
The worldwide accident rate (which includes CFIT) for the commercial jet fleet decreased significantly in the 1960s and 1970s. This rate stabilized at that time and remains fairly stable today (Figure 1). Operators can be very satisfied with this accomplishment, but let’s look at the actual number of CFIT accidents that are included in this accident rate. Figure 2 shows hull losses attributed to CFIT for the U.S. fleet as well as the rest of the world’s fleet. The reduction in CFIT accidents that started in 1975 will be discussed later. The important thing to understand about these accidents is that they happened with normally functioning airplanes. These are accidents that operators could have prevented! From 1991 through 1995 there were more CFIT accidents than any other type (Figure 3). These accidents led to almost 1,000 fatalities, and in 1995 there were more fatalities attributed to CFIT than to any other type of accident (Figure 4). From November 1994 through December 1995, there were five CFIT accidents and 336 fatalities. CFIT is still happening.
3.1.1 The Positive Results of the Ground Proximity Warning System (GPWS)

The number of CFIT accidents reached a historical high in 1973 (Figure 2). In the United States, starting in 1975, large jet transport accidents attributable to CFIT fell to an average of only one every 2 years. A major reason for this was the advent of the GPWS. In the early 1970s, Scandinavian Airlines System originated the concept of a warning system that would alert flight crews of imminent flight into terrain. Using the existing radio altimeter and air data computers, AlliedSignal (formerly Sundstrand Data Control) developed this cost-effective and practical device for installation in airplanes. An aural warning tone that was used in the original equipment to warn the flight crew was quickly replaced by a “pull up” command that was triggered by the airplane’s flight path in relation to terrain characteristics.

In 1973, some airplane manufacturers and airlines recommended that GPWS be installed on their airplanes (Figure 5). During the following year, GPWS became standard equipment on most new airplanes. The United States Federal Aviation Administration (FAA) issued a Proposed Rule requiring that GPWS equipment be installed on all airplanes that operated under Part 121 and Part 125 regulations. The FAA still had some doubts concerning the effectiveness of GPWS in preventing CFIT, and it did not want the industry to rely only on GPWS for the prevention of CFIT accidents. In fact, in early 1974, the FAA issued a statement noting that “Present instrumentation and inflight procedures provide for safe and adequate terrain clearance as long as proper flight crew members discipline is maintained and appropriate flight operations procedures are followed.”
Late in 1974 in the United States, a CFIT accident resulted in more rapid reaction by the FAA. A 727 flying a VOR/DME approach to runway 12 struck a hill 50 ft below the crest 20 mi from Dulles Airport in Washington, D.C. There were more than 90 fatalities. Subsequent to this accident, the FAA enacted FAR 121.360, which required all large jet and turbo-prop airplanes to be equipped with GPWS by the end of 1975. The short response time imposed by this ruling was met with initial reluctance by the airline community. Even with this reluctance and some technical problems that accompanied the regulatory requirement for GPWS, CFIT losses began a very significant and continuous drop. In the United States, accidents that were attributable to CFIT fell from the previous eight per year to only one per 5 years (Figure 2). In addition to GPWS, there were other initiatives that also helped reduce CFIT accidents. Expansion and upgrading of the air traffic control (ATC) radar within the United States, Air Route Traffic System III Minimum Safe Altitude Warning System (MSAWS), approach lighting, Visual Approach Slope Indicator (VASI) and precision approach path indicators (PAPI) systems, and Instrument Landing Systems (ILS) all had a positive effect in reducing the CFIT problem.

The United Kingdom Civil Aviation Authority conducted an evaluation using actual airline flight data. As a result of this, in 1975 it followed the FAA lead and also mandated the installation of GPWS by issuing Specification 14 as the technical standard. The International Civil Aviation Organization (ICAO) established GPWS standards in 1979. All of these actions resulted in the reduction of the number of worldwide CFIT accidents (Figure 2).

Regional carriers in the United States were not required to have the GPWS installed on their airplanes until recently. It is interesting to note that during the time that CFIT accidents for the large carriers decreased to about one hull loss every other year, the regional carriers without GPWS were experiencing CFIT accidents that resulted in an average of three hull losses per year.

3.1.2 GPWS Initial Reliability and Follow-On Improvements

The first GPWS model, the Mark I, was not as reliable as anticipated, because of the rush to meet regulatory installation time requirements. It was plagued with false and nuisance warnings. This led to these prophetic remarks from the Air Transport Association of America in late 1975: "Pilots will quickly lose confidence in this system if this continues for even a short period of time. Once they lose confidence, it will be practically impossible to regain. Then, the efforts of both the FAA and industry to realize the safety benefits which this system promises will have gone for nothing. We will have spent thousands of man-hours and millions of dollars on a black box that nobody trusts."

In a survey conducted soon after the GPWS installation requirement, 83% of the pilots surveyed expressed concerns about false or nuisance alerts. These concerns included the potential for having a midair collision while performing a mandatory pull-up, losing control of the airplane while distracted, ignoring a valid warning because of system credibility problems, and ignoring a valid warning through a misunderstanding of the cause of the warning.

Now, 20 years later, we still may be living with these concerns. We are still trying to regain flight crew confidence in GPWS. Flight crew recognition and subsequent response is still being influenced by GPWS warning integrity. Many CFIT accidents have been attributable to flightcrews failing to respond properly to valid GPWS warnings even though modifications and improvements were made to the system. (Refer to Sec. 5, AlliedSignal Aerospace Report). The Mark I was improved in 1975, and the Mark II version was on the line in 1976. The Mark II allowed higher sink rates at lower altitudes; provided for better high-speed warnings; and added specific reasons for warnings such as “Too Low-Gear” and “Terrain, Terrain.” The latest versions of the GPWS, the Mark V and VII, are tailored for terrain around specific airports, and they are easily reprogrammed, if needed. Although false alerts still occur and are a cause for concern, there is no evidence that an accident has been caused by these nuisance alerts.
With the early Mark I GPWS, the frequency of pull-up warnings was about one per 750 sectors. (A sector is that portion of an airplane flight that consists of one takeoff and one landing.) Recent data show that pull-up warnings now average about one for each 5,000 sectors for short-haul carriers and once per 7,000 sectors for long-haul carriers. Along with better validity in the GPWS warnings came earlier warnings to the flight crew. With the first versions of GPWS there was as little as 5 sec warning and no warning if the projected impact point was on a relatively steep slope of a mountain. Now, after continual upgrade modifications, the warning time has increased to almost 30 sec, and improvements are still in progress. The significance of this improved warning time can be seen by reviewing the flight path profile of a CFIT accident that happened in Azores, Portugal (Figure 6).

Figure 6
Flight Path Profile:
707-300, Santa Maria, Azores, February 8, 1989

Altitude MSL (ft)

Distance (nm)

Time (sec)

200 kt, gear up 272 deg

MEA/MSA

Mark I GPWS Warning (actual)

Mark V/Mark VII
3.1.3 Industry Support Required for GPWS

Installation of GPWS on all airplanes should be the goal of the international aviation industry. It is estimated that over the next 15 years, half of the current unequipped airplanes will be retired from service. However, this still leaves nearly 200 airplanes that do not have GPWS installed. Currently, less than 5% of the world’s commercial airplane fleet is not equipped with GPWS; however, these unequipped airplanes are involved in nearly 50% of CFIT accidents (Figures 7 and 8).
3.2 CFIT and the Flight Crew

The most prevalent primary factor for hull losses with known causes is the flight crew (Figure 9). For worldwide airlines from 1991 to 1995, there were more CFIT accidents than any other type (Figure 3). What are the causes and contributing factors for these accidents, and why do they occur? The answers lie in two areas. One set of factors is found primarily in the operations area and will be addressed in this section. Of equal importance are the factors that are present in the corporate, management, government, and regulatory area. These factors are covered in Section 2 of this CFIT Education and Training Aid.

3.2.1 Causes for CFIT Accidents

There are two basic causes of CFIT accidents; both involve flight crew situational awareness. One definition of situational awareness is an accurate perception by flight crews of the factors and conditions currently affecting the safe operation of the aircraft and the crew. The causes for CFIT are the flight crews’ lack of vertical position awareness or their lack of horizontal position awareness in relation to the ground, water, or obstacles. More than two-thirds of all CFIT accidents are the result of altitude error or lack of vertical situational awareness. Simply stated, flight crews need to know where they are and the safe altitude for flight. The underlying assumption is that a flight crew is not going to knowingly fly into something. It follows then that CFIT accidents occur during reduced visibility associated with instrument meteorological conditions (IMC), darkness, or a combination of both conditions.

3.2.2 Factors That Contribute to CFIT

There are many factors that lead to CFIT accidents. We all accept that the flight crew has the final responsibility for preventing a CFIT accident, but if many of the factors normally associated with these accidents were eliminated, or at least mitigated, the potential for flight crew errors would be lessened.

- In the following sections, abbreviated solutions to counter CFIT factors and prevent CFIT accidents are indicated by a bullet (solid dot) shown here. More detailed discussion of CFIT prevention strategies can be found in Section 3.3.

<table>
<thead>
<tr>
<th>Primary factor</th>
<th>Number of accidents</th>
<th>Percentage of total accidents with known causes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Last 10 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Flight crew</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Airplane</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Airport/ATC</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total with known causes</td>
<td>446</td>
<td>132</td>
</tr>
<tr>
<td>Unknown or awaiting reports</td>
<td>90</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>536</td>
<td>186</td>
</tr>
</tbody>
</table>

Excludes: Sabotage 1959 to 1994
Military action Last 10 years (1985 to 1994)
3.2.2.1 Altimeter Setting Units of Measurement Factors

Accidents and numerous incidents have been recorded that involved the aircraft altimeter! Errors associated with the use of the barometric altimeter and its settings remain a problem that is compounded by language, nonstandard phraseology, and the use of different units of measurement. While there is an international standard, it is not adhered to by all states. Altimeter settings may be given in inches of mercury (inHg), hectoPascals (hPa), or millibars (mbars). Note: HectoPascals replaced millibars (metric) as a unit of measurement term for altimeter settings. Some air traffic systems use meters and some use feet for altitude reference. Most airplanes are only equipped with altimeters that use feet as a reference. The unit of measurement used depends on the area of the world in which the flight crew is flying. A problem can arise when a flight crew has been trained and primarily operates in one area of the world and only periodically operates elsewhere.

The following is an example of what can happen. An ATC controller, who speaks English as a second language, hurriedly advises the flight crew to descend and maintain 9,000 ft using an altimeter setting of “992.” The flight crew begins the letdown and dutifully sets 29.92, not 992 hectoPascals that the controller was expecting to be set. Throughout the approach the airplane will be approximately 600 ft below the altitude indicated on the altimeters. The airplane will prematurely descend to the next lower altitude on a nonprecision approach and level approximately 600 ft below the MDA. This can make the difference between a normal landing at the destination and a CFIT accident just short of the runway.

- Know what altimeter units of measurement are used for the area in which you are flying.
- Be especially vigilant during radio transmissions of altimeter settings. If in doubt, verify whether the setting was given in inches of mercury or hectoPascals/millibars.
- Be prepared for the conversion of feet and meters.

3.2.2.2 Altimeter Settings Factors

The QNH altimeter setting is obtained by measuring the existing surface pressure and converting it to a pressure that would theoretically exist at sea level at that point. This is accomplished by adding the pressure change for elevation above sea level on a standard day. This QNH altimeter setting is the standard used throughout most of the world. Some states, however, report or use QFE.

The QFE altimeter setting is the actual surface pressure, and it is not corrected to sea level. The QFE altimeter setting results in the altimeter indicating height above field elevation, while the QNH setting results in the altimeter indicating altitude above mean sea level (MSL).

There have been incidents in which a QNH setting has been erroneously used as a QFE setting. This results in the airplane being flown lower than the required altitude (Source: Pilot report from Peoples Republic of China).

The QNE altimeter setting is always 29.92 inHg, or 1013 hPa/mbars. QNE is set when operating at, climbing through, or operating above the transition altitude. Transition altitudes are not standardized throughout the world, which increases the potential for flight crews to make errors.

Extreme atmospheric anomalies, such as low temperatures or low pressures, can affect altimeters and result in reduced altitude margins of safety. This incident was reported by a Jetstream 31 Captain: “The First Officer got the ATIS. Passing FL180, the First Officer called the transition, altimeters 29.82. I questioned that setting, and he recounted, stating the setting of 29.82. We executed the VOR RWY 25 via the arc. Turning onto the inbound course, the minimum alt is 800 feet, to which I started to descend. We had been in and out of clouds with a ragged ceiling and low light conditions. My focus was inside the cockpit. At about 1,400 feet, out of the side of my eye, I noticed that the waves on the water looked awfully close. I looked out the window and got the immediate feeling something was horribly wrong. I told the First Officer to verify altimeter setting, and tower came back with 28.84. We were actually at 400 feet, not 1,400 feet! I added max power and climbed up to 800 feet and we continued to a landing on RWY 36 without further incident. I thank God that conditions were not just a little worse, or there had been less light, because we would have descended into the water at 180 knots.” (Source: ASRS report 257947.)

- Know what altimeter setting units of measurements are used for your areas of operation.
- Know the phase of flight in which to apply the
appropriate altimeter settings.
• Establish and use altimeter setting cross-check and readback cockpit procedures.
• Cross-check radio altimeter and barometric altimeter readings.
• Operate at higher than minimum altitudes when atmospheric anomalies exist.

3.2.2.3 Safe Altitudes
Vertical awareness implies that flight crews know the altitude relationship of the airplane to the surrounding terrain or obstacles. Obviously, during IMC and reduced-visibility flight conditions, it is necessary to rely on altitude information provided by other than visual means. To assist flight crews, instrument flight rule enroute charts and approach charts provide Minimum Safe Altitudes (MSA), Minimum Obstruction Clearance Altitudes (MOCA) Minimum Enroute Altitudes (MEA), Emergency Safe Altitudes (EAS), and in most terminal areas, actual heights of the terrain or obstacles. Traditional maps, such as Sectional or Operational Navigation Charts, are available for more detailed study. The potential for CFIT is greatest in the terminal areas. Detailed altitude information is provided to assist the flight crews in maintaining situational awareness.

A flight crew on a flight to Portland, Oregon, USA, made this report: “The area below us was like a ‘black hole’… The city lights were off the right wing—a beautiful night. After being cleared for a visual approach, I began descent so as to arrive... at the recommended 3,000 feet mean sea level. ...at 4,100 feet MSL the GPWS went ‘Whoop, whoop! Pull up! Terrain.’ For a split second we thought it was a false warning, since we were still looking at the airport/city. Then I noticed both radio altimeters go from 2,500 feet to 400 feet in 1-2 seconds. I immediately applied full power and initiated a max climb until over the city’s outskirts (lights). Our whole crew serves this city daily and knows the airport well. Simple fact is that most pilots going into a familiar airport use the approach plate and do not often refer to the area chart. ...We were stupid and very lucky.” (Source: ASRS report 96032.)

3.2.2.4 Air Traffic Control Factors
The inability of air traffic controllers and pilots to properly communicate has been a factor in many CFIT accidents. There are multiple reasons for this problem. With the growth of the aviation industry throughout the world, the use of English as a common language is more difficult to support. The lack of English language proficiency can make understanding controller instructions to the flight crews and airborne information or requests from the flight crews to the controllers much more prone to errors. Heavy workloads can lead to hurried communications and the use of abbreviated or nonstandard phraseology. The potential for instructions meant for one airplane to be given to another is increased. Unreliable radio equipment still exists in some areas of the world, which compounds the communication problems.

The importance of good communications was pointed out in a report by an air traffic controller and flight crew of an MD-80. The controller reported that he was scanning his radar scope for traffic and noticed that the MD-80 was descending through 6,400 ft and immediately instructed a climb to at least 6,500 ft. The pilot responded that he had been cleared to 5,000 ft and then climbed to... The pilot reported that he had “heard” a clearance to 5,000 ft and read back 5,000 ft to the controller and received no correction from the controller. After almost simultaneous GPWS and controller warnings, the pilot climbed and avoided the terrain. The recording of the radio transmissions confirmed that the airplane was cleared to 7,000 ft and the pilot mistakenly read back 5,000 ft and attempted to descend to 5,000 ft. The pilot stated in the report: “I don’t know how much clearance from the mountains we had, but it certainly makes clear the importance of good communications between the controller and pilot.” (Source: ASRS report 96032.)

ATC is not always responsible for safe terrain clearance for the airplanes under its jurisdiction. Many times ATC will issue enroute clearances for flight crews to proceed off airway direct to a point. When flight crews accept this clearance, they also accept responsibility for maintaining safe terrain clearance.

• Make sure that adequate charts are available.
• Study the altitude information.
• Know and fly at or above the safe altitudes for your area of operation.
Airspace constraints that are most prevalent in the terminal areas many times require air traffic controllers to radar vector airplanes at minimum vectoring altitudes that can be lower than the sector MSA. Proper vertical and horizontal situational awareness is vital during this critical phase of flight. Humans make errors. From time to time ATC may issue flawed instructions that do not ensure adequate terrain clearance. While it may be difficult for flight crews to know that an error has been made, it is possible that mistakes can be detected with good flight crew position and altitude awareness.

The following is a report of an incident that took place in El Paso, Texas, USA: “El Paso clearance Delivery: cleared to Salt Lake City Airport, full route clearance, radar vectors TCS, direct GUP, direct HVE, direct SLC, maintain 7,000 feet, expect FL350 10 minutes after departure...After takeoff, fly heading 070 degrees. I read the above clearance back as written above. El Paso clearance delivery responded: readback correct. Runway 08 in use at the time. Winds reported calm. Several minutes later, I requested if runway 04 would be available (while still at the gate) El Paso clearance delivery replied: 'Affirmative, I'll forward your request for runway 04.' No amendments or changes to the original clearance were issued until receiving takeoff clearance from tower. Approximately 25 minutes later we departed runway 04 with the following instruction from El Paso tower: ‘After takeoff, turn left heading 330 degrees. Cleared for takeoff.’ While in a left turn to 330 degrees after takeoff, combined tower/departure controller said: ‘radar contact, turn left heading 300 degrees.’ We responded by acknowledging the heading and ‘leaving 6 for 7,000 feet.’ Aircraft was leveled off at 7,000 feet MSL. Captain asked controller the elevation of the terrain below us. Tower replied: ‘5,800 feet.’ After approximately one minute level at 7,000 feet MSL, the radar altimeter light came on, indicating terrain less than 2,500 feet. A climb was immediately initiated when the GPWS warned: ‘Terrain, Terrain.’ ATC was advised we’re climbing. ATC replied: ‘Verify you’re climbing to 17,000.’ Captain replied that were issued 7,000 feet. ATC replied: ‘Climb and maintain 17,000.’...The controller said he was the new shift replacement for the controller who had given us the clearance.” (Source: ASRS 95474.)

• Exercise good radio communication discipline.
• Know the height of the highest terrain or obstacle in the operating area.
• Know your position in relation to the surrounding high terrain.
• Challenge or refuse ATC instructions when they are not clearly understood, when they are questionable, or when they conflict with your assessment of airplane position relative to the terrain.

3.2.2.5 Flight Crew Complacency
Complacency can be defined as self-satisfaction, smugness, or contentment. You can understand why, after years in the same flight deck, on the same route structure to the same destinations, a flight crew could become content, smug, or self-satisfied. Add to this equation a modern flight deck with a well-functioning autopilot, and you have the formula for complacency.

Here is an example of flight crew complacency. The flight crew is flying an arrival. They get a nonstandard clearance to descend to a lower altitude, in an unfamiliar sector. Suddenly, the GPWS warning sounds: “Pull up! Pull up!” The flight crew is not sure what to do, because they have never experienced this before. They may hesitate to pull up, or they may ignore the warning—with disastrous results.

In this scenario, the GPWS warning may not have registered with the flight crew. They have flown into this airport hundreds of times, but because of complacency, their brains may very well have disregarded aural and visual cockpit warnings. At the other extreme, flight crews may also be exposed to continued false GPWS warnings because of a particular terrain feature and a GPWS database that has not been customized for the arrival. The flight crew becomes conditioned to this situation since they have flown the approach many times. This can also lull the flight crew into complacency, and they may fail to react to an actual threat. Note: The newer versions of GPWS can be programmed by the manufacturer for specific airfield approach requirements, so that these nuisance warnings are eliminated.

• Know that familiarity can lead to complacency.
• Do not assume that this flight will be like the last flight.
• Adhere to procedures.
3.2.2.6 Procedural Factors Associated With CFIT

Many studies show that operators with established, well thought out and implemented standard operating procedures (SOP) consistently have safer operations. It is through these procedures that the airline sets the standards that all flight crews are required to follow. CFIT accidents have occurred when flight crews did not know the procedures, did not understand them, and did not comply with them or when there were no procedures established. More than one CFIT accident has occurred when the flight crew delayed its response to a GPWS warning during IMC. If an SOP had addressed this situation and provided the flight crew with specific guidance, maybe an accident could have been avoided. In the absence of SOPs, flight crews will establish their own to fill the void in order to complete the flight. Some crews think the weather is never too bad to initiate an approach! It is the responsibility of management to develop the comprehensive procedures, train the flight crews, and quality control the results. It is the responsibility of the flight crew to learn and follow the procedures and provide feedback to management when the procedures are incorrect, inappropriate, or incomplete.
• Do not invent your own procedures.
• Management must provide satisfactory SOPs and effective training to the flight crew.
• Comply with these procedures.

3.2.2.7 Descent, Approach, and Landing Factors
CFIT accidents have occurred during departures, but the overwhelming majority of accidents occur during the descent, approach, and landing phases of the flight (Figure 10). CFIT accidents make up the majority of these accidents. An enlightening analysis of 40 CFIT accidents and incidents was accomplished for a 5-year period, 1986 to 1990. The airplanes’ lateral position in relation to the airport runway and the vertical profile were plotted. (Figures 11 and 12). One of the interesting things is that almost all the position plots in Figure 11 are on the runway centerline inside of 10 mi from the intended airport. The vertical profiles shown in Figure 12 are also significant. The flight paths are relatively constant 3-deg paths—right into the ground! Most of the impacts are between the outer marker and the runway.

![Figure 12](image_url)

Figure 12
Primary Cause Factors for Hull-Loss Accidents for Worldwide Commercial Jet Fleet

![Figure 13](image_url)

Figure 13
Geographical Location of CFIT Accidents

Altitude (ft)

Distance to runway threshold (nm)

Average time (sec)

Cumulative number of undershoots

Distance from runway threshold (nm)
The geographical locations of CFIT accidents during the 1970s show a different pattern than those in the late 1980s and 1990s (Figure 13). During the 5-year period from 1972 through 1977, there were 75 CFIT accidents or incidents. Twenty-five of these accidents/incidents were greater than 8 nm from the runway. The preponderance of the remaining accidents/incidents were inside the middle marker. However, for the period 1986 to 1990, the distribution of accidents/incidents was relatively even. This difference may be the result of improvements made in runway approach aids that took place during this time period. Additional ILS were installed, as well as runway approach lighting systems. Continued capital investment in runway precision approach and lighting systems needs to be made worldwide.

- Know what approach and runway aids are available before initiating an approach.
- Use all available approach and runway aids.
- Use every aid to assist you in knowing your position and the required altitudes at that position.

Most CFIT accidents occur during nonprecision approaches, specifically VOR and VOR/DME approaches. Inaccurate or poorly designed approach procedures coupled with a variety of depictions can be part of the problem. Figure 14 is an example of an approach procedure produced by different sources. There are documented cases that the minimum terrain clearances on some published approach charts have contributed to both accidents and incidents. For more than a decade, a worldwide effort has been under way to both raise and standardize the descent gradient of nonprecision approaches. There are gradients as little as 0.7 deg in some VOR approach procedures. ASRS report 254276 illustrates the hazard of shallow approaches coupled with other confusion associated with the procedure design (Figure 15). In addition to the shallow approach gradients, many approaches use multiple altitude step-down procedures. This increases flight crew workload and the potential for making errors.

- Study the approach procedure(s) before departure.
- Identify unique gradient and step-down requirements.
- Review approach procedures during the approach briefing.
- Use autoflight systems, when available.
There is more than one standard for approach procedures in the world. The U.S. standard is Terminal Instrument Procedures (TERPS). The ICAO standard is Procedures for Air Navigation Services—Aircraft Operations (PANS-OPS), and the Russian Federation uses still another. Flight crews, therefore, may be exposed to different standards and different margins of terrain clearances.

- Study anticipated approach procedures before departure.

- Know that there are different approach design standards.

Different approach procedure charting requirements and printing can also make it more difficult for flight crews to safely fly an approach. High-elevation obstacles and terrain surrounding airports have been annotated on charts for years, but the actual terrain has not been depicted. Slowly, the publishing and printing organizations for

![Diagram of Flight Path Profile—ASRS Report 254276]

Note the very low approach slope from SHEA (the FAF) of 1.37 deg. This approach procedure has been improved since raising the approach slope to 1.5 deg and referencing the FAF to the localizer DME. A safer approach slope would be 3 deg with an FAF intercept altitude of 2,000 ft.
Aeronautical and approach charts have begun to use color and depict terrain or minimum safe altitude contours. Recently, some of the larger international operators have started printing their own customized charts that include these features. This greatly helps the flight crews to recognize the proximity of high terrain to the approach courses. Hopefully, this will result in fewer accidents.

Unstable approaches contribute to many CFIT accidents or incidents. Unstable approaches increase the possibility of diverting a flight crew’s attention to regaining better control of the airplane and away from the approach procedure. A stabilized approach is defined by many operators as a constant rate of descent along an approximate 3-deg flight path with stable airspeed, power setting, and trim, with the airplane configured for landing.

- Fly stabilized approaches.
- Execute a missed approach if not stabilized by 500 ft above ground level or the altitude specified by your airline.

In some modern glass-cockpit aircraft, the flight guidance system has the capability to display flight path vector / flight path angle. Use of this mode enables a stabilized approach to be flown at the required slope during a nonprecision approach, with automatic correction for the effects of wind.

Flight management systems also have the capability to provide a computed profile for a nonprecision approach. Required conditions for the use of lateral and vertical navigation functions for this purpose are that the approach profile is included in the database, that it is verified in accordance with obstacle clearance criteria, and that the FMS accuracy is confirmed to be high.

The use of these techniques, in conjunction with the autoflight system, reduces crew workload and should ensure a higher level of safety. Procedures specific to the airline type are given in the applicable Flight Crew Operating Manual. Crews should be adequately trained, either in the simulator or in flight, to use the procedures associated with these features.

- If a nonprecision approach is necessary, use the recommended flight guidance system function to fly a stabilized profile at the required angle whenever possible.
- Continuously monitor position and track by reference to the basic approach aid(s).

Figure 16
The Last “Safety Net”: 767
La Guardia, February 1983
3.2.2.8 Autoflight System Factors

“On final approach into La Guardia Airport, New York, USA, with the weather 400 foot overcast, the descent was made below the minimum maneuvering altitude. I feel that a dangerous situation existed this time, and I will try to give a history of the events (Figure 16).

“Our clearance was ‘descend to 2,700 feet, cross GRENE at 2,700 feet, cleared for the ILS approach to runway 4, hurry out of 4,500 feet’. Using the flight level change mode on the mode control panel we descended to 2,700 feet. The first officer was flying and asked for flaps 20, gear down. Acting as copilot and doing the copilot duties, I put the gear handle down and the flaps at 20 degrees. The gear amber light was on, so it was necessary to recycle the landing gear.

“Three green lights appeared after cycling. It was night time, so I turned on the overhead reading light and completed the landing checklist. As I was replacing the checklist to the card holder, the GPWS sounded two pull-up warnings, and I said ‘Pull up, pull up.’ The autopilot was disengaged and maximum power was added. At about this point, we crossed the LOM. An attempt was then made to get back on the localizer and glide slope, but we were not able to do so. A missed approach was made and another approach and landing was uneventful. On the missed approach, the altitude select on the mode control panel indicated 0000. Neither of us know how it got there.

“The aircraft was descending below the glide slope all the way down and did not capture, but was going to 0000 feet as asked for by the altitude selector.

“I feel that there was some failure in the system as well as in the coordination of the flight crew. I feel that we all must be more cognizant of the fact that the monitoring of… instruments must be absolutely primary by both pilots. We may have been saved by the GPWS and I feel that closer monitoring by both pilots would have prevented this situation. The only reason I write this is to once again alert each of us to the many traps these new concepts and the new instrumentation can lead us into. Heads up is the answer.” (Source: ASRS report PAN AM Flight OPS magazine.)

A minimum of three to five autoflight-related near-collision with the terrain incidents occur each year. Not all incidents are reported. The actual number of incidents may be much greater. The advancement of technology in today’s modern airplanes has brought us flight directors, autopilots, autothrottles, and flight management systems. All of these devices are designed to reduce flight crew workload. They keep track of altitude, heading, airspeed, and the approach flight path, and they tune navigation aids with unflagging accuracy. When used properly, this technology has made significant contributions to flight safety. But technology can increase complexity, and it can also lead to unwarranted trust or complacency. Autoflight systems can be misused, may contain database errors, or may be provided with faulty inputs by the flight crew. These systems will sometimes do things that the flight crew did not intend for them to do.

Imagine this situation. You are descending, and the autoflight system is engaged and coupled to fly the FMC course. It is nighttime, and you are flying an instrument arrival procedure in mountainous terrain. The FMC has been properly programmed, and the airplane is on course when ATC amends the routing. In the process of programming the FMC, an erroneous active waypoint is inserted. While you and the first officer are reconciling the error, the airplane begins a turn to the incorrect waypoint! It does not take very long to stray from the terrain altitude protected routing corridor.

- Monitor the autoflight system for desired operation.
- Avoid complacency.
- Follow procedures.
- Cross-check raw navigation information.

3.2.2.9 Training Factors

Most of the factors that have been identified are the result of deficiencies in flight crew training programs. Therefore, training becomes a significant factor that contributes to CFIT. Well-designed equipment, comprehensive operating procedures, extensive runway approach aids, and standardized charting or altimeter setting procedures and units of measurement will not prevent CFIT unless flight crews are properly trained and disciplined.

- Develop and implement effective initial and recurrent flight crew training programs that include CFIT avoidance.
- Implement Flight Operations Quality Assurance Programs.
3.3 CFIT Prevention

In Section 2 of this document (the Decision Makers Guide) we point out that CFIT prevention encompasses more than operator-related actions. There are system-related problems that, when solved, will help operators avoid situations that may lead to CFIT. Some progress has been made in solving the systemic problems, but much more needs to be done. **In the meantime, operators can also do much more to prevent CFIT accidents.**

3.3.1 Minimum Safe Altitude Warning System (MSAWS)

The Minimum Safe Altitude Warning System became operational in the United States in 1976. MSAWS alerts the air traffic controller with both visual and aural alarms when an airplane penetrates, or is predicted to penetrate, a predetermined MSA in the protected terminal area. It operates in two modes: surveillance in all sectors of the terminal area and a mode tailored to monitor airplane altitude versus position on the final approach course. This capability is especially valuable when airplanes are being radar vectored and it is more difficult for the pilots to maintain situational awareness. While MSAWS is an excellent aid in preventing CFIT, it is not widely available outside the United States.

This report was extracted from a 1986 Pan American Flight Operations magazine. The airplane was on a very short flight and never got above 5,000 ft. The time was 0145 local. Approaching destination, the airplane was cleared for a visual approach and was handed off to the tower for landing. The flight crew then descended below a cloud deck in order to keep the airfield in sight. The approach briefing was short, and there was a mention of the short runway during the briefing. The crew continued to descend by flying on the ILS glide slope to an altitude of 200 ft. The Captain later reported that the airplane seemed unusually low in spite of an on-glide-path indication. During this time, the radar at the ATC center noticed the airplane getting unusually low; in fact, the radar reported the airplane below 50 ft at times! The center contacted the destination tower operator and reported its observations. The tower operator immediately contacted the inbound flight and warned the flight crew of the situation.

When asked about their altitude, the flight crew reported “level at 200 ft.” Actually, they were 50 ft above the water and had been for almost a minute! Just after the query the airplane climbed to 600 ft. The ILS glide slope, that was previously centered, snapped to the full fly-up position. The airplane completed a normal landing.

Figure 17

Flight Path Profile

<table>
<thead>
<tr>
<th>Circumstances:</th>
<th>During visual night approach to Runway 9, the aircraft inadvertently descended well short (7 nm) of the runway before error was detected. Aircraft was well right of localizer in possible false lobes. No ILS flags. No GPWS below “Glide slope alert.”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration:</td>
<td>Landing</td>
</tr>
<tr>
<td>Weather:</td>
<td>17? 11?, visibility: 30 mi</td>
</tr>
</tbody>
</table>

"Airport in sight"
Center - "...Cleared for visual approach to Runway 9 and tower now on 1188..."
(Tower advised by San Juan Center Radar on aircraft low altitude. ARTS III)
We've leveled off at 200 feet..."
Tower - "...Check your altitude."
Glide slope deviation snaps to full fly-up
Altitude MSL (ft)
Distance to runway (nm)
Time to climb point (sec)
The GPWS never alerted the crew to the low glide slope because the ILS had locked on to a false lobe, and it had never alerted the flight crew to the altitude deviation because the gear was down and the flaps were in the landing position. The GPWS was operating normally, because it used inputs from the Captain’s instruments that reflected an on-glide-slope condition. The GPWS never reached a limit that was considered out of tolerance.

The flight crew noticed the low altitude, but paid little attention; the tower operator could not see the airplane, but the MSAWS on the ATC center radar noticed and saved the flight! (Figure 17)

3.3.2 Crew Briefings

Many of the CFIT accidents show a lack of flight crew communication. For example, while one pilot flew the approach, the other did not know or understand the intentions of the flying pilot. This lack of communication can lead to breakdowns in flight crew coordination and cross-checking. One of the best ways to let the nonflying pilot know what to expect is to conduct a briefing before each takeoff and each approach. While this seems elementary, many flight crews simply ignore the obvious safety implications of the briefings.

Accident statistics show that the vast majority of accidents occur during the approach at the destination airport. Is it not logical then to prepare carefully and properly for the arrival, approach, and landing? The approach briefing sets the professional tone for your safe arrival at the destination. The flying pilot should discuss how he or she expects to navigate and fly the procedure. This will not only solidify the plan for the approach, but it will inform the nonflying pilot of the flying pilot’s intentions, which provides a basis for monitoring the approach. Deviations from the plan now can be more readily identified by the nonflying pilot. The approach briefing should be completed before arriving in the terminal area so that both pilots can devote their total attention to executing the plan.

Operators should require briefings by the flight crew. As operations vary from country to country, some briefing items may be more important than others and some unique items may be added, but there are some items that should always be covered. Use the following briefing guidelines if other guidance is not provided by standard operating procedures or the airplane manufacturer.

Takeoff briefing:
- Weather at the time of departure.
- Runway in use, usable length (full length or intersection takeoff).
- Flap setting to be used for takeoff.
- V speeds for takeoff.
- Expected departure routing.
- Airplane navigation aids setup.
- Minimum sector altitudes and significant terrain or obstacles relative to the departure routing.
- Rejected takeoff procedures.
- Engine failure after V1 procedures.
- Emergency return plan.

Approach briefing:
- Expected arrival procedure to include altitude and airspeed restrictions.
- Weather at destination and alternative airports.
- Anticipated approach procedure to include:
 - Minimum sector altitudes.
 - Airplane navigation aids setup.
 - Terrain in the terminal area relative to approach routing.
 - Altitude changes required for the procedure.
 - Minimums for the approach DA/H or MDA/H.
 - Missed approach procedure and intentions.
- Communication radio setup.
- Standard callouts to be made by the nonflying pilot.
3.3.3 Autoflight Systems

Proper use of modern autoflight systems reduces workloads and significantly improves flight safety. These systems keep track of altitude, heading, airspeed, and flight paths with unflagging accuracy. Unfortunately, there are a great number of first-generation airplanes that are still operating that do not have the advantages associated with well-designed, integrated systems. There are also some flight crews whose airplanes do have modern autoflight systems, that do not take full advantage of these systems to manage the progress of the flight and reduce workload. To assist in preventing CFIT, the proper use of autoflight systems is encouraged during all approaches and missed approaches, in IMC, when suitable equipment is installed. It is incumbent upon operators to develop specific procedures for the use of autopilots and autothrottles during precision approaches, nonprecision approaches, and missed approaches and to provide simulator-based training in the use of these procedures for all flight crews.

3.3.4 Route and Destination Familiarization

Flight crews must be adequately prepared for CFIT critical conditions, both enroute and at the destination. Flight crews must be provided with adequate means to become familiar with enroute and destination conditions for routes deemed CFIT critical. One or more of the following methods are considered acceptable for this purpose:

- When making first flights along routes, or to destinations, deemed CFIT critical, Captains should be accompanied by another pilot familiar with the conditions.
- Suitable simulators can be used to familiarize flight crews with airport critical conditions when those simulators can realistically depict the procedural requirements expected of crew members.
- Written guidance, dispatch briefing material, and video familiarization using actual or simulated representations of the destination and alternatives should be provided.

3.3.5 Altitude Awareness

It is essential that flight crews always appreciate the altitude of their airplane relative to terrain and obstacles and the assigned or desired flight path. Flight crews need to receive and use procedures by which they will monitor and cross-check assigned altitudes as well as verify and confirm altitude changes. As a minimum, in the absence of SOPs or airplane manufacturer guidance, use the following procedures:

- Ascertain the applicable MSA reference point. Note: The MSA reference point for an airport may vary considerably according to the specific approach procedure in use.
- Know the applicable transition altitude or transition level.
- Use a checklist item to ensure that all altimeters are correctly set in relation to the transition altitude/level. Confirm altimeter setting units by repeating all digits and altimeter units in clearance readbacks and intracockpit communications.
- Call out any significant deviation or trend away from assigned clearances.
- Include radio height in the pilot instrument scan for all approaches.
- Upon crossing the final approach fix, outer marker, or equivalent position, the pilot not flying will cross-check actual crossing altitude/height against altitude/height as depicted on the approach chart.

3.3.6 The Use of Callouts

Callouts are defined as aural announcements by either flight crew members or airplane equipment of significant information that could affect flight safety. These callouts are normally included in an airline’s SOP. In the absence of other guidance, use these callouts to help prevent CFIT accidents. A callout should be made at the following times:

- Upon initial indication of radio altimeter height, at which point altitude versus height above terrain should be assessed and confirmed to be reasonable.
• When the airplane is approaching from above or below the assigned altitude (adjusted as required to reflect specific airplane performance).
• When the airplane is approaching relevant approach procedure altitude restrictions and minimums.
• When the airplane is passing transition altitude/level.

3.3.7 GPWS Warning Escape Maneuver
The GPWS warning is normally the flight crew’s last opportunity to avoid CFIT. Incidents and accidents have occurred because flight crews have failed to make timely and correct responses to the GPWS warnings. The available time has increased between initial warning and airplane impact since the first version of the GPWS; however, this time should not be used to analyze the situation. React immediately. With the early versions, there was as little as 5 sec warning, and none at all if the impact point was on a relatively steep slope of a mountain. There may be as much as 30 sec for newer and future versions.

In the absence of standard operating procedures or airplane manufacturer guidance, execute the following maneuver in response to a GPWS warning, except in clear daylight VMC when the flight crew can immediately and unequivocally confirm that an impact with the ground, water, or an obstacle will not take place:
• React immediately to a GPWS warning.
• Positively apply maximum thrust and rotate to the appropriate pitch attitude for your airplane.
• Pull up with wings level to ensure maximum airplane performance.
• Always respect stick shaker.

Continue the escape maneuver until climbing to the sector emergency safe altitude or until visual verification can be made that the airplane will clear the terrain or obstacle, even if the GPWS warning stops.

3.3.8 Charts
Flight crews must be provided with and trained to use adequate navigation and approach charts that accurately depict hazardous terrain and obstacles. These depictions of the hazards must be easily recognizable and understood. On modern-technology airplanes, the electronic displays should resemble printed chart displays to the maximum extent feasible.

3.3.9 Training
Flight crew training can be a contributing factor to CFIT. It is also the key to CFIT accident prevention. Modern airplane equipment, extensive standard operation procedures, accurate charts, improved approach procedures, detailed checklists, or recommended avoidance techniques will not prevent CFIT if flight crews are not adequately trained. The cause of CFIT is the flight crew’s lack of vertical and/or horizontal situational awareness. We know the solutions to these causes: a proper support infrastructure and a trained and disciplined flight crew. An example CFIT training program is provided in Section 4 of this training aid.

3.4 CFIT Traps
In the previous sections, the causes of CFIT and contributing factors are identified, along with recommendations and strategies that may be used to avoid CFIT accidents and incidents. It could be misleading to the reader when causes and factors are discussed separately. Accidents and incidents do not normally happen because of one decision, or one error. They rarely happen because the flight crew knowingly disregarded a good safety practice. Accidents and incidents happen insidiously. Flight crews fall into traps—some of their own making and some that are systemic. Let’s look at some examples of traps that could happen when a flight crew employs one recommendation, but disregards another.
We have identified that nonprecision VOR instrument approaches are especially hazardous when they include shallow approach paths and several altitude step-down points. We recommend that the autoflight system be used, if available, to reduce the workload. While this technique may mitigate the problem with the approach procedure, it can create another trap if the flight crew becomes complacent and does not properly program the computer, monitor the autoflight system, make the proper cockpit callouts, etc.

In another situation, flight crews are encouraged to use the displays that modern cockpits provide to assist them in maintaining situational awareness. However, if they disregard the raw navigational information that is also available, they can fall into a trap if any position inaccuracies creep into the various electronic displays.

The importance of takeoff and arrival briefings is stressed as a means to overcome some of the factors associated with departures and arrivals. However, if the briefings do not stress applicable unique information or become rote or are done at the expense of normal outside-the-cockpit vigilance, their value is lost and the flight crew can fall into another trap.

It should be evident that there is no single solution to avoiding CFIT accidents and incidents. All the factors are interrelated, with their level of importance changing with the scenario. Be aware, the traps are there! Section 5, CFIT Background Material, provides many more examples of traps that can happen to you.
Example CFIT Training Program
Table of Contents

Section Page

4.0 Introduction .. 4.1

4.1 Academic Training Program .. 4.1
 4.1.1 Academic Training Objectives 4.1
 4.1.2 Academic Training Program Modules 4.1
 4.1.3 Academic Training Syllabus 4.2
 4.1.4 Additional Academic Training Resources 4.2

4.2 CFIT Simulator Training Program 4.2
 4.2.1 Simulator Training Objectives 4.3
 4.2.2 Simulator Training Syllabus 4.3
 4.2.3 Pilot Simulator Briefing 4.3
 4.2.3.1 Generic GPWS Warning Escape Maneuver 4.4
 4.2.4 Simulator Exercises ... 4.4
 4.2.4.1 Exercise 1: VMC Initial Introduction of Potential CFIT 4.4
 4.2.4.2 Exercise 2: IMC Potential CFIT Encounter 4.5
 4.2.5 Pilot Requirements ... 4.5

4.3 Simulator Implementation ... 4.6
 4.3.1 Simulator Fidelity Check 4.6
 4.3.2 Computer Analysis/Simulator Study Data Requirements 4.6

Appendix 4-A Instructor Pilot Syllabus Briefing Supplement 4.1
Appendix 4-B Operators Guide to CFIT Questions 4.1
Appendix 4-C CFIT Safety Briefing 4.1
Appendix 4-D Escape Maneuvers 4.1
Appendix 4-A Video Script: “CFIT: An Encounter Avoided” 4.1
Example CFIT Training Program

4.0 Introduction

The overall goal of this CFIT Education and Training Aid is to reduce CFIT accidents and incidents through appropriate education and training. The Example CFIT Training Program is an example of the type of training that should be conducted to meet that goal. The program is primarily directed toward two aspects of the CFIT problem: avoidance and escape.

The most important goal for any flight crew is to maintain vertical and horizontal situational awareness in relation to the ground, water, and obstacles. When this is not accomplished and the potential for impact with the ground, water, or obstacles is imminent, the proper escape maneuver must be used to improve the chance of surviving.

This CFIT training program is structured to stand alone, but it may be integrated into existing initial, transition, and recurrent training and check programs. The Academic Training Program is designed to improve awareness by increasing the flight crew’s ability to recognize and avoid impending CFIT situations. The Simulator Training Program is designed to apply this knowledge as well as develop proficiency in an escape maneuver that must be used as a last resort for survival.

The Academic Training Program consists of a description and a suggested method for applying the academic training portions of this CFIT Education and Training Aid. For pilots who do not receive simulator training, it provides a comprehensive review of the factors and causes of CFIT accidents and incidents and ways to avoid CFIT traps. For pilots who undergo simulator training, this program prepares them for the decision making needed and critical performance required to avoid a CFIT accident.

The Simulator Training Program includes a simulator briefing outline and two simulator exercises. These exercises are designed for flight crews to practice the escape maneuver and demonstrate airplane performance in critical situations. The second simulator scenario requires flight crews to recognize CFIT traps and make critical decisions in order to avoid an accident.

The simulator implementation information assists simulator technical personnel in incorporating a potential CFIT scenario into the simulator database and lesson plans. It also provides data that may be used in developing a simulator that accurately reflects airplane performance characteristics.

4.1 Academic Training Program

The Academic Training Program contains several instruction modules. These modules may be used as a stand-alone program or in combination with existing training programs and the Simulator Training Program.

4.1.1 Academic Training Objectives

The objectives of the Academic Training Program are to provide the pilot with the ability to:
- Recognize the factors that may lead to CFIT accidents and incidents.
- Know the prevention strategies that will ensure a safe flight.
- Improve situational awareness in order to avoid CFIT.
- Learn an escape maneuver and techniques designed to enhance the possibility of survival.

A suggested syllabus is provided. All of the individual training materials are designed to stand alone or be used as a part of a larger program. No single training format is best for all training situations. Therefore, a modification should be made to meet specific training requirements. There is some redundancy in subject material in order to provide flexibility. It is recommended that the training materials be used in sequence when used as a stand-alone program.

4.1.2 Academic Training Program Modules

The following academic training modules are available to prepare an academic training program:
- Operators Guide (CFIT Education and Training Aid, Section 3) is a comprehensive study of CFIT, its causes, contributing factors, and solutions to counter the factors and prevent CFIT accidents. This is a source document that may
be reviewed at any time by the flight crew and others in the operations spectrum of the aviation industry. Pilots should read this before formal CFIT academic or simulator training.

- The Operators Guide to CFIT Questions (Appendix 4-B) is a set of questions designed to test the flight crew’s knowledge of each section of the Operators Guide. In a CFIT training curriculum, these questions may be used as a part of the review of the Operators Guide or as an evaluation to determine the effectiveness of self-study before academic or simulator training.
- The CFIT Safety Briefing (Appendix 4-C) is a paper copy of overhead viewfoils, with the descriptive words for each foil. This briefing may be used as a classroom or one-on-one presentation, and it supports a discussion of the Operators Guide.
- The video “CFIT: An Encounter Avoided” addresses the CFIT problem in its entirety. It shows the causes and contributing factors of CFIT accidents and incidents and emphasizes how to avoid CFIT. The video also presents the CFIT prevention safety philosophy of some leaders in the aviation industry. Finally, the video points out future capabilities of the GPWS. A copy of the video script is provided in Appendix 4-E.

4.1.3 Academic Training Syllabus
Combining all of the academic training modules results in the following suggested Academic Training Syllabus (Figure 1).

4.1.4 Additional Academic Training Resources
Section 5, CFIT Background Material, is an excellent source of information for an instructor who seeks more information or detailed explanations of material contained in the Operators and Decision Makers Guides. The video script “CFIT: An Encounter Avoided” is also an excellent source of information. Throughout the Operators Guide are figures and charts that may be used individually to stress certain teaching points. The Instructor Pilot Syllabus Briefing Supplement, Appendix 4-A, provides detailed information about the GPWS operating modes.

4.2 CFIT Simulator Training Program
The Simulator Training Program provides the opportunity for pilots to practice CFIT prevention strategies, but it primarily addresses the second aspect of avoiding CFIT accidents: the escape maneuver. Note: The term “maneuver” is associated with the sequence of steps the pilot is required to accomplish in order to avoid impact with the terrain. It is recognized that some airplane manufacturers have established procedural steps that the pilot is required to accomplish for that particular airplane. For simplicity, the term “maneuver” will be used for both situations. Training and practice are provided for the pilot to experience realistic situations that require timely decisions and correct responses. During the training, the escape maneuver should be practiced to proficiency by both pilots. This training can be inserted into existing simulator profiles during less intensive workload periods. Initial training
should occur in VMC and should emphasize the need to react to all GPWS warnings.

To be fully effective, the simulator training requires the student to be knowledgeable of the materials in the academic training portion of this aid.

Effective flight crew coordination should be emphasized, especially when operating in the high-potential-CFIT phases of flight: takeoff, approach, and landing. Each operator should consider incorporating unique airports and conditions from its route structure into its individual CFIT simulator training program. Some suggestions for CFIT scenarios include:

- A low-altitude level-off just after takeoff, with a radar vector turn toward high terrain, and no subsequent vectoring.
- An early enroute descent into a mountainous/hilly terminal area in an intensive communications environment.
- A missed approach with a low-altitude level-off and a turn toward high terrain.

4.2.1 Simulator Training Objectives
The objective of the Simulator Training Program is to provide the flight crew with the ability to:
- Recognize the contributing factors that can lead to a CFIT incident.
- Maintain proper horizontal and vertical situational awareness.
- Communicate and coordinate on the flight deck during critical phases of flight.
- Recognize a potential CFIT situation and take appropriate action to avoid it.
- Gain confidence in the GPWS.
- Perform a successful CFIT escape maneuver.

4.2.2 Simulator Training Syllabus
CFIT simulator training should be given during initial, transition, and recurrent training. This training should follow a building block approach to learning. It is recognized that there are many contributing factors that may lead to the loss of vertical and horizontal situational awareness by the flight crew. Because of this, the flight crew cannot be exposed to all of the situations in the simulator that they may confront during their normal flight operations. However, a well-structured training program will include exposure to a sufficient number of contributing factors in each exercise to make the training as realistic as possible. The simulator training should include:
- A briefing.
- A minimum of two exercises. Refer to Figure 2.
- A critique.

4.2.3 Pilot Simulator Briefing
Before the first CFIT exercise:
- Review contributing factors and causes of CFIT accidents.
- Explain the need for good flight crew coordination throughout the flight, but especially during critical phases, such as takeoff, approach, and landing.
- Discuss the GPWS operating modes.
- Review the airplane escape maneuver/procedure and pilot techniques.
- Discuss common flight crew errors.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Description</th>
<th>Training Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert a simulator "mountain**" in VFR conditions during flight on the downwind leg of the traffic pattern.</td>
<td>Demonstrate GPWS warnings and proper response times and procedures for the escape maneuver.</td>
</tr>
<tr>
<td>2</td>
<td>Insert a simulator "mountain**" in IMC during an appropriate phase of flight.</td>
<td>Demonstrate flight crew awareness and coordination in CFIT situations. Practice correct escape maneuver procedures.</td>
</tr>
</tbody>
</table>

* Invisible, rapidly rising terrain simulator feature.
Before the second CFIT exercise:
- Review the need for crew awareness and coordination.
- Discuss the importance of knowing GPWS warnings and the requirement for rapid flight crew response to these warnings.
- Review CFIT traps.
- Review the escape maneuver/procedure and pilot techniques.

4.2.3.1 Generic GPWS Warning Escape Maneuver
It is understood that each airplane type is different. Airplanes produced by one manufacturer may have different technologies that could dictate separate maneuvers. Appendix 4-D shows the escape maneuver for the airplanes of several manufacturers. If your airplane is not included in the appendix, contact the manufacturer and request the information. If your airplane manufacturer or operations policy or operations manual does not provide a GPWS warning escape maneuver or procedure, use the following maneuver.

These steps must be taken immediately in response to a GPWS warning, except in clear daylight VMC when the flight crew can immediately and unequivocally confirm that an impact with the ground, water, or an obstacle will not take place:
- React immediately to a GPWS warning.
- Positively apply maximum thrust and rotate to the appropriate pitch attitude for your airplane.
- Pull up with wings level to ensure maximum airplane performance.
- Always respect stick shaker.

Continue the escape maneuver until climbing to the sector emergency safe altitude can be completed or until visual verification can be made that the airplane will clear the terrain or obstacle, even if the GPWS warning stops.

4.2.4 Simulator Exercises
These are detailed descriptions of sample simulator training exercises. They illustrate the type of information that training departments should pass on to the flight crews. To optimize learning, these exercises may be modified by individual training departments to better fit their particular syllabus, operating area, and requirements. The scenarios are designed to introduce CFIT into the overall training environment without requiring that a large amount of time be devoted to the subject.

These scenarios will give the student the basic knowledge of CFIT, its causes, and how to escape from a potential CFIT encounter.

4.2.4.1 Exercise 1: VMC Initial Introduction of Potential CFIT
The initial conditions for this exercise should be typical for the airfield and airplane model of the operator. These should represent “average” conditions, so as not to detract from the primary purpose of developing proficiency in the mechanics of the CFIT escape maneuver. The CFIT encounter should be prompted by a clear indication of the problem when the electronic “mountain” appears in front of the airplane. The duration of the escape maneuver should be long enough that the airplane is flown to its maximum performance and continues at maximum performance, so that the pilot demonstrates proficiency at maintaining airplane maximum performance and a safe altitude. This should take several thousand feet of altitude gain. The instructor may then remove the “mountain.”

The airplane weight should be appropriate for the visual pattern, but heavy enough to make the escape maneuver realistic. After the “mountain” appears, the instructor should ensure that the flight crew is aware of the GPWS warnings and fully understands their meanings. The escape maneuver should be accomplished using the appropriate airplane maneuver. Repeat the exercise, as needed, so that the flight crew understands the requirement for rapid response to the warning and it has attained proficiency in maintaining maximum airplane performance and executing the escape maneuver.

Initial conditions:
- Airplane: appropriate for the operators fleet.
- Airplane gross weight: near maximum landing weight.
- Flaps: approach setting for the airplane.
- Center of gravity: appropriate for the airplane.
- Ceiling and visibility: clear.
- Wind: calm.
- Temperature: 80°F/24°C.
- Airport elevation: appropriate for operators airfields.
- Altimeter QNH: 29.92/1013.
Pilot requirements:
Upon receiving a GPWS warning, the pilot will practice the CFIT escape maneuver. If your airplane manufacturer or operations policy or operations manual does not provide a GPWS warning escape maneuver or procedure, use the following maneuver:

- React immediately to a GPWS warning.
- Positively apply maximum thrust and rotate to the appropriate pitch attitude for your airplane.
- Pull up with wings level to ensure maximum airplane performance.
- Always respect stick shaker.

Continue the escape maneuver until climbing to the sector emergency safe altitude or until visual verification can be made that the airplane will clear the terrain or obstacle, even if the GPWS warning stops.

Demonstrate proper flight crew coordination. Monitor the radio altimeter during the maneuver. The pilot not flying should call out the radio altitudes and trend, e.g., “500 feet, decreasing”; “300 feet, decreasing”; “600 feet, increasing.” The maneuver should be continued until the maximum performance of the airplane is reached and a safe altitude is attained.

4.2.4.2 Exercise 2: IMC Potential CFIT Encounter
The airplane should be nearly at maximum allowable weight for takeoff or landing. Ensure that the weights do not exceed the airplane limits. The exercise may include takeoff, followed by a low altitude level-off or a maximum weight landing. Either scenario should be in IMC to ensure that the flight crew does not see the “mountain” as they approach it. With the correct “mountain” in the simulator database, the pilot must perform the escape maneuver properly in order to avoid impact with the terrain. This “mountain” is actually a given angle that will require the pilot to attain the maximum airplane performance. The duration of the escape maneuver should be long enough that the airplane is flown to its maximum performance. It should continue at maximum performance so that the pilot demonstrates proficiency at maintaining airplane maximum performance and a safe altitude. This should take several thousand feet of altitude gain. The instructor may then remove the “mountain.” Repeat this exercise as necessary for the flight crew to become proficient in recognizing CFIT traps and executing the escape maneuver.

Initial conditions:
Airplane: appropriate for the operators fleet.
Flaps: appropriate for the phase of flight.
Center of gravity: appropriate for the airplane.
Ceiling and visibility: 200-ft ceiling/0.5 mi visibility.
Wind: calm.
Temperature: 80°F/24°C.
Airport elevation: appropriate for operators airfields.
Altimeter QNH: 29.92/1013

4.2.5 Pilot Requirements
Particular attention must be paid to situational awareness throughout this lesson. Good flight crew coordination is essential to the success of the exercise. Flight crews should be aware of the controls and indicators associated with the GPWS. Accidents have happened because the system has been deactivated or inhibited. Flight crews should not inhibit the GPWS unless they can immediately and unequivocally confirm that an impact with the ground, water, or an obstacle will not take place. Upon receiving a GPWS warning, the pilot will execute the CFIT escape maneuver. In the absence of an airplane manufacturer’s established maneuver, use the following maneuver:

- React immediately to a GPWS warning.
- Positively apply maximum thrust and rotate to the appropriate pitch attitude for your airplane.
- Pull up with wings level to ensure maximum airplane performance.
- Always respect stick shaker.

Continue the escape maneuver until climbing to the sector emergency safe altitude or until visual verification can be made that the airplane will clear the terrain or obstacle, even if the GPWS warning stops.

Demonstrate proper flight crew coordination. Monitor the radio altimeter during the maneuver. The pilot not flying should call out the radio
altitudes and trend, e.g., “500 feet, decreasing”; “300 feet, decreasing”; “600 feet, increasing.” The maneuver should be continued until the maximum performance of the airplane is reached and a safe altitude is attained.

4.3 Simulator Implementation
This is designed to assist the simulator programming and checkout departments. If not previously accomplished, the addition of a pop-up “mountain” will be required in the simulator models. Ideally, the “mountain” feature should include an adjustable slope of up to a minimum of 17 deg, and it should be controllable by the simulator instructor. As a minimum, the “mountain” must be capable of triggering the GPWS warning, and it must meet the requirements of the exercises described in Sections 4.2.4.1 and 4.2.4.2. The biggest challenge, once this “mountain” is installed, is to ensure that the simulator accurately reflects the handling characteristics of the particular airplane. This is especially true at very heavy airplane weights.

4.3.1 Simulator Fidelity Check
Operators that use this training aid should ensure that the simulator scenarios accurately reflect airplane characteristics and performance to the extent necessary to achieve the training objectives. In order to prevent negative learning experiences, it is important that unrealistic simulator characteristics be removed and the proper simulation of the “mountain” be provided.

Certified full-flight simulators generally contain testing programs that enable engineers to confirm the accuracy of the simulation. When purchasing new simulators, ensure that the data from the manufacturer are up to date in order to accurately simulate maximum performance climbs necessary for the CFIT escape maneuver. The concept is to meet the training objectives by taking full advantage of simulator quality. In older simulators, always strive to improve simulator fidelity.

The simulator manufacturer should be consulted, if necessary, in order to provide the capability to support this CFIT prevention training.

4.3.2 Computer Analysis/Simulator Study Data Requirements
The analyses are shown in Appendix 4-D. These analyses and simulator studies are divided into different subsections for each manufacturer. Whenever possible, the data shown are for identical parameters. When different parameters are used, they will be noted in the analysis. Each scenario will be studied for time versus distance and time versus altitude gained. For commonality, the data were derived using the following parameters:

- Weight: maximum takeoff.
 Flaps: takeoff position.
 Landing gear: up.
 Speed: V2.
 Thrust: maximum applied at GPWS warning.

- Weight: maximum landing.
 Flaps: up.
 Landing gear: up.
 Speed: maneuvering.
 Thrust: maximum applied at GPWS warning.

- Weight: maximum landing.
 Flaps: approach position.
 Landing gear: down.
 Speed: minimum flap speed.
 Thrust: maximum applied at GPWS warning.

- Weight: maximum landing.
 Flaps: landing position.
 Landing gear: down.
 Speed: VRef plus 5 kt.
 Thrust: maximum applied at GPWS warning.

Time versus distance and time versus altitude gained plots will be taken for each pull-up. These plots will also be recorded to the stick shaker using the following parameters:

- 3-deg/s pull-up to 15 deg and continue to stick shaker.
- 3-deg/s pull-up to 20 deg and continue to stick shaker.
- 4-deg/s pull-up to 15 deg and continue to stick shaker.
- 4-deg/s pull-up to 20 deg and continue to stick shaker.
A potential CFIT situation is clearly an unanticipated event on the part of the flight crew. The warnings come unexpectedly, and they often require the flight crew to make decisions based on only one stimulus, instead of the many confirming stimuli associated with routine flight events. Since the Captain is responsible for the safety of the passengers, flight crew, and airplane, he or she should exercise appropriate emergency authority to respond to the situation.

If airplane-unique GPWS information is not available, the following information may be used during the simulator briefings. Emphasis should be placed on the capability and credibility of the GPWS. The GPWS is an important piece of safety equipment, and recent versions can be programmed to accommodate an operator’s particular needs.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-A.1</td>
<td>App. 4-A.2</td>
</tr>
</tbody>
</table>
4-A.1 GPWS Warning Modes (Mark VI)

GPWS Mode 1

Mode 1 provides alerts and warnings for excessive rates of descent with respect to the airplane’s possible collision with the ground. Radio Altitude and Barometric Decent Rate (FMP) are monitored to determine Mode 1 warning conditions (Figure 1A).

Two distinct audio warnings, “Sinkrate” and “Pull up” are generated by Mode 1. During these alerts the red “GPWS Warn” lamp is illuminated. When the outer warning curve is penetrated, the “Sinkrate” alert is repeated every 3 sec. If the airplane descent continues into the inner warning curve, the emphatic “Pull up!” alert is given. Both alerts stop when the airplane exits the warning curve.

Mode 1 is automatically desensitized when repositioning the airplane down onto a glide slope beam (Figure 1B). This allows pilots more room to maneuver the airplane without triggering an alert.

When the airplane is below a glide slope centerline, the Mode 1 sensitivity is increased. This provides additional warning time for excessive descents when below the glide slope.
GPWS Mode 2

Mode 2 supplies warning protection when terrain below the airplane is rising dangerously fast. These warnings are given well ahead of the airplane’s projected collision with terrain. Radio Altitude (AGL) and Terrain Closure Rate is monitored to determine Mode 2 alerts (Figure 2A). Mode 2 also expands as a function of airplane speed. The faster the airplane is traveling, the sooner the excessive closure rate alerts are given.

“Terrain, Terrain!” and “Pull Up!” audio warnings are produced by Mode 2. During Mode 2 alerts, the red “GPWS Warn” lamp is illuminated. When the outer Mode 2 curve is penetrated, the “Terrain, Terrain!” call is given once, and it is followed immediately by the “Pull Up!” warning message until the closure rate is no longer present and the curve is exited. The visual “GPWS Warn” lamp will remain illuminated until safe terrain clearance has been restored (Figure 2A).

Manual activation of the “GPWS Flap Override” switch by the pilot will change the Mode 2 curve, as is automatically done when landing configuration is detected by the GPWS. In either case, Mode 2 warnings are desensitized to allow the airplane maneuverability in closer proximity to terrain, when approaching airports, while still providing appropriate terrain warning protection (Figure 2B).

The ability to effect the Mode 2 change with the use of the “GPWS Flap Override” is especially valuable to airplane maneuvering to land in visual conditions at airports in mountainous areas.

Figure 2A
Mark VI GPWS Mode 2

Figure 2B
Mark VI GPWS Mode 2 Desensitized for Landing Configuration
GPWS Mode 3

Mode 3 warns the flight crew of an excessive altitude loss after takeoff or after a missed approach (Figure 3B). Mode 3 monitors the amount of Radio Altitude gained. If Barometric Altitude loss equals approximately 10% of Radio Altitude gained, the “Don’t Sink” audio message is given and the “GPWS Warn” lamp is illuminated (Figure 3A). The “Don’t Sink” warning will stop and the “GPWS Warn” lamp will extinguish when a positive rate of climb is reestablished.

A “Takeoff” or “Missed Approach” is detected when the GPWS computer sees an increase in Airspeed, Radio and Barometric Altitude, gear retraction, etc. Once the airplane reaches 50 ft AGL, Mode 3 is active. Once above 925 feet AGL for 15 to 20 sec, Mode 3 becomes inactive until the GPWS again detects a “Takeoff” or “Go Around.” When Mode 3 becomes inactive, it is replaced by a warning floor below the airplane based on airplane speed and configuration (Figure 4C). This floor protects the airplane for the remainder of the climbout to enroute altitudes.

During training or special pattern work, the “GPWS Flap Override” switch may be activated above 50 ft. This will desensitize the Mode 3 alert envelope to the right, thereby allowing approximately 20% loss of Barometric Altitude before the alert is given (Figure 3A).
GPWS Mode 4

Mode 4 warns the flight crew of insufficient terrain clearance during the climbout, cruise, descent, and approach phases of flight. This protection is especially valuable when the airplane’s flight path is too shallow to develop excessive closure rates with terrain (Mode 2) or excessive descent rates (Mode 1). Mode 4 has three different alerts, depending on the phase of flight and configuration of the airplane (Figure 3B).

For climbout, cruise, and initial descent during normal flight, the airplane is generally in a clean configuration with gear and flaps up. During these flight phases, the Mark VI provides a “floor” below the airplane to warn of insufficient terrain clearance. At speeds above 200 kt, a “Too Low, Terrain” alert will be given and the red “GPWS Warn” lamp will illuminate if the airplane flies within 750 ft of terrain. At speed from 178 to 200 kt, this same alert will occur, but at lower altitudes AGL corresponding to the slower speed (Figure 4A).

For the initial approach, at speed below 178 kt, the Mark VI monitors airplane configuration. If the airplane descends below 500 ft AGL with landing gear up, the alert “Too Low, Gear” will be given and the red GPWS Warn lamp will illuminate.

On final approach, if the airplane descends below 170 ft AGL with the flaps not in landing configuration, the alert “Too Low, Flaps” will be given and the red “GPWS Warn” lamp will illuminate. This alert may be precluded for landings with partial flaps by pilot activation of the guarded “GPWS Flap Override” switch (Figure 4B).
GPWS Mode 5

Mode 5 warns pilots that the airplane is descending below an ILS glide slope. It is automatically armed when the pilot selects an ILS frequency, gear is down, and the airplane is below 925 ft AGL.

The warning envelope contains two boundaries, “Soft” and “Hard,” determined by glide slope deviation (Figure 5). When the airplane penetrates the “Soft” alerting region, the audio “Glide slope” warning is given and the yellow “Below Glide slope” lamp illuminates. The initial “Glide slope” message is 6 dB quieter than the system’s other audio messages. The audio repetition rate increases as AGL altitude decreases (Figure 5A). If the airplane subsequently enters the “Hard” alerting region, the audio level increases to that of the other audio messages.

Below 150 ft of Radio Altitude, the amount of glide slope deviation required to produce an audio warning is increased to reduce nuisance warnings that could be caused by close proximity to the glide slope transmitter. Mode 5 can be inhibited by pressing the “Below Glide slope” lamp to permit deliberate descent below the glide slope in order to use the full runway under certain landing conditions.

All other warnings, except the excessive bank angle advisory, always have priority over a “Glide slope” alert. With the Mark VI GPWS computer, possible nuisances from erratic glide slope signals are automatically eliminated.
GPWS Mode 6

Mode 6 alerts increase situational awareness on final approach and for excessively steep bank angles.

Two audio messages are available to increase altitude awareness on final approach: “Five Hundred” and “Two Hundred” (Figure 7). The “Smart” 500 ft callout occurs once per approach whenever a precision glide slope is not being flown, or if the airplane is well below a glide slope being flown. The 200-ft callout occurs once per approach at 200 ft AGL. The 200-ft callout is always annunciated for altitude awareness.

When the decision height discrete from the radio altimeter indicator is connected to the GPWS, “Minimums, Minimums” is annunciated once per approach as the airplane descends through the “bug” or “DH” setting.

An aural “Bank Angle” warning alerts the flight crew of steep bank angles (Figure 8). The warning limit tightens from 50 deg at 190 ft AGL to 15 deg at ground level (Figure 8). This mode protects flight crews who might be unaware of a potentially dangerous bank angle while maneuvering close to the runway in marginal visibility or at night.
Operators Guide to CFIT Questions

This appendix to the Example CFIT Training Program contains an examination covering important areas in Section 3.

The first part of Appendix 4-B contains the Student Examination. Instructions for answering the questions are provided.

The second part of this appendix is the Instructors Examination Guide. This part contains the questions in the Student Examination, the correct answers to each question, and the section in the Operators Guide where the correct answer may be found.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Examination</td>
<td>App. 4-B.3</td>
</tr>
<tr>
<td>Instructors Examination Guide</td>
<td>App. 4-B.11</td>
</tr>
<tr>
<td>Summary of Answers</td>
<td>App. 4-B.21</td>
</tr>
</tbody>
</table>
Student Examination

Instructions

These questions are based on the material in the Operators Guide to the CFIT Education and Training Aid. The questions are all multiple choice, fill in the blank, or true/false questions. There is one answer to each question which is most correct. Circle the correct answer.

Questions

1. The definition of a CFIT accident is an event in which:
 a. An airplane impacts the ground, water, or an obstacle during the descent, approach, or arrival phase of flight.
 b. A mechanically normally functioning airplane is inadvertently flown into the ground, water, or an obstacle.
 c. An airplane is inadvertently flown into the ground, water, or an obstacle because of malfunctioning navigational aids.
 d. An airplane is inadvertently flown into the ground, water, or an obstacle during an inflight emergency.

2. The basic causes of CFIT accidents are:
 a. An insufficient number of instrument approach aids and runway visual aids.
 b. Flight crew complacency and visual illusions.
 c. Altimeter anomalies and complex instrument procedures.
 d. The lack of flight crew vertical and horizontal situational awareness.

3. There are _______ factors that lead to CFIT accidents.
 a. Only a few.
 b. Two.
 c. Only pilot.
 d. Many.

4. Is there an international standard for the altimeter setting unit of measurement?
 a. Yes, and it is inches of mercury.
 b. Yes, but it is not adhered to by all states.
 c. Yes, but it is only adhered to by the United States.
 d. No.

5. If you set an inches of mercury altimeter setting of 29.92 instead of a hectoPascal setting of 992, the airplane will be flying at an altitude that is in error of about:
 a. Plus 600 ft.
 b. Plus 1,000 ft.
 c. Minus 600 ft.
 d. Minus 1,000 ft.

6. If you incorrectly use a QNH altimeter setting instead of a QNE altimeter setting, the airplane’s altitude above the ground will be:
 a. Higher than required.
 b. Lower than required.
 c. Higher or lower, depending on the QNH setting.
 d. Insignificant.
7. When pilots accept an ATC enroute clearance to proceed off airway direct to a point:
 a. The clearance ensures safe terrain clearance.
 b. ATC must also include an altitude that ensures safe terrain clearance.
 c. The pilot is responsible for determining a safe altitude and flying at or above it.
 d. None of the above.

8. The best way(s) for flight crews to overcome communication errors with ATC that contribute to CFIT is to:
 a. Exercise good radio communication discipline.
 b. Know the height of the highest terrain or obstacle in the operating area.
 c. Know their position in relation to the surrounding high terrain.
 d. Challenge or refuse ATC instructions when they are not clearly understood, are questionable, or conflict with their assessment of airplane position relative to the terrain.
 e. All of the above.

9. A good way(s) for flight crews to overcome complacency is to:
 a. Know that familiarity can lead to complacency.
 b. Not assume that this flight will be like the last flight.
 c. Adhere to procedures.
 d. None of the above.
 e. All of the above.

10. Many studies show that airlines with established, well thought out and implemented standard operating procedures consistently have safer operations.
 a. True.
 b. False.

11. The majority of CFIT accidents occur during which phase(s) of flight?
 a. Departure.
 b. Enroute and descent.
 c. Landing.
 d. Descent, approach, and landing.

12. In the approach phase of flight, most CFIT accidents occur during:
 b. ILS approaches.
 c. ADF approaches.
 d. VOR and VOR/DME approaches.

13. Which of the following recommendations will mitigate the hazards associated with flying a nonprecision instrument approach?
 a. Study the anticipated approach procedure(s) before departure.
 b. Identify unique gradient and step-down requirements.
 c. Review approach procedures during the approach briefing.
 d. All of the above.

14. The autoflight system will sometimes do things that the flight crew did not intend for it to do.
 a. True.
 b. False.
15. When using an autoflight system, flight crews should:
 a. Monitor the system for desired operation.
 b. Avoid complacency.
 c. Follow procedures.
 d. Cross-check raw navigation information.
 e. None of the above.
 f. All of the above.

16. One of the best ways to let the nonflying pilot know what to expect is to conduct a briefing before each takeoff and each approach.
 a. True.
 b. False.

17. To assist in preventing CFIT, the proper use of autoflight systems is encouraged during all approaches and missed approaches, in IMC, when suitable equipment is installed.
 a. True.
 b. False.

18. Route and destination familiarization training programs for flight crews will assist in preventing CFIT accidents and incidents. Written guidance, dispatch briefing material, and video familiarization using actual or simulated representations of destination and alternates is adequate for this training.
 a. True.
 b. False.

19. Flight crews should confirm altimeter setting units by repeating all digits and altimeter units in:
 a. ATC clearance readbacks and intracockpit communications.
 b. Only ATC clearance readbacks
 c. Only initial contact with approach control.
 d. None of the above.

20. It is essential that flight crews always appreciate the altitude of their airplane relative to terrain and obstacles and the assigned or desired flight path.
 a. Always true.
 b. Only during instrument approaches.
 c. Only during darkness or reduced visibility.
 d. Only if the airplane is not equipped with a GPWS.

21. In lieu of any guidance from your standard operating procedures, a callout (aural announcements by either crew member or airplane equipment of significant information that could affect flight safety) should be made:
 a. Upon initial indication of radio altimeter height.
 b. When the airplane is approaching from above or below the assigned altitude.
 c. When the airplane is approaching relevant approach procedure altitude restrictions and minimums.
 d. When the airplane is passing transition altitude/level.
 e. All of the above.
 f. Only c above.
22. Which is the most appropriate flight crew response to a GPWS warning during IMC?
 a. Quickly verify that the warning is valid and execute the escape maneuver, if the warning is valid.
 b. Recheck the barometric altimeter setting and execute the escape maneuver, if the setting is in error.
 c. Immediately execute the escape maneuver.
 d. None of the above.

23. The GPWS escape maneuver should be continued:
 a. Only until the GPWS warning ceases.
 b. Until the airplane has reached the sector emergency safe altitude.
 c. Until visual verification can be made that the airplane will clear the terrain or obstacle.
 d. Answers b or c above.

24. Flight crews should be provided with and be trained to use adequate navigation and approach charts that accurately depict hazardous terrain and obstacles.
 a. True.
 b. False.

25. CFIT accidents and incidents happen insidiously; flight crews fall into traps.
 a. True.
 b. False.
Instructors Examination Guide

Instructions
This guide contains questions that are based on the material in the CFIT Education and Training Aid. The answers to each question can be found in Section 3, Operators Guide of that document. The questions are all multiple choice, fill in the blank, or true/false questions.

There is one answer to each question that is most correct. The correct answer is listed after each question, along with the section where the correct answer may be found.

Questions

1. The definition of a CFIT accident is an event in which:
 a. An airplane impacts the ground, water, or an obstacle during the descent, approach, or arrival phase of flight.
 b. A mechanically normally functioning airplane is inadvertently flown into the ground, water, or an obstacle.
 c. An airplane is inadvertently flown into the ground, water, or an obstacle because of malfunctioning navigational aids.
 d. An airplane is inadvertently flown into the ground, water, or an obstacle during an inflight emergency.

 Answer: b. (Section 3.1)

2. The basic causes of CFIT accidents are:
 a. An insufficient number of instrument approach aids and runway visual aids.
 b. Flight crew complacency and visual illusions.
 c. Altimeter anomalies and complex instrument procedures.
 d. The lack of flight crew vertical and horizontal situational awareness.

 Answer: d. (Section 3.2.1)

3. There are ________ factors that lead to CFIT accidents.
 a. Only a few.
 b. Two.
 c. Only pilot.
 d. Many.

 Answer: d. (Section 3.2.2)

4. Is there an international standard for the altimeter setting unit of measurement?
 a. Yes, and it is inches of mercury.
 b. Yes, but it is not adhered to by all states.
 c. Yes, but it is only adhered to by the United States.
 d. No.

 Answer: b. (Section 3.2.2.1)
5. If you set an inches of mercury altimeter setting of 29.92 instead of a hectoPascal setting of 992, the airplane will be flying at an altitude that is in error of about:
 a. Plus 600 ft.
 b. Plus 1,000 ft.
 c. Minus 600 ft.
 d. Minus 1,000 ft.

 Answer: c. (Section 3.2.2.1)

6. If you incorrectly use a QNH altimeter setting instead of a QNE altimeter setting, the airplane’s altitude above the ground will be:
 a. Higher than required.
 b. Lower than required.
 c. Higher or lower, depending on the QNH setting.
 d. Insignificant.

 Answer: c. (Section 3.2.2.2)

7. When pilots accept an ATC enroute clearance to proceed off airway direct to a point:
 a. The clearance ensures safe terrain clearance.
 b. ATC must also include an altitude that ensures safe terrain clearance.
 c. The pilot is responsible for determining a safe altitude and flying at or above it.
 d. None of the above.

 Answer: c. (Section 3.2.2.4)

8. The best way(s) for flight crews to overcome communication errors with ATC that contribute to CFIT is to:
 a. Exercise good radio communication discipline.
 b. Know the height of the highest terrain or obstacle in the operating area.
 c. Know your position in relation to the surrounding high terrain.
 d. Challenge or refuse ATC instructions when they are not clearly understood, are questionable, or conflict with their assessment of airplane position relative to the terrain.
 e. All of the above.

 Answer: e. (Section 3.2.2.4)

9. A good way(s) for flight crews to overcome complacency is to:
 a. Know that familiarity can lead to complacency.
 b. Not assume that this flight will be like the last flight.
 c. Adhere to procedures.
 d. None of the above.
 e. All of the above.

 Answer: e. (Section 3.2.2.5)
10. Many studies show that airlines with established, well thought out and implemented standard operating procedures consistently have safer operations.
 a. True.
 b. False.

 Answer: a. (Section 3.2.2.6)

11. The majority of CFIT accidents occur during which phase(s) of flight?
 a. Departure.
 b. Enroute and descent.
 c. Landing.
 d. Descent, approach, and landing.

 Answer: d. (Section 3.2.2.7)

12. In the approach phase of flight, most CFIT accidents occur during:
 b. ILS approaches.
 c. ADF approaches.
 d. VOR and VOR/DME approaches.

 Answer: d. (Section 3.2.2.7)

13. Which of the following recommendations will mitigate the hazards associated with flying a nonprecision instrument approach?
 a. Study the anticipated approach procedure(s) before departure.
 b. Identify unique gradient and step-down requirements.
 c. Review approach procedures during the approach briefing.
 d. All of the above.

 Answer: d. (Section 3.2.2.7)

14. The autoflight system will sometimes do things that the flight crew did not intend for it to do.
 a. True.
 b. False.

 Answer: a. (Section 3.2.2.8)

15. When using an autoflight system, flight crews should:
 a. Monitor the system for desired operation.
 b. Avoid complacency.
 c. Follow procedures.
 d. Cross-check raw navigation information.
 e. None of the above.
 f. All of the above.

 Answer: f. (Section 3.2.2.7)
16. One of the best ways to let the nonflying pilot know what to expect is to conduct a briefing before each takeoff and each approach.
 a. True.
 b. False.

 Answer: a. (Section 3.3.2)

17. To assist in preventing CFIT, the proper use of autoflight systems is encouraged during all approaches and missed approaches, in IMC, when suitable equipment is installed.
 a. True.
 b. False.

 Answer: a. (Section 3.3.3)

18. Route and destination familiarization training programs for flight crews will assist in preventing CFIT accidents and incidents. Written guidance, dispatch briefing material, and video familiarization using actual or simulated representations of destination and alternates is adequate for this training.
 a. True.
 b. False.

 Answer: a. (Section 3.3.4)

19. Flight crews should confirm altimeter setting units by repeating all digits and altimeter units in:
 a. ATC clearance readbacks and intracockpit communications.
 b. Only ATC clearance readbacks.
 c. Only initial contact with approach control.
 d. None of the above.

 Answer: a. (Section 3.3.5)

20. It is essential that flight crews always appreciate the altitude of their airplane relative to terrain and obstacles and the assigned or desired flight path.
 a. Always true.
 b. Only during instrument approaches.
 c. Only during darkness or reduced visibility.
 d. Only if the airplane is not equipped with a GPWS.

 Answer: a. (Section 3.3.5)

21. In lieu of any guidance from your standard operating procedures, a callout (aural announcements by either crew member or airplane equipment of significant information that could affect flight safety) should be made:
 a. Upon initial indication of radio altimeter height.
 b. When the airplane is approaching from above or below the assigned altitude.
 c. When the airplane is approaching relevant approach procedure altitude restrictions and minimums.
 d. When the airplane is passing transition altitude/level.
 e. All of the above.
 f. Only c above.

 Answer: e. (Section 3.3.6)
22. Which is the most appropriate flight crew response to a GPWS warning during IMC?
 a. Quickly verify that the warning is valid and execute the escape maneuver, if the warning is valid.
 b. Recheck the barometric altimeter setting and execute the escape maneuver, if the setting is in error.
 c. Immediately execute the escape maneuver.
 d. None of the above.

 Answer: c. (Section 3.3.7)

23. The GPWS escape maneuver should be continued:
 a. Only until the GPWS warning ceases.
 b. Until the airplane has reached the sector emergency safe altitude.
 c. Until visual verification can be made that the airplane will clear the terrain, or obstacle.
 d. Answers b or c above.

 Answer: d. (Section 3.3.7)

24. Flight crews should be provided with and be trained to use adequate navigation and approach charts that accurately depict hazardous terrain and obstacles.
 a. True.
 b. False.

 Answer: a. (Section 3.3.8)

25. CFIT accidents and incidents happen insidiously; flight crews fall into traps.
 a. True.
 b. False.

 Answer: a. (Section 3.4)
Summary of Answers

1. b
2. d
3. d
4. b
5. c
6. c
7. c
8. e
9. e
10. a
11. d
12. d
13. d
14. a
15. f
16. a
17. a
18. a
19. a
20. a
21. e
22. c
23. d
24. a
25. a
CFIT: How Do We Terrain-Proof Our Pilots?

Controlled Flight Into Terrain (CFIT) is defined as an event in which a mechanically normally functioning airplane is inadvertently flown into the ground, water, or an obstacle. Since the beginning of commercial jet operations, more than 9,000 people have died worldwide because of CFIT.

The Flight Safety Foundation organized a CFIT Task Force to study the causes and make recommendations to reduce CFIT accidents by 50% by the year 1998. The Task Force was composed of representatives from aircraft manufacturers, airline operators, government regulators, industry associations, pilots groups, and others.

A consensus was achieved within the industry Task Force, and those recommendations and solutions are included in this briefing.
CFIT:
How Do We Terrain-Proof Our Pilots?
Hull-Loss Accidents for Worldwide Commercial Jet Fleet

The worldwide accident rate (which includes CFIT) for the commercial jet fleet decreased significantly in the 1960s and in the 1970s. The rate stabilized and remains fairly stable today.
Hull-Loss Accidents for Worldwide Commercial Jet Fleet

Excludes:
- Sabotage
- Military action
- Commonwealth or independent states aircraft

Annual rates, accidents per million departures

Year

Figure 4-C.2
Controlled Flight Into Terrain

We can be very satisfied with this accomplishment, but let’s look at the actual number of CFIT accidents that are included in this accident rate.
Figure 4-C.3

Controlled Flight Into Terrain

Non-U.S. jet fleet
U.S. jet fleet
GPWS implementation

Year

Hull-loss accidents

1968 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
CFIT Accidents Per Year
USA and World Carriers

This chart shows hull losses attributed to CFIT for the United States fleet as well as the rest of the world’s fleet. The reduction in CFIT accidents that started in 1975 will be discussed later. The important thing to understand about these accidents is that they happened with normally functioning airplanes.

These are accidents that operators could have prevented!
Figure 4-C.4

CFIT Accidents Per Year
USA and World Carriers

Accidents

Year

1945 50 55 60 65 70 75 80 85 90

0 5 10 15 20 25 30 35

1974

Rest of the World

USA GPWS 1974

USA GPWS 1979

ICAO GPWS

Trend

USA Part 121/125

Accidents
Worldwide CFIT accident data was not available until the mid-1960s. In the United States starting in 1975, large jet transport accidents attributed to CFIT fell to an average of only one every two years. A comparable reduction took place worldwide. A major reason for this was the advent of the Ground Proximity Warning System (GPWS). There were also other reasons for the reduction of accidents. Expansion and upgrading of Air Traffic Control (ATC) radar within the United States and installation of Approach Lighting Systems and Instrument Lighting Systems were some of the reasons for better flight safety. However, GPWS is generally accepted as making the biggest impact in reducing the number of CFIT accidents.

The most prevalent factor for hull losses with known causes is the flight crew. There are normally more CFIT accidents than any other type. The GPWS is the flight crew’s last chance to avoid an impact with the ground, water, or an obstacle. While this briefing will include information on the use of GPWS, it is logical to emphasize the causes and contributing factors of CFIT so that appropriate accident prevention strategies are developed. Hopefully, this will assist the flight crew in avoiding situations that force them to react to a GPWS escape warning.
Reasons for the Fall Of CFIT Accidents
There are two basic causes for CFIT accidents; both involve flight crew situational awareness. (One definition of situational awareness is an accurate perception by pilots of the factors and conditions currently affecting the safe operation of the aircraft and the crew).

The causes of CFIT are the flight crews’ lack of vertical position awareness or their lack of horizontal position awareness in relation to the ground, water, or an obstacle. More than two-thirds of all CFIT accidents are the result of altitude error or lack of vertical situational awareness.

Simply stated, flight crews need to know where they are and the safe altitude to fly. It follows then that CFIT accidents occur during reduced visibility associated with instrument meteorological conditions (IMC), darkness, or a combination of both conditions.
Factors That Contribute to CFIT

There are many factors that lead to CFIT accidents. We all accept that the pilot has the final responsibility for preventing a CFIT accident, but if many of the factors normally associated with these accidents were eliminated or at least mitigated, the potential for pilot errors would be lessened.

Each of these contributing factors will be discussed. Solutions to counter these factors will be included in the discussion.
Factors That Contribute to CFIT

- Altimeters
- Safe Altitude
- ATC
- Flight Crew Complacency
- Procedural
- Descent, Approach, and Landing
- Autoflight System
- Training
Accidents and numerous incidents have happened because of problems associated with the aircraft altimeter. These factors associated with altimeters can be grouped into two areas: altimeter units of measurement and altimeter settings.

While there is an international standard for units of measurement, it not adhered to by all countries. Settings may be given in inches of mercury, hectoPascals, or millibars. Additionally, some air traffic systems use meters and some use feet for altitude reference. The unit of measurement used depends on the area of the world in which the flight crew is flying. A problem can arise when the flight crew is trained and primarily operates in one area of the world and only periodically operates elsewhere.

Here is what can happen. An ATC controller, who speaks English as a second language, hurriedly advises the crew to descend and maintain 9,000 feet using an altimeter setting of “992”. The crew sets 29.92 inHg, not 992 hPa that the controller was expecting to be set. Throughout the approach the airplane will be approximately 600 feet below the altitude indicated on the altimeter. This can make the difference between a normal landing at the destination and an accident.

Prevention:

- Know what altimeter units of measurement are used for the area.
- Be vigilant during radio transmissions. Verify if in doubt.
- Be prepared to convert feet and meters.
Inches of Mercury HectoPascals

- Know what altimeter units of measurement are used for the area.
- Be vigilant during radio transmission. Verify if in doubt.
- Be prepared to convert feet and meters.
The QNH altimeter setting is obtained by measuring the existing surface pressure and converting it to a pressure that would theoretically exist at sea level at that point. This is accomplished by adding the pressure change for elevation above sea level on a standard day. This QNH altimeter setting is the standard used throughout most of the world. Some states, however, report or use QFE.

The QFE altimeter setting is the actual surface pressure and is not corrected to sea level. The QFE altimeter setting results in the altimeter indicating height above field elevation while the QNH setting results in the altimeter indicating height above mean sea level.

There have been incidents in which a QNH setting has been erroneously used as a QFE setting. This results in the airplane being flown at a lower than required altitude.

The QNE altimeter setting is always 29.92 inches of mercury, or 1013 hectopascals/millibars. QNE is set when operating at, climbing through, or operating above the transition altitude. Transition altitudes are not standardized throughout the world, which increases the potential for pilots to make errors.

Extreme atmospheric anomalies, such as low temperatures or low pressures, can affect altimeters and result in reduced altitude margins of safety.

It is easy to make mistakes with altimeters. For example, 28.82 inches of mercury is an unusually low setting. Pilots have erroneously set 29 instead of 28 because of the rare occurrences of such a low setting. They have formed a habit of using the “normal” 29. This mistake will make you fly 1,000 feet lower than required!
• Know what altimeter units of measurement are used for the area.
• Know the phase of flight to apply the appropriate altimeter setting.
• Use altimeter setting cross-check and readback cockpit procedure.
• Cross-check radio altimeter and barometric altimeter readings.
• Operate at higher than minimum altitudes during atmospheric anomalies.

Figure 4-C.9

“Ok No! What altimeter settings do I use with QNH, QFE, and QNE??!!”
Vertical awareness implies that pilots know the altitude relationship of the airplane to the surrounding terrain or obstacles. Obviously, during IMC and reduced visibility flight conditions, it is necessary to rely on altitude information provided by other than visual means. To assist pilots, instrument flight rule enroute charts and approach charts provide Minimum Safe Altitudes (MSA), Minimum Obstruction Clearance Altitudes (MOCA), Minimum Enroute Altitudes (MEA), Emergency Safe Altitudes (EAS), and in most terminal areas, actual heights of the terrain or obstacles. Traditional maps, such as Sectional or Operational Navigation Charts, are available for more detailed study. The potential for CFIT is greatest in the terminal areas. Detailed altitude information is provided to assist the pilot in maintaining situational awareness.

- Make sure adequate charts are available.
- Study the altitude information.
- Know and fly at or above the safe altitudes for your area of operation.

[Optional supporting information]

A pilot on a flight to Portland, Oregon, USA, made this report. “The area below us was like a ‘black hole’ because of forest and it was unpopulated. The city lights were off the right wing—a beautiful night. After being cleared for a visual approach, I began descent so as to arrive... at the recommended 3,000 feet mean sea level. ...At 4,100 feet MSL, the GPWS went ‘Whoop, whoop! Pull up! Terrain.’ For a split second we thought it was a false warning, since we were still looking at the airport/city. Then I noticed both radio altimeters go from 2,500 feet to 400 feet in 1-2 seconds. I immediately applied full power and initiated a max climb until over the city’s outskirts (lights). Our whole crew serves this city daily and knows the airport well. Simple fact is that most pilots going into a familiar airport use the approach plate and do not often refer to the area chart. ...We were stupid and very lucky.” (Source: ASRS report 216837.)
• Make sure adequate charts are available.
• Study the altitude information.
• Know and fly at or above the safe altitudes for your area of operation.

"Mountain range off to left—check. MSA—check. Minimums—check."

Figure 4-C.10
The inability of air traffic controllers and pilots to properly communicate has been a factor in many CFIT accidents. There are multiple reasons for this problem. With the growth of the aviation industry taking place throughout the world, the use of English as a common language is more difficult to support. The lack of English language proficiency can make understanding controller instructions to the pilots and airborne information or requests from the pilots to the controllers much more prone to error. Heavy workloads can lead to hurried communications and the use of abbreviated or non-standard phraseology. The potential for instructions meant for one airplane and given to another is increased. Unreliable radio equipment still exists in some areas of the world, which compounds the communication problems.

- Make sure adequate charts are available.
- Study the altitude information.
- Know and fly at or above the safe altitudes for your area of operation.

[Optional supporting information]

The importance of good communications was pointed out in a report by an air traffic controller and flight crew of an MD-80. The controller reported that he was scanning his radar scope for traffic and noticed that the MD-80 was descending through 6,400 ft and immediately instructed a climb to at least 6,500 ft. The pilot responded that he had been cleared to 5,000 ft and then climbed to… The pilot reported that he had “heard” a clearance to 5,000 ft and read back 5,000 ft to the controller and received no correction from the controller. After almost simultaneous GPWS and controller warnings, the pilot climbed and avoided the terrain. The recording of the radio transmissions confirmed that the airplane was cleared to 7,000 ft and the pilot mistakenly read back 5,000 ft and attempted to descend to 5,000 ft. The pilot stated in the report: “I don’t know how much clearance from the mountains we had, but it certainly makes clear the importance of good communications between the controller and pilot.” (Source: ASRS report 96032)
“Flight 00, proceed to center (POP) way (SNAP) (Buzz, Buzz) Nose up (Pow) land.”

“What?! Tower, please say again. I don’t understand and I have a bunch of static!!”

“No bunching, stay clear of other plane (buzz)!”
ATC is not always responsible for safe terrain clearance for the airplanes under its jurisdiction. *Many times ATC will issue enroute clearances for pilots to proceed off airway direct to a point. When pilots accept this clearance, they also accept responsibility for maintaining safe terrain clearance.*

- Exercise good radio communication discipline.
- Know the height of the highest terrain or obstacle in the operating area.
- Know your position in relation to the surrounding high terrain.

Airspace constraints that are most prevalent in the terminal areas many times require air traffic controllers to radar vector airplanes at minimum vectoring altitudes that can be lower than the sector Minimum Safe Altitude. Proper vertical and horizontal situational awareness is vital during this critical phase of flight. Humans make errors. From time to time, ATC may issue flawed instructions that do not ensure adequate terrain clearance. While it may be difficult for flight crews to know that an error has been made, it is possible that the mistake can be detected with good pilot position and altitude awareness.
• Exercise good radio communication discipline.
• Know the height of the highest terrain or obstacle in the operating area.
• Know your position in relation to the surrounding high terrain.
• Challenge or refuse ATC instructions when they are not clearly understood, are questionable, or conflict with your assessment of airplane position relative to the terrain.

• Know the height of the highest terrain or obstacle in the operating area.

• Know your position in relation to the surrounding high terrain.

[Optional supporting information]

‘While in a left turn to 330 degrees after takeoff, combined tower/departure controller said: ‘Radar contact, turn left heading 300 degrees.’ We responded by acknowledging the heading and ‘leaving 6 for 7,000 feet. Aircraft was leveled off at 7,000 feet MSL. Captain asked controller the elevation of the terrain below us. Tower replied: ‘5,800 feet’. After approximately one minute level at 7,000 feet MSL, the radar altimeter light came on indicating terrain less than 2,500 feet. A climb was immediately initiated when the GPWS warned: ‘Terrain, Terrain.’ ATC was advised we’re climbing. ATC replied: ‘Verify you’re climbing to 17,000.’ Captain replied that we’re issued 7,000 feet. ATC replied: ‘climb and maintain 17,000.’...The controller said he was the new shift replacement for the controller who had given us the clearance.” (Source: ASRS 95474.)

Complacency can be defined as self-satisfaction, smugness, or contentment. You can understand why after years in the same flight deck, on the same route structure to the same destinations, a pilot could become content, smug, or self-satisfied. Add to this equation a modern flight deck with a well functioning autopilot, and you have the formula for potential complacency.

Flight crews may also be exposed to continued false GPWS warnings because of a particular terrain feature and a GPWS
• Challenge or refuse ATC instructions when they are not clearly understood, are questionable, or conflict with your assessment of airplane position relative to the terrain.

• Know the height of the highest terrain or obstacle in the operating area.

• Know your position in relation to the surrounding high terrain.

“Flight 258 proceed present position Delta intersection via Victor 2. Cruise 1000 feet. Cleared for the approach, Maintain 2000 feet until passing the outer marker.”
database that has not been customized for the arrival. The flight crew becomes conditioned to this situation, since they have flown the approach many times. This can also lull the flight crew into complacency, and they may fail to react to an actual threat. Note: The newer versions of GPWS can be programmed by the manufacturer for specific airfield approach requirements so that these nuisance warnings are eliminated.

- Know that familiarity can lead to complacency.
- Do not assume that this flight will be like the last flight.
- Adhere to procedures.

Many studies show that operators with established, well thought out and implemented standard operating procedures (SOP) consistently have safer operations. It is through these procedures that the operator sets the standards that all flight crews are expected to follow.

CFIT accidents have happened when flight crews did not know the procedures, did not understand them, or did not
• Know that familiarity can lead to complacency.
• Do not assume that this flight will be like the last flight.
• Adhere to procedures.
comply with them, or when there were no procedures established. In the absence of standard operating procedures, flight crews will establish their own to fill the void in order to complete the flight. Some flight crews think the weather is never too bad to initiate an approach! It is the responsibility of management to develop the comprehensive procedures, train the flight crews, and quality control the results.

It is the responsibility of the flight crew to learn and follow the procedures and provide feedback to management when the procedures are incorrect, inappropriate, or incomplete.

- Do not invent your own procedures.

- Management must provide satisfactory standard operating procedures and provide effective training to the flight crew.

- Comply with these procedures.

CFIT accidents have occurred during departures, but the overwhelming majority of accidents occur during the descent, approach, and landing phases of the flight. CFIT accidents make up the majority of these accidents.

An analysis of 40 CFIT accidents was accomplished for a 5-year period, 1986 to 1990. The airplanes’ lateral and vertical
• Do not invent your own procedures.

• Management must provide satisfactory standard operating procedures and provide effective training to the flight crew.

• Comply with these procedures.
positions were plotted in relation to the airport runway. Almost all the position plots are on the runway centerline inside of 10 miles from the intended airport. The vertical profiles showed flight paths at a relatively constant 3 degrees, but right into the ground!

The geographical location of CFIT accidents during the 1970s show a different pattern than those in the late 1980s and 1990s. During the five-year period from 1972 through 1977, there were 75 CFIT accidents or incidents. Twenty-five of these accidents/incidents were greater than 8 nautical miles from the runway. The preponderance of the remaining accidents/incidents were inside the middle marker. However, for the period 1986 to 1990, the distribution of accidents/incidents was relatively even. This difference may be the result of improvements made in runway approach aids that took place during this time period. Additional Instrument Landing Systems were installed, as well as runway approach lighting systems.

- Know what approach and runway aids are available before initiating an approach.
- Use all available approach and runway aids.
- Use every aid to assist you in knowing your position and knowing the required altitudes at that position.

Most CFIT accidents occur during nonprecision approaches, specifically VOR/DME approaches. Inaccurate or poorly designed approach procedures, coupled with a variety of depictions, can be part of the problem.
• Know what approach and runway aids are available before initiating an approach.
• Use all available approach and runway aids.
• Use every aid to assist you in knowing your position and knowing the required altitudes at that position.
This is an example of an approach procedure produced by different sources. There are documented cases that the minimum terrain clearances on some published approach charts have contributed to both accidents and incidents. For more than a decade, a worldwide effort has been underway to both raise and standardize the descent gradient of non-precision approaches. There are gradients as little as 0.7 degrees in some VOR approach procedures.

In addition to the shallow approach gradients, many approaches use multiple altitude step-down procedures. This increases the pilot workload and the potential for making errors.

- Study the approach procedure(s) before departure.
- Identify unique gradient and step-down requirements.
- Review approach procedures during approach briefing.
- Use autoflight systems, when available.

There is more than one standard for approach procedures in the world. The United States standard is Terminal Instrument Procedures (TERPS). The ICAO standard is Procedures for Air Navigation Services-Aircraft Operations (PANS-OPS),
• Many ways to present the descent profile
• Comparison of profiles for the same

• Study the approach procedure(s) before departure.
• Identify unique gradient and step-down requirements.
• Review approach procedures during approach briefing.
• Use autoflight systems, when available.

Figure 4-C.17
and the Russian Federation uses still another. Flight crews, therefore, may be exposed to different standards and different margins of safety.

- Study anticipated approach procedures before departure.
- Know that there are different approach design standards.

Unstable approaches contribute to many CFIT accidents or incidents. Unstable approaches increase the possibility of
• Study anticipated approach procedures before departure.
• Know that there are different approach design standards.
diverting a pilot’s attention away from the approach procedure to regain better control of the airplane. A stabilized approach is defined by many operators as a constant rate of descent along an approximate 3 degree flight path with stable airspeed, power setting, and trim, with the airplane configured for landing.

Use the display and control modes recommended for the type of approach being flown, and as specified in the standard operating procedures applicable to the airplanes type. Be aware of the limitations associated with the specified procedures.

- Fly stabilized approaches.

- Execute a missed approach if not stabilized by 500 feet above ground level or an altitude specified by your SOP.

A minimum of three to five near collision with the terrain autoflight-related incidents occur each year. Not all incidents
- Fly stabilized approaches.
- Execute a missed approach if not stabilized by 500 feet above ground level or an altitude specified by your SOP.

Figure 4-C.19
are reported. The actual number of incidents may be much greater. The advancement of technology in today’s modern airplanes has brought us flight directors, autopilots, autothrottles and flight management systems. All of these devices are designed to reduce pilot workload. They keep track of altitude, heading, airspeed, and the approach flight path, and they tune navigation aids with unflagging accuracy. When used properly, this technology has made significant contributions to flight safety. But technology can increase complexity and also lead to unwarranted trust or complacency.

Autoflight systems can be misused, contain database errors, or be provided with faulty inputs by the flight crew. They will sometimes do things that the flight crew did not intend for them to do.

- Monitor the autoflight system for desired operation.
- Avoid complacency.
- Follow procedures.
- Cross-check raw navigation information.

[Optional supporting information]

Imagine this situation. You are descending, and the autoflight system is engaged and coupled to fly the FMC course. It is night time, and you are flying an instrument arrival procedure in mountainous terrain. The FMC has been properly programmed, and the airplane is on course when ATC amends the routing. In the process of programming the FMC, an erroneous active waypoint is inserted. While you and the first officer are reconciling the error, the airplane begins a turn to the incorrect waypoint! It does not take very long to stray from the terrain-altitude-protected routing corridor.
• Monitor the autoflight system for desired operation.
• Avoid complacency.
• Follow procedures.
• Cross-check raw navigation information.

“What’s the autopilot doing now?
It’s supposed to do that.
Why is it doing that?
I don’t know.
But it knows, doesn’t it?!!
Most of the factors that have been identified are the result of deficiencies in flight crew training programs. Therefore, training becomes a significant factor that contributes to CFIT. Well-designed equipment, comprehensive operating procedures, extensive runway approach aids, and standardized charting or altimeter setting procedures and units of measurement will not prevent CFIT unless flight crews are properly trained and disciplined.

- Develop and implement effective initial and recurrent flight crew training programs that consider CFIT.
- Implement Flight Operations Quality Assurance Programs.
• Develop and implement effective initial and recurrent flight crew training programs that consider CFIT.

• Implement Flight Operations Quality Assurance Programs.

"Whoop, Whoop! Pull up!"
In Section 2 of the CFIT Education and Training Aid (the Decision Makers Guide), we pointed out that CFIT prevention encompasses more than operator-related actions. There are system-related problems that, when solved, will help operators avoid situations that may lead to CFIT. Some progress has been made in solving the systemic problems, but much more needs to be done. In the meantime, operators can also do much more to prevent CFIT accidents.
• Crew briefings
• Autoflight systems
• Route and destination familiarization programs
• Altitude awareness techniques and procedures
• Callouts
• GPWS escape maneuvers
• Better charts
• Better training
Many of the CFIT accidents show a lack of flight crew communication. For example, while one pilot flew the approach, the other did not know or understand the intentions of the flying pilot. This lack of communication can lead to breakdowns in flight crew coordination and cross-checking. *One of the best ways to let the nonflying pilot know what to expect is to conduct a briefing before each takeoff and each approach.* While this seems elementary, many pilots simply ignore the obvious safety implications of the briefing.

Operators should require briefings by the flight crew. As operations vary from country to country, some briefing items may be more important than others and some unique items may be added, but there are some items that should always be covered.
“Don’t forget your briefing before you take off and before you land."
Use the following takeoff briefing guidelines if other guidance is not provided by standard operating procedures or the airplane manufacturer.

- Weather at the time of departure.
- Runway in use, usable length (full length or intersection takeoff).
- Flap setting to be used for takeoff.
- V speeds for takeoff.
- Expected departure routing.
- Airplane navigation aids setup.
- Minimum sector altitudes and significant terrain or obstacles relative to the departure routing.
- Rejected takeoff procedures.
- Engine failure after V1 procedures.
- Emergency return plan.
Takeoff Briefing

- Weather at the time of departure.
- Runway in use, usable length (full length or intersection takeoff).
- Flap setting to be used for takeoff.
- V speeds for takeoff.
- Expected departure routing.
- Airplane navigation aids setup.
- Minimum sector altitudes and significant terrain or obstacles relative to the departure routing.
- Rejected takeoff procedures.
- Engine failure after V1 procedures.
- Emergency return plan.
The accident statistics show that the vast majority of accidents occur during the approach at the destination airport. Is it not logical then to prepare carefully and properly for the arrival, approach, and landing? *The approach briefing sets the professional tone for your safe arrival at the destination.* The flying pilot should discuss how he or she expects to navigate and fly the procedure. This will not only solidify the plan for the approach, but it will inform the nonflying pilot of intentions, which provides a basis for monitoring the approach. Deviations from the plan now can be more readily identified by the nonflying pilot. The approach briefing should be completed before arriving in the terminal area, so that both pilots can devote their total attention to executing the plan.

Use the following approach briefing guidelines if other guidance is not provided by standard operating procedures or the airplane manufacturer.
Approach Briefing

• Expected arrival procedure to include altitude and airspeed restrictions.

• Weather at destination and alternate airports.

• Anticipated approach procedure to include:
 - Minimum sector altitudes.
 - Airplane navigation aids setup.
 - Terrain in the terminal area relative to approach routing.
 - Altitude changes required for the procedure.
 - Minimums for the approach DA/H or MDA/H.
 - Missed approach procedure and intentions.

• Communication radio setup

• Standard callouts to be made by the nonflying pilot.
Proper use of the modern autoflight systems reduces workloads and significantly improves flight safety. These systems keep track of altitude, heading, airspeed, and flight paths with unflagging accuracy. Unfortunately, there are a great number of first-generation airplanes that are still operating that do not have the advantages associated with well-designed integrated systems. There are also some flight crews whose airplanes do have modern systems, but who do not take full advantage of the autoflight system to manage the progress of the flight and reduce workload.

To assist in preventing CFIT, the proper use of autoflight systems is encouraged during all approaches and missed approaches, in IMC, when suitable equipment is installed.

It is incumbent on operators to develop specific procedures for the use of autopilots and autothrottles during precision approaches, nonprecision approaches and missed approaches, and to provide simulator-based training in the use of these procedures for all flight crews.
“On course, on glide path, on airspeed; nice job, autopilot!!
Flight crews must be adequately prepared for CFIT critical conditions, both enroute and at the destination. *Flight crews must be provided with adequate means to become familiar with enroute and destination conditions for routes deemed CFIT critical.* One or more of the following methods are considered acceptable for this purpose:

- When making first flights along routes, or to destinations, deemed CFIT critical, Captains should be accompanied by another pilot familiar with the conditions; or,

- Suitable simulators can be used to familiarize flight crews with airport critical conditions when those simulators can realistically depict the procedural requirements expected of flight crew members; or,

- Written guidance, dispatch briefing material, and video familiarization using actual or simulated representations of destination and alternatives should be provided.
Route Familiarity Programmed

Experienced Pilots

Data

Figure 4-C.27
It is essential that flight crews always appreciate the altitude of their airplane relative to terrain, and the assigned or desired flight path. Flight crews need to be provided with and need to use procedures with which they will monitor and cross-check assigned altitudes, as well as verify and confirm altitude changes. As a minimum, in the absence of standard operating procedures or airplane manufacturer’s guidance, use the following procedures:

- Ascertain the applicable MSA reference point. Note: The MSA reference point for an airport may vary considerably according to the specific approach procedure in use.

- Know the applicable transition altitude or transition level.

- Use a checklist item to ensure that all altimeters are correctly set in relation to the transition altitude/level.
 Confirm altimeter setting units by repeating all digits and altimeter units in clearance readbacks and intracockpit communications.

- Call out any significant deviation or trend away from assigned clearances.

- Include radio height in the pilot instrument scan.

- Upon crossing the final approach fix, outer marker, or equivalent position, the pilot not flying will cross-check actual crossing altitude/height against altitude/height as depicted on the approach chart.

- Follow callout procedures.
Altitude Awareness

• Ascertain the applicable MSA reference point. Note: The MSA reference point for an airport may vary considerably according to the specific approach procedure in use.

• Know the applicable transition altitude or transition level.

• Use a checklist item to ensure that all altimeters are correctly set in relation to the transition altitude/level. Confirm altimeter setting units by repeating all digits and altimeter units in clearance readbacks and intracockpit communications.

• Call out any significant deviation or trend away from assigned clearances.

• Include radio height in the pilot instrument scan.

• Upon crossing the final approach fix, outer marker, or equivalent position, the pilot not flying will cross-check actual crossing altitude/height against altitude/height as depicted on the approach chart.

• Follow callout procedures.
Callouts are defined as aural announcements, by either flight crew members or airplane equipment, of significant information that could affect flight safety. A callout should be made at the following times:

- Upon initial indication of radio altimeter height, at which point altitude versus height above terrain should be assessed and confirmed to be reasonable.
- When the airplane is approaching from above or below the assigned altitude (adjusted as required to reflect specific airplane performance).
- When the airplane is approaching relevant approach procedure altitude restrictions and minimums.
- When the airplane is passing transition altitude/level.
Callouts

• Upon initial indication of radio altimeter height, at which point altitude versus height above terrain should be assessed and confirmed to be reasonable.

• When the airplane is approaching from above or below the assigned altitude (adjusted as required to reflect specific airplane performance).

• When the airplane is approaching relevant approach procedure altitude restrictions and minimums.

• When the airplane is passing transition altitude/level.
The GPWS warning is normally the flight crew’s last opportunity to avoid CFIT. Incidents and accidents have occurred because flight crews have failed to make timely and correct responses to the GPWS warnings. The available time has increased between initial warning and airplane impact since the first version of the GPWS; however, this time should not be used to analyze the situation. React immediately. With the early versions, there was as little as 5 seconds warning, and none at all if the impact point was on a relatively steep slope of a mountain. There may be as much as 30 seconds for newer and future versions.

In the absence of standard operating procedures or airplane manufacturer guidance, execute the following maneuver in response to a GPWS warning, except in all but clear daylight VMC, when the flight crew can immediately and unequivocally confirm that an impact with the terrain, water, or obstacle will not take place:

- React immediately to a GPWS warning.
- Positively apply maximum thrust, and rotate to the appropriate pitch attitude for your airplane.
- Pull up with wings level to ensure maximum airplane performance.
- Always respect stick shaker.

Continue the escape maneuver until climbing to the sector emergency safe altitude or until visual verification can be made that the airplane will clear the terrain or obstacle, even if the GPWS warning stops.
• React immediately to a GPWS warning.
• Positively apply maximum thrust, and rotate to the appropriate pitch attitude for your airplane.
• Pull up with wings level to ensure maximum airplane performance.
• Always respect stick shaker.
Flight crews must be provided with and must be trained to use adequate navigation and approach charts that accurately depict hazardous terrain and obstacles. These depictions of the hazards must be easily recognizable and understood. On modern technology airplanes, the electronic displays should resemble printed chart displays to the maximum extent feasible.

Flight crew training can be a contributing factor to CFIT. It is also the key to CFIT accident prevention. Modern airplane equipment, extensive standard operation procedures, accurate charts, improved approach procedures, detailed checklists, or recommended avoidance techniques will not prevent CFIT if flight crews are not adequately trained. The cause of CFIT is the flight crew’s lack of vertical and/or horizontal situational awareness. We know the solutions to these causes: a proper support infrastructure and a trained and disciplined flight crew.
In the previous discussion, the causes of CFIT and contributing factors were identified, along with recommendations and strategies that may be used to avoid CFIT accidents and incidents. It could be misleading to the reader when causes and factors are discussed separately.

Accidents and incidents do not normally happen because of one decision or one error. They rarely happen because the flight crew knowingly disregarded a good safety practice. Accidents and incidents happen insidiously. Flight crews fall into traps: some of their own making and some that are systemic.

Let’s look at some examples that could happen when a flight crew employs one recommendation, but disregards another.
We have identified that nonprecision VOR instrument approaches are especially hazardous when they include shallow approach paths and several altitude step-down points. We recommend that the autoflight system be used, if available, to reduce the workload. While this technique may mitigate the problem with the approach procedure, it can create another trap if the flight crew becomes complacent and does not properly program the computer, monitor the autoflight system, make the proper cockpit callouts, etc.

In another situation, flight crews are encouraged to use the displays that modern cockpits provide to assist them in maintaining situational awareness. However, if they disregard the raw navigational information that is also available, they can fall into a trap if any position inaccuracies creep into the various electronic displays.
"Keep checking. Don’t get trapped."
The importance of takeoff and arrival briefings is stressed as a means to overcome some of the factors associated with the departures and arrivals. However, if the briefings do not stress applicable unique information or become rote or done at the expense of normal outside-the-cockpit vigilance, their value is lost and the flight crew can fall into another trap.
"For this approach, we’ve got got some special considerations."
It should be evident that there is no single solution to avoiding CFIT accidents and incidents. All the factors are interrelated, with their level of importance changing with the scenario. *Be aware, the traps are there!*

The last link in the chain of events that lead to CFIT accidents is the flight crew. Be ready!

[Optional supporting information]

The CFIT Training and Education Aid, Section 5, CFIT Background Material, provides many more examples of traps.
Are you terrain-proof?
Appendix 4-D provides a single-source reference for GPWS warning escape maneuvers.

Note: The term “maneuver” is associated with the sequence of steps the pilot is required to accomplish in order to avoid impact with the terrain. It is recognized that some airplane manufacturers have established procedural steps that the pilot is required to accomplish for that particular airplane. For simplicity, the term “maneuver” will be used for both situations. The generic escape maneuver developed by the CFIT Task Force is included, along with supporting information. This maneuver should be used if your standard operating procedures or airplane manufacturer does not provide other model-specific guidance for reacting to a GPWS warning. Space has also been provided for the insertion of model-specific escape maneuvers and data from airplane manufacturers. Several manufacturers have included their specific escape maneuver and supporting information. Operators who desire additional information, or the escape maneuver for airplanes not included in this appendix, should contact the appropriate manufacturer.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-D.1 Generic GPWS Warning Escape Maneuver</td>
<td>App. 4-D.2</td>
</tr>
<tr>
<td>4-D.1.1 GPWS Warning Escape Maneuver Analysis</td>
<td>App. 4-D.2</td>
</tr>
<tr>
<td>Airbus Industries</td>
<td>App. 4-D.3</td>
</tr>
<tr>
<td>The Boeing Company</td>
<td>App. 4-D.4</td>
</tr>
<tr>
<td>Cessna Aircraft</td>
<td>App. 4-D.5</td>
</tr>
<tr>
<td>Gulfstream Aerospace</td>
<td>App. 4-D.6</td>
</tr>
<tr>
<td>McDonnell Douglas Corporation</td>
<td>App. 4-D.7</td>
</tr>
<tr>
<td>Other Manufacturers</td>
<td>App. 4-D.8</td>
</tr>
</tbody>
</table>
4-D.1 Generic GPWS Warning Escape Maneuver

In the absence of standard operating procedures or airplane manufacturer guidance, execute the following maneuver in response to a GPWS warning, except in clear daylight visual meteorological conditions when the flight crew can immediately and unequivocally confirm that an impact with the ground, water, or an obstacle will not take place.

- React immediately to a GPWS warning.
- Positively apply maximum thrust and rotate to the appropriate pitch attitude for your airplane.
- Pull up with wings level to ensure maximum airplane performance.
- Always respect stick shaker.

Continue the escape maneuver until climbing to the sector emergency safe altitude can be completed or until visual verification can be made that the airplane will clear the terrain or obstacle, even if the GPWS warning stops.

4-D.1.1 GPWS Warning Escape Maneuver Analysis

Airplane performance data, through computer analysis and simulator studies, were compiled to determine the feasibility of an industrywide, common CFIT escape maneuver. Performance characteristics for specific airplanes were supplied by the various airplane manufacturers.

Preliminary information indicates that performance data for different airplanes are remarkably similar. Using an initial pitch of 20 deg shows a better altitude gain than a 15-deg pitch for the same horizontal distance traveled during the initial pull-up and during low-altitude recoveries. During extended climbs and for recoveries initiated at higher altitudes, the 20-deg pitch will eventually fall below the 15-deg pull-up pitch.

Maximum altitude will be gained in the shortest horizontal distance by using a pull-up directly to stick shaker. However, this technique results in very low airspeeds and varying pitch attitudes, depending on airplane configuration and elevator effectiveness.

Studies show that there is little difference in performance between a pull-up rate of 3 deg/s and 4 deg/s. Because of this, it is recommended that the standard pull-up rate is 3 deg/s. The studies revealed that airplanes in the takeoff configuration had the worst performance characteristics. Data were collected using V2 speed instead of the more nominal V2 + 15 to 25 kt.

Currently, it appears that a 3 deg/s pull-up, similar to a normal takeoff rotation, to a pitch attitude of 20 deg will result in the most altitude gained for horizontal distance used without exposing the flight crew to excessively high pitch attitudes while flying at low airspeeds.
TERRAIN AVOIDANCE PROCEDURE FOR AIRCRAFT WITH FBW AND WITH CONVENTIONAL FLIGHT CONTROLS
TERRAIN AVOIDANCE PROCEDURES FOR AIRCRAFT WITH FBW AND WITH CONVENTIONAL FLIGHT CONTROLS

1. During daylight VMC when positive visual verification is made that no hazard exists, a GPWS terrain warning may be considered as cautionary. If a GPWS warning occurs and the crew cannot make this visual verification, as in IMC or at night, the crew should immediately and aggressively execute the terrain avoidance procedure applicable to the aircraft type. There should be no attempt to evaluate the warning.

2.1. For Airbus fly-by-wire aircraft having full low speed protection, the procedure is as specified on page 2. Push thrust-levers immediately to TOGA and simultaneously pitch nose-up, wings level, disconnecting autopilot. Immediate full aft side-stick will produce maximum performance climb, trading speed for altitude, in the minimum distance. The speed-brakes should be retracted without delay if they are extended. In any case, they will retract automatically when the angle of attack reaches α prot. Maintain gear and flaps position, maintain full back stick until adequate terrain clearance is assured, as indicated by cessation of the GPWS warning and increasing radio altitude. In normal law, the high angle of attack protection will ensure α max is not exceeded, and stall margin is maintained.

2.2. For fly-by-wire aircraft in degraded flight control law, the side-stick should be pulled back, wings level, disconnecting auto-pilot, increasing pitch attitude, if necessary until IAS reaches Vsw. Stall warning must be respected to ensure the maintenance of stall margin.

3.1. For the A300 and A310 families, with conventional flight control systems, the procedure is as specified on page 3. Apply full rated thrust, disconnect the autothrottle system, and simultaneously pitch up to at least 20°, wings level. Check speed brakes are retracted. Maintain gear and flaps position, monitor the radio altimeter and if necessary, continue to increase pitch attitude smoothly until VSS and / or operation of the stick shaker. Use stick shaker onset to limit pitch attitude. Stick shaker or buffet must be respected at all times to ensure appropriate maneuver and stall margins are maintained. Maintain this pitch until adequate terrain clearance is assured.

3.2. Also on EFIS equipped aircraft, speed trend and Vsw display can help to make a smooth approach to VSS. The FPV may be selected to show climb angle achieved during the maneuver.

4. For both categories of flight control systems, when adequate terrain clearance is assured, smoothly reduce pitch and accelerate, maintaining a positive rate of climb. When adequate IAS is obtained, clean up and reduce thrust as required.

TERRAIN AVOIDANCE PROCEDURE

Applicable to FBW aircraft: A319, A320, A321, A330, A340 in NORMAL LAW

Immediately:

- THRUST LEVERS TOGA

- { A/P DISCONNECT

- { SIDE-STICK* PULL UP, WINGS LEVEL

- SPD BRK Check retracted

If necessary, use full back stick and maintain θ max speed until terrain clearance is assured, (GPWS warning ceased and radio altitude increasing).

• When flight path is safe, decrease pitch and accelerate.

• When speed above VLS and V/S positive, retract flap and gear as required.

* In pitch alternate or direct law, pull up aggressively, wings level. If necessary, maintain speed at stall warning until terrain clearance assured.
TERRAIN AVOIDANCE PROCEDURE

Applicable to: A300, A310 and A300-600 aircraft

Immediately:

- { THROTTLES FULL FORWARD
 A/THR DISCONNECT

- { A/P DISCONNECT
 PITCH At least 20° UP, WINGS LEVEL

- SPD BRK Check retracted

If necessary, pitch up to V_{SS} on speed scale, maintain until terrain clearance assured (GPWS ceased and radio altitude increasing).

• When flight path is safe, decrease pitch and accelerate.

• When speed above V_{LS} and V/S positive, retract flap and gear as required.
CFIT ESCAPE MANEUVER
A300 B2/B4 FROM LEVEL FLIGHT.
CLEAN CONFIGURATION - GEAR UP

MAX LANDING WEIGHT
GREEN DOT SPEED
SEA LEVEL

3°/Sec. up to 20° of pitch attitude
Altitude
Versus
Distance

Distance (meter)

Altitude (ft)
CFIT ESCAPE MANEUVER
A300 B2/B4 FROM LEVEL FLIGHT.
CONFIGURATION 16°/8° - GEAR UP

Altitude (ft)

Distance (meter)

MAX LANDING WEIGHT
F SPEED
SEA LEVEL

3°/Sec. up to 20° of pitch attitude
Altitude Versus Distance
CFIT ESCAPE MANEUVER
A300 B2/B4 FROM 3° GLIDE SLOPE,
CONFIGURATION 25°/25° - GEAR DOWN

Altitude (ft)

Distance (meter)
CFIT ESCAPE MANEUVER
A300-600 FROM LEVEL FLIGHT.
CLEAN CONFIGURATION - GEAR UP

Distance (meter)

Altitude (ft)

MAX LANDING WEIGHT
GREEN DOT SPEED
SEA LEVEL

stick shaker attitude
3°/Sec. up to 20° of pitch attitude
Altitude Versus Distance
CFIT ESCAPE MANEUVER
A300-600 FROM LEVEL FLIGHT.
CONFIGURATION 15°/15° - GEAR UP

Altitude (ft)

Distance (meter)

MAX LANDING WEIGHT
F SPEED
SEA LEVEL

Altitude Versus Distance

3°/Sec. up to 20° of pitch attitude

Stick shaker attitude
CFIT ESCAPE MANEUVER
A300-600 FROM 3° GLIDE SLOPE.
CONFIGURATION 30°/40° - GEAR DOWN

Altitude (ft)

MAX LANDING WEIGHT
VLS + 5 Kt
SEA LEVEL

Distance (meter)

Stick shaker attitude
3°/Sec. up to 20° of pitch attitude
Altitude
Versus
Distance
CFIT ESCAPE MANEUVER
A310 FROM LEVEL FLIGHT.
CLEAN CONFIGURATION - GEAR UP

Altitude (ft)

Distance (meter)

MAX LANDING WEIGHT
GREEN DOT SPEED
SEA LEVEL

stick shaker altitude
3°/Sec. up to 20° of pitch attitude
Altitude Versus Distance
CFIT ESCAPE MANEUVER
A310 FROM LEVEL FLIGHT.
CONFIGURATION 15°/15° - GEAR UP

Altitude (ft)

MAX LANDING WEIGHT
F SPEED
SEA LEVEL

Distance (meter)

Altitude Versus Distance

Stick shaker attitude
3°/Sec. up to 20° of pitch attitude
CFIT ESCAPE MANEUVER
A310 FROM 3° GLIDE SLOPE.
CONFIGURATION 30°/40° - GEAR DOWN

Altitude (ft)

Distance (meter)
CFIT ESCAPE MANEUVER
A319/A320/A321 FROM LEVEL FLIGHT.
FULL BACK STICK
CLEAN CONFIGURATION - GEAR UP

Altitude (ft)

Distance (meter)
CFIT ESCAPE MANEUVER
A319/A320/A321 FROM LEVEL FLIGHT.
FULL BACK STICK
CONFIGURATION 2 - GEAR UP

Altitude (ft)

 Distance (meter)
CFIT ESCAPE MANEUVER
A319/A320/A321 FROM 3° GLIDE SLOPE
FULL BACK STICK
CONFIGURATION FULL - GEAR DOWN

Altitude (ft)

Distance (m)

MAX LANDING WEIGHT
VLS + 5KT
SEA LEVEL
CFIT ESCAPE MANEUVER
A330 FROM LEVEL FLIGHT.
FULL BACK STICK
CLEAN CONFIGURATION - GEAR UP

Altitude (ft)

Distance (meter)
CFIT ESCAPE MANEUVER
A330 FROM LEVEL FLIGHT.
FULL BACK STICK
CONFIGURATION 2 - GEAR UP

Altitude (ft)

5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250
0
-250
-500
-750
-1000
-1250
-1500
-1750
-2000
-2250
-2500
-2750
-3000
-3250
-3500
-3750
-4000
-4250
-4500
-4750
-5000

Distance (meter)

MAX LANDING WEIGHT
F SPEED
SEA LEVEL
CFIT ESCAPE MANEUVER
A330 FROM 3° GLIDE SLOPE.
FULL BACK STICK
CONFIGURATION FULL - GEAR DOWN

Altitude (ft)

Distance (meter)

MAX LANDING WEIGHT
VLS +5KT
SEA LEVEL
CFIT ESCAPE MANEUVER
A340 FROM LEVEL FLIGHT.
FULL BACK STICK
CLEAN CONFIGURATION - GEAR UP

Altitude (ft)

Distance (meter)
CFIT ESCAPE MANEUVER
A340 FROM LEVEL FLIGHT.
FULL BACK STICK
CONFIGURATION 2 - GEAR UP

Altitude (ft)

Distance (meter)
CFIT ESCAPE MANEUVER
A340 FROM 3° GLIDE SLOPE.
FULL BACK STICK
CONFIGURATION FULL - GEAR DOWN

Altitude (ft)

Distance (meter)

MAX LANDING WEIGHT
VLS +5KT
SEA LEVEL

2500
2250
2000
1750
1500
1250
1000
750
500
250
0
-250
-500
-750
-1000
0
1000
2000
3000
4000
5000
Terrain Avoidance
The Boeing Company conducted an escape maneuver aerodynamic study and a flight simulator pilot human factors study. These studies and other information formed the basis for the terrain avoidance procedure.

Contents:
1. Terrain Avoidance procedure.
2. Boeing Aerodynamic study results.
3. Boeing flight simulator pilot human factors study results.

The material contained in this Boeing appendix is considered correct and accurate; however, since it is intended to be informative only, it should not be consulted in lieu of official operations manuals.
TERRAIN AVOIDANCE

The following is immediately accomplished by recall whenever the threat of inadvertent contact with the terrain exists. Any of the following conditions is regarded as presenting a potential for terrain contact:

- Activation of the "PULL UP" warning.
- Other situations resulting in unacceptable flight toward terrain.

<table>
<thead>
<tr>
<th>PILOT FLYING</th>
<th>PILOT NOT FLYING</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Disconnect autopilot</td>
<td>- Assure maximum* thrust</td>
</tr>
<tr>
<td>- Disconnect autothrottle(s)</td>
<td>- Verify all required actions have been completed and call out any omissions</td>
</tr>
<tr>
<td>- Aggressively apply maximum* thrust</td>
<td></td>
</tr>
<tr>
<td>- Roll wings level and rotate at a rate of 3° per second to an initial pitch attitude of 20°</td>
<td></td>
</tr>
<tr>
<td>- Retract speedbrakes</td>
<td></td>
</tr>
<tr>
<td>- If terrain remains a threat, continue rotation up to the pitch limit indicator (if available) or stick shaker or initial buffet</td>
<td></td>
</tr>
<tr>
<td>- Do not change gear or flap configuration until terrain separation is assured</td>
<td></td>
</tr>
<tr>
<td>- Monitor radio altimeter for sustained or increasing terrain separation</td>
<td></td>
</tr>
<tr>
<td>- When clear of the terrain, slowly decrease pitch attitude and accelerate</td>
<td></td>
</tr>
<tr>
<td>- Monitor vertical speed and altitude</td>
<td></td>
</tr>
<tr>
<td>- Call out any trend toward terrain contact</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Aft control column force increases as the airspeed decreases. In all cases, the pitch attitude that results in intermittent stick shaker or initial buffet is the upper pitch attitude limit. Flight at intermittent stick shaker may be required to obtain positive terrain separation. Smooth, steady control will avoid a pitch attitude overshoot and stall.

NOTE: Do not use Flight Director commands.

* Maximum thrust means "maximum certified thrust". On engines without electronic thrust limiting capability, overboost or "firewalling the thrust lever" should only be considered during emergency situations when all other available actions have been taken and terrain contact is imminent.
Boeing Aerodynamic Study Results

The aerodynamic study evaluated a set of pull-up maneuvers to avoid terrain after receiving a ground proximity warning. The parameters used for the study were three pitch attitudes or angle of attack, two pitch rates, two initial altitudes, and four flap configurations. Figures 1-12 show each plot in various configurations for various Boeing models. Altitude (ft) is graphed on the vertical axis and distance traveled (ft) is graphed on the horizontal axis.
LANDING FLAPS, SEA LEVEL

MAXIMUM LANDING WEIGHT, LANDING GEAR DOWN,
VREF +5 KNOTS, MAXIMUM THRUST APPLIED .5 SEC
AFTER MANEUVER START, SPEED TRIM OPERATIVE
WHERE APPLICABLE

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)
TAKEOFF FLAPS, SEA LEVEL

MAXIMUM TAKEOFF WEIGHT, LANDING GEAR UP,
V2 SPEED, MAXIMUM THRUST APPLIED .5 SEC
AFTER MANEUVER START, SPEED TRIM OPERATIVE
WHERE APPLICABLE

PITCH UP TO 15 DEG ATTITUDE

ALTITUDE (FT)

DISTANCE (FT)

PITCH UP TO 20 DEG ATTITUDE

ALTITUDE (FT)

DISTANCE (FT)

PITCH UP TO STICK SHAKER

ALTITUDE (FT)

DISTANCE (FT)
APPROACH FLAPS, SEA LEVEL

Maximum landing weight, landing gear down, maneuvering speed, maximum thrust applied.

.5 sec after maneuver start, speed trim operative where applicable.

PITCH UP TO 15 DEG ATTITUDE

ALTITUDE (FT)

DISTANCE (FT)

PITCH UP TO 20 DEG ATTITUDE

ALTITUDE (FT)

DISTANCE (FT)

PITCH UP TO STICK SHAKER

ALTITUDE (FT)

DISTANCE (FT)
FLAPS UP, SEA LEVEL
MAXIMUM LANDING WEIGHT, LANDING GEAR UP,
MANEUVERING SPEED, MAXIMUM THRUST APPLIED
.5 SEC AFTER MANEUVER START, SPEED TRIM
OPERATIVE WHERE APPLICABLE

NOTE: MATH PILOT SIMULATION EXCEPT AS NOTED
LANDING FLAPS, 10000 FT

Maximum landing weight, landing gear down,
VREF +5 knots, maximum thrust applied .5 sec
After maneuver start, speed trim operative
Where applicable

VREF +5 KNOTS, MAXIMUM THRUST APPLIED .5 SEC
AFTER MANEUVER START, SPEED TRIM OPERATIVE
WHERE APPLICABLE

PITCH UP TO 15 DEG ATTITUDE

PITCH UP TO 20 DEG ATTITUDE

PITCH UP TO STICK SHAKER

THE BOEING COMPANY
TAKEOFF FLAPS, 10000 FT

MAXIMUM TAKEOFF WEIGHT, LANDING GEAR UP, V2 SPEED, MAXIMUM THRUST APPLIED .5 SEC
AFTER MANEUVER START, SPEED TRIM OPERATIVE WHERE APPLICABLE

14000. 12000. 10000.
ALTITUDE (FT)
0 4000. 8000. 12000. 16000. 20000. 24000.
DISTANCE (FT)

PITCH UP TO 15 DEG ATTITUDE

14000. 12000. 10000.
ALTITUDE (FT)
0 4000. 8000. 12000. 16000. 20000. 24000.
DISTANCE (FT)

PITCH UP TO 20 DEG ATTITUDE

14000. 12000. 10000.
ALTITUDE (FT)
0 4000. 8000. 12000. 16000. 20000. 24000.
DISTANCE (FT)

PITCH UP TO STICK SHAKER

14000. 12000. 10000.
ALTITUDE (FT)
0 4000. 8000. 12000. 16000. 20000. 24000.
DISTANCE (FT)
LANDING FLAPS, SEA LEVEL
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

727-200

ALTITUDE (FT)

4000.

2000.

0

0 4000. 8000. 12000. 16000. 20000. 24000.

DISTANCE (FT)

737-300

ALTITUDE (FT)

4000.

2000.

0

0 4000. 8000. 12000. 16000. 20000. 24000.

DISTANCE (FT)

747-400

ALTITUDE (FT)

4000.

2000.

0

0 4000. 8000. 12000. 16000. 20000. 24000.

DISTANCE (FT)
LANDING FLAPS, SEA LEVEL
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

PITCH UP TO:
- 15 DEG
- 20 DEG
- STICK SHAKER

757-200

ALTITUDE (FT)

757-300ER

ALTITUDE (FT)

777-200

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

CFIT Escape Maneuver Study
Landing Flaps at Sea Level
Pitch Up to 15 Deg, 20 Deg & Shaker

THE BOEING COMPANY
TAKEOFF FLAPS, SEA LEVEL
PITCH UP TO 15 DEG VS 20 DEG & SHAKER
3 DEG/SEC PITCH RATE

PITCH UP TO:

15 DEG
20 DEG
STICK SHAKER

THE BOEING COMPANY
TAKEOFF FLAPS, SEA LEVEL

PITCH UP TO 15 Deg VS 20 Deg VS SHAKER

3 DEG/SEC PITCH RATE

PITCH UP TO:

- 15 Deg
- 20 Deg
- STICK SHAKE

3 DEG/SEC PITCH RATE

ALTITUDE (FT)

DISTANCE (FT)

757-200

ALTITUDE (FT)

DISTANCE (FT)

767-300ER

ALTITUDE (FT)

DISTANCE (FT)

777-200
APPROACH FLAPS, SEA LEVEL

PITCH UP TO 15 DEG VS 20 DEG VS SHAKER
3 DEG/SEC PITCH RATE

PITCH UP TO:

- 15 DEG
- 20 DEG
- STICK SHAKER

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

CFIT Escape Maneuver Study
Approach Flaps at Sea Level
Pitch Up to 15 Deg, 20 Deg & Shaker

THE BOEING COMPANY
APPROACH FLAPS, SEA LEVEL
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

PITCH UP TO:
- 15 DEG
- 20 DEG
- STICK SHAKER

Figure 98

CFIT Escape Maneuver Study
Approach Flaps at Sea Level
Pitch Up to 15 Deg, 20 Deg & Shaker

THE BOEING COMPANY
FLAPS UP, SEA LEVEL
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

NOTE: MATH PILOT SIMULATION EXCEPT AS NOTED

THE BOEING COMPANY
FLAPS UP, SEA LEVEL

PITCH UP TO 15 DEG VS 20 VS SHAKER

3 DEG/SEC PITCH RATE

![Graphs showing altitude versus distance for 757-200, 767-300ER, and 777-200 with pitch up to 15 deg, 20 deg, and stick shaker, respectively.](image)

CFIT Escape Maneuver Study

Flaps Up at Sea Level

Pitch Up to 15 Deg, 20 Deg & Shaker

Figure 10B

THE BOEING COMPANY
LANDING FLAPS, 10000 FT
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

PITCH UP TO:

- 15 DEG
- 20 DEG
- STICK SHAKER

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

CALC CHECK APR APR
19MAY95

CFIT Escape Maneuver Study
Landing Flaps at 10000 ft
Pitch Up to 15 Deg, 20 Deg & Shaker

THE BOEING COMPANY
LANDING FLAPS, 10000 FT
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

757-200

767-300ER

777-200

THE BOEING COMPANY

CALC	19MAY95	REVISED	DATE
CHECK | | |
APR | | |
APR | | |

CFIT Escape Maneuver Study
Landing Flaps at 10000 ft
Pitch Up to 15 Deg, 20 Deg & Shaker
Figure 11B

THE BOEING COMPANY
TAKEOFF FLAPS, 10000 FT

PITCH UP TO 15 DEG VS 20' VS SHAKER
3 DEG/SEC PITCH RATE

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

CFIT Escape Maneuver Study
Takeoff Flaps at 10000 ft
Pitch Up to 15 Deg, 20 Deg & Shaker

Figure 12A

THE BOEING COMPANY
TAKEOFF FLAPS, 10000 FT
PITCH UP TO 15 DEG VS 20 VS SHAKER
3 DEG/SEC PITCH RATE

PITCH UP TO:

- 15 DEG
- 20 DEG
- STICK SHAKER

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)

ALTITUDE (FT)

DISTANCE (FT)
Boeing Flight Simulator Pilot Study

The flight simulator pilot study was conducted in a Boeing 767-200 airplane simulator to evaluate ground proximity warning escape maneuvers. This simulator is indicative of the general performance of the Boeing airplanes, and data will vary little from other Boeing models. The initial conditions for the study are typical of an airplane encountering rapidly rising terrain. Altitude (ft) is graphed on the vertical axis and distance traveled (ft) is graphed on the horizontal axis.
CFIT Simulator Study
767-200
Approach Flaps, Sea Level

- Standard 15 Deg. Pitch
- Enhanced 20 Deg. Pitch

Horizontal Distance in Feet
CFIT Simulator Study
767-200
Approach Flaps, Sea Level

- Standard 15 Deg. Pitch
- Enhanced 20 Deg. Pitch

Horizontal Distance in Feet

Vertical Distance (Feet)
CFIT Simulator Study
767-200
Landing Flaps, Sea Level

- STANDARD 15 DEG. PITCH
- ENHANCED 20 DEG. PITCH

Horizontal Distance in Feet

Vertical Feet

0 1000 2000 3000 4000 5000 6000 7000
CFIT Simulator Study
767-200
Landing Flaps, Sea Level

Horizontal Distance in Feet

Vertical Feet

- Standard 15 Deg. Pitch
- Enhanced 20 Deg. Pitch
CFIT Aero Study
767-300ER
Approach Flaps, Sea Level

○ Standard 15 Deg. Pitch
- Enhanced 20 Deg. Pitch

Horizontal Distance in Feet

Vertical FT

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000

0 500 1000 1500 2000 2500
CFIT Aero Study
767-300ER
Landing Flaps, Sea Level

- Standard 15 Deg. Pitch
- Enhanced 20 Deg. Pitch

Horizontal Distance in Feet
CFIT Aero Study
767-300ER
Landing Flaps, Sea Level

- Standard 15 Deg. Pitch
- Enhanced 20 Deg. Pitch
Cessna used an engineering simulation of the Citation X to examine three different escape strategies for four flight conditions. The flight conditions were:
1. takeoff, sea level, max. take off weight, 15 deg flap, gear up, V2
2. takeoff, 10000 ft
3. landing, sea level, max. landing weight, 35 deg flap, gear down, Vref + 5 kt
4. maneuvering, sea level, flap and gear up, Va

The three escape maneuvers used the same pitch rotation rate of about 3 deg/sec, with the throttles set to takeoff thrust 0.5 sec after initiating a pullup. Rotation was continued to either 15 deg., 20 deg., or stick shaker onset.

The time histories of altitude gained vs. distance for the Citation X simulation show that rotating to 20 deg. pitch attitude is always better than 15 deg. Rotating to stick shaker onset produces more altitude gain initially in all cases, but altitude falls slightly below the 20 deg. case, at some distance downrange for the takeoff flight conditions. Thus, we would recommend always rotating to 20 deg., and continuing to rotate to stick shaker onset if the GPWS warning continues.
CFIT escape maneuver study
Cessna Citation X

MTOW, TO FLAP, GEAR UP, V2

ALITUDE (FT)

DISTANCE (FT)

- 15 DEG
- 20 DEG
- STICK SHAKER
Cessna Citation X
CFT Escape Maneuver Study

- Stick Shaker
- 20 Deg
- 15 Deg

MTOW To Flap, Gear Up, V2

Distance (FT)

Altitude (FT)
CFIT Escape maneuver study
Cessna Citation X

MLW, NO FLAP, Va

DISTANCE (FT)

ALTITUDE (FT)
Introduction

Gulfstream evaluated G-IV airplane performance data with a computer analysis of a 3° - 4° per second pitch rate to a final pitch attitude of 15° nose up and 20° nose up. The computer analysis indicated that additional energy was available with the Gulfstream airplane and could be used for further altitude gain. Subsequently, simulator tests and verification flight tests in the Gulfstream IV were accomplished to verify that greater performance indeed was available.

Four scenarios were evaluated for the Gulfstream IV.

1. Flaps 20, Max Takeoff weight (74,600 lbs), gear up, V_2 (150 KCAS)
2. Flaps 0, max landing weight (66,000 lbs), gear up, maneuvering speed (206 KCAS).
3. Flaps 20, max landing weight, gear down, $V_{ref} +10$ (163 KCAS)
4. Flaps 39, max landing weight, gear down, $V_{ref} +5$ (154 KCAS)

Simulator and Airplane Test Procedure

1. Establish flight condition and airplane configuration.
2. At start of maneuver, advance throttles to max continuous thrust and initiate pitch up at 3 to 4 deg/sec rate.
3. When pitch attitude reaches 35 degrees (\pm 5 degrees), lower nose to achieve and maintain $V_{ref} -20$.
4. Continue at $V_{ref} -20$ for at least 30 seconds. (Shaker should not be triggered but if it is, respond appropriately.)

Conclusions

It is concluded based upon the results of both simulation and flight test that the CFIT escape maneuver as shown in Figure 1 is confirmed to be effective over a range of starting flight conditions. Figures show that the pitch angle was quickly increased as specified at the start of each maneuver. Maximum pitch attitudes reached in flight range from 26° to 39°. Simulator results agree closely.

The altitude time histories indicate an initial zoom climb, followed by a sustained climb at a lessor rate. This is a desirable profile, since in a CFIT avoidance situation, one needs to acquire as much altitude as quickly as possible.

The escape maneuver of Figure 1, although derived from GIV flight test and simulation, was determined by computer analysis to also apply to GII and GIII aircraft.
Upon receipt of a GPWS warning, the following procedure must be immediately executed:

A. Disconnect the Autopilot and apply Go-Around Power.

B. Rotate at 3–4 degrees/second to increase pitch attitude to the highest possible value. (A pitch attitude of 25 degrees has been demonstrated on the GIV at maximum landing weight with flaps at 39 degrees)

C. When stick shaker is encountered, or as V_{ref} is approached, reduce pitch rate/angle of attack to intercept $V_{\text{ref}} - 20$ KCAS.

D. Check power setting.

E. Monitor Radar altimeter.

NOTE: Analysis and flight simulation have consistently shown that the highest altitude gain results from pitching at the highest rate to the highest angle while decelerating as quickly as possible to the lowest acceptable airspeed. Flight test demonstrated that a pitch attitude of 40 degrees can be reached and 25 degrees can be sustained at light weight on the GIV.
GULFSTREAM GIV - TERRAIN AVOIDANCE MANEUVER
SCENARIO 1 - Flaps 20, Max takeoff weight, Landing gear up, V2 speed
Initial Altitude = 500 ft

FIGURE 2
GULFSTREAM GIV - TERRAIN AVOIDANCE MANEUVER

SCENARIO 1 - Flaps 20, Max takeoff weight, Landing gear up, V2 speed

Initial Altitude = 500 ft

FSI SIM RUN 24, 8/8/95
GULFSTREAM GIV - TERRAIN AVOIDANCE MANEUVER

SCENARIO 2 - Flaps up, Max landing weight, Landing gear up, Maneuvering speed

Initial Altitude = 3000 ft (200 ft for FSI Sim)
Initial Altitude = 3000 ft (200 ft for FSI Sim)

SCENARIO 2 - Flaps up, Max Landing Weight, Landing Gear up, Maneuvering Speed

GULFSTREAM CVY - TERRAIN AVOIDANCE MANEUVER

Figure 5
FIGURE 7

GULFSTREAM GIV - TERRAIN AVOIDANCE MANEUVER

SCENARIO 3 - Flaps 20, Max landing weight, Landing gear down, Vref + 10 knots

Initial Altitude = 3000 ft (500 ft for FSI Sim)
GULFSTREAM GIV - TERRAIN AVOIDANCE MANEUVER

SCENARIO 4 - Flaps 39, Max landing weight, Landing gear down, Speed Vref + 5

Initial Altitude = 3000 ft (500 ft for FSI Sim)

FIGURE 8
GULFSTREAM GIV - TERRAIN AVOIDANCE MANEUVER

SCENARIO 4 - Flaps 39, Max landing weight, Landing gear down, Speed Vref + 5
Initial Altitude = 3000 ft (500 ft for FSI Sim)

FLT TEST EVENT 4, 8/10/95
FSI SIM RUN 16, 8/8/95
Introduction
To develop the information provided, seventy two cases were defined from four standard scenarios. Various combinations of altitude, pitch rate, and pitch attitude were run through a simulation program which utilized the MD-11 Aerodynamic Model. Time history plots for each case were generated using the following parameters: velocity, altitude, elevator deflection, pitch attitude, pitch rate, alpha, elevator column force, and normal acceleration.

The four scenarios are:
Scenario #1: Maximum takeoff weight; Flaps—takeoff position; Landing gear—up; Speed—V2; Thrust—maximum thrust applied at GPWS initiation.

Scenario #2: Maximum landing weight; Flaps—up; Landing gear—up; Speed—maneuvering; Thrust—maximum thrust applied at GPWS initiation.
Scenario #3: Maximum landing weight; Flaps—approach position; Landing gear—down; Speed—minimum flap speed; Thrust—maximum thrust applied at GPWS initiation.

All scenarios were run with rotation rates of 3° per second and 4° per second with 15°, 20°, and stick shaker (SS) initiation nose up attitudes. All scenarios were run at sea level, 5,000 feet, and 10,000 feet altitudes.
Results
Utilizing a rotation rate of 3° to 4° per second (about the same as a normal takeoff rotation rate) to a pitch attitude of 20° results in the best altitude gain over a given time period in almost all cases.

Although the data was computed with the MD-11 Aerodynamic Model, it is estimated that the trends for all Douglas Commercial Jet aircraft are roughly the same.

Conclusion
Under certain conditions of flight where immediate visual reference to surrounding terrain is not available, prompt and decisive action is required for a GPWS warning.

Caution: Do not ignore short duration warnings. Take immediate and aggressive action.

Flight crews should become familiar with the following sequence of actions and use them immediately and aggressively upon activation of an aural or visual GPWS warning.

Thrust – Disengage the autothrottles and aggressively apply necessary thrust to ensure adequate airplane performance. Avoid engine overboost unless necessary to avoid ground contact. When airplane safety has been ensured, adjust thrust to maintain engine parameters within normal limits.

Autopilot – Disengage the autopilot.

Pitch – Immediately rotate the airplane at a rate of 3° per second (similar to a normal takeoff rotation rate) to 20° pitch attitude. Trade airspeed for climb performance. If necessary (to prevent ground contact), continue to increase pitch attitude until stick shaker actuates. In this situation, consider use of engine overboost by moving throttles to their mechanical limits. Although there are no pitch limitations in emergency conditions, caution must be exercised to keep from maintaining pitch attitudes that result in continuous actuation of stick shaker.

Speed Brakes – Retract speed brakes.

Flight Director – Turn flight director off or disregard commands.

Level the wings to assure maximum airplane performance.

At positive climb rate (when radio altimeter shows an increasing altitude), retract landing gear (if extended).

After GPWS warning ceases, continue climb to published minimum safe altitude.

Revisions
The material in this section is considered accurate; however, since it is intended to be informative only, it should not be consulted in lieu of official operating manuals.
This video is part of an international industrywide effort to reduce Controlled Flight Into Terrain (CFIT). The Flight Safety Foundation formed a Task Force to produce a CFIT Education and Training Aid. This video is part of that training aid, and it was produced by The Boeing Company.
Flight Sixty-Six was a Boeing Seven Forty-Seven cargo flight enroute to Kuala Lumpur, Malaysia. The first officer was flying the approach to runway Three-Three during the pre-dawn darkness. The I-L-S to runway Three-Three was out of service as reported in both the current NOTAMS and arrival ATIS. The crew, after being cleared by ATC to fly a N-D-B approach, misread the descent clearance and is descending to four hundred feet instead of two thousand, four hundred feet.

In the first half of the nineteen nineties (1990s), almost two thousand people died in accidents attributed to Controlled Flight Into Terrain! As you can tell, C-F-I-T accidents and incidents can happen anywhere, at any time.

The difference with an incident is that the last link in the chain held. The crew was trained and responded to a GPWS warning...the ATC controller noticed the airplane descending towards terrain... or standard operating procedures were effective. Remember, everyone must be involved!

Because of the international increase in air traffic, C-F-I-T projections for the next twenty years show that if trends continue, we can expect to lose one large airplane, worldwide, to a C-F-I-T accident EVERY OTHER WEEK!!

1. Fade up to still graphics (TBD) of a map of Malaysia. CG: weather plate over map: Wind calm Visibility 6000 meters/misty Sky conditions: 3 Octas surface 6 Octas/4267 meters Temperatur: 23°C/73°F Dew point: 22°C/72°F Altimeter: 1011 hectoPascals 229.86 inHg

2. Scroll list of most recent accidents listing month, day, year, place, and number of fatalities/injured. (overseas/domestic mix)

3. ADO Build Short shots of GPWS warning, ATC on radar, and flight deck briefing.

That’s twenty-eight airplanes and the hundreds and hundreds of people on them, _lost, every year!!_ These statistics conceal the human sadness, as well as the commercially devastating effects on an air carrier’s business.

(Network broadcast of plane crash)

(On-camera talent)

An accident occurred just at this point. It happened at night. The weather was clear. It was the end of a long duty day. The crew could actually see the landing runway. They died less than five hundred feet from the top of the ridge! Why would pilots fly perfectly good airplanes into the ground?
This question is at the heart of our investigation into the causes of controlled flight into terrain accidents.

We’re going to show you how pilots can get into a C-F-I-T situation, AND ways to avoid these traps. You’ll see how changes to the way the aviation industry does business can improve the way we all think and act about safety.

Finally, we’ll talk about effective approaches to C-F-I-T training. To see what the industry has been doing to reduce C-F-I-T accidents, let’s look at some history.

(Narrator)

In the late (1960s), as part of the Category Three All Weather Landing System, radio altimeters were installed on many airplanes. For the first time, pilots had a comparatively reliable indication of their height above terrain.

The next major improvement was the Ground Proximity Warning System. Agencies around the world began mandating G-P-W-S for all large airplanes beginning in nineteen-seventy-five (1975).

In one area of the world, before GPWS was mandated, hull losses for large airplanes were averaging eight a year. With the requirement for GPWS, the C-F-I-T hull loss rate is currently about one every two years. C-F-I-T accidents can be reduced. This is significant because the decline has occurred while the airplane fleet has almost
12. Graphic comes out of globe; “Incidents are still occurring daily throughout the world.”

Yellow dots depict incidents as they build on.

13. In flight, crew giving “One Thousand” foot callout.

doubled, and the number of flights have tripled!

Don’t be misled however by these low accident rates. Incidents that could have resulted in accidents are still occurring daily throughout the world. According to some experts a C-F-I-T incident occurs at least every two weeks even in those areas considered the “safest”. GPWS still forms the last safety net. We still have room for improvement.

Remember, high technology solutions are no substitute for good airline philosophy and flight deck management.

The International Civil Aviation Organization, I-K-O, mandated the installation of G-P-W-S in the late nineteen-seventies (1970s). However, about three hundred of the world’s jet transports still do not have Ground Proximity Warning Systems. This about three percent. This three percent generates fifty percent of C-F-I-T accidents! Not surprisingly, it’s also the oldest generations of aircraft that have the highest accident rates.

It’s not just G-P-W-S, and the upgrades to it that have reduced C-F-I-T accidents. The installation of altitude reporting systems alerts Air Traffic Controllers by using visual alarms when aircraft penetrates, or is predicted to penetrate, a minimum safe altitude in the terminal area.
16. ATC personnel at scopes.
 Interior flight deck during landing.

17. Jan Stenberg, President/Chief Operating Officer
 Akira Kondo, President, JAL
 Dr. Assad Kotaite, President, Council of ICAO

While the installation of these systems is limited, the continual investment by air traffic services in expanding and up-grading ATC radar, the minimum safe altitude warning system, along with runway navigational aids and procedures, have all helped reduce the C-F-I-T risk.

(On-camera testimony)
Jan Stenberg (SAS)
To solve CFIT problems, we require commitment from all people throughout the aviation industry. We must advocate the safety culture because it is the right thing to do, and besides, it’s just good business. In our company, we constantly talk about how to improve safety. It’s an obsession with us, and it should be with you. There are no excuses not to provide our customers with the safest air travel possible.

Akira Kondo (JAL)
Solid investment in training is of the greatest significance. Nothing stands still where safety is concerned, and although operational circumstances are constantly changing, safety will always be the key element in our planning. All of Japan Airlines people are dedicated to safety. That is our mission.
18. Video clip from Windshear and TCAS CG titles:
 “Windshear Avoided, What the Crew Can Do.”
 “Traffic Alert and Collision Avoidance System” (TCAS)

19. Graphic.

20. Graphic build from scene 19.

22. On-camera narrator.

Dr. Assad Kotaite (ICAO)
Full implementation of the GPWS requirements and of the Controlled Flight Into Terrain prevention program are essential in order to meet the objective of fifty percent reduction in the global Controlled Flight Into Terrain accident rate by the year 1998.

The commitment that aviation industry showed in the effort against the problems of windshear and mid-air collisions shows our efforts can make a difference.

Accident fatalities used to be divided between C-F-I-T, midair collisions, windshear, and “other.” Of these, Controlled Flight Into Terrain accounted for less than one half of the total.

Here’s what we can do when we work together. By the end of the 1980’s, increased awareness and improvements in training, along with new technology such as TCAS and windshear detection have reduced midair collision and windshear accidents, and they almost disappear from the charts.

But look what happened to C-F-I-T! It grew to eighty-one percent (81%)!

(On-camera talent)
Why are C-F-I-T accidents so difficult to prevent?? One factor is just human nature.
23. DVE of talking faces sliding along and through frame. Each quote is from a different pilot.

(On-camera sound bites)
“I’ll see it coming and know what to do”.
“I’d never make that kind of mistake”
“I’ve never flown in weather that’s too bad.”
“I’ve always found the runway.”
“Did I ever NOT know my position? Well, I’d never admit that!”
“I’ve been flying that route for years. And I know my airplane. It’s the most modern one in the fleet. It’ll never happen to me!”

(Narrator)
Well, it does happen. Given the right chain of events, C-F-I-T could happen to any of us.

One constant in all of these accidents is that outside visibility was limited, or the accident occurred at night. The terrain could not be seen easily...until just before impact!

C-F-I-T accidents have occurred on departures as well as on missed approaches. However, most of the recent C-F-I-T accidents and incidents occurred during nonprecision approaches and landings. Let’s look at the position and vertical profile of these accidents in relationship to the landing runway.

25. In fog/out fog.

26. MS of airplane on approach.

27. Graphic (chart build finishes from scene 26).

This chart shows the vertical path of these events. Notice how stable many of these vertical paths are...right into the ground!
28. Graphic.

29. On-camera testimony of pilot from inside flight deck.

30. Interview with decision maker.
Sir Colin Marshall,
British Airways
Gordon Bethune, President/Chief Operating Officer,
Continental Airlines
David Hinson,
FAA Administrator

Almost all are on the runway center line inside of fifteen miles.

(On-camera testimony)
Each C-F-I-T accident has ultimately been held to be the pilot’s responsibility. The pilot had the last chance to save the aircraft.

(On-camera testimony)
Sir Colin Marshall (British Airways)
We believe that the danger of Controlled Flight Into Terrain will be reduced only through much greater awareness of contributory factors and commitment to taking necessary action to eliminate them. This involves investment in the right technology, with strict adherence to optimum operating procedures; comprehensive, effective pilot training; and acceptance of the vital need for an open, incident-reporting culture.

Gordon Bethune (Continental Airlines)
Hello, I’m Gordon Bethune, President and Chief Executive of Continental Airlines, and also a Boeing-trained 757-767 pilot, so I think I know something about Controlled Flight Into Terrain and the value of technology and safety and how all that runs into a company’s bottom line. I gotta tell you that here at Continental, safety is an important investment. You can’t pay enough attention to putting the right investment in the right place, and Controlled Flight Into Terrain is an issue that I think every airline needs to address. I hope yours does too.
David Hinson (FAA)
I urge everyone, airlines, operators, pilots, and crewmembers, to become aware of the dangers of C-F-I-T and to make sure that they’ve had the training, and they have the equipment, to help avoid this dangerous situation. Safe flying to you all.

31. Still photo of CFIT accident (van).

32. Graphic turns red and title up:
 CFIT Contributing Factors

33. Graphic from above with CG:
 Lack of Vertical Awareness

34. Citation climbing in clouds; lay in TRACON audio for radar vectors:
 Lack of Vertical Awareness

35. Graphic of Azores accident of 707.

Let’s look at some of the major factors affecting C-F-I-T accident rates and the traps they can present. Then you’ll see some of the solutions the international aviation community recommends.

Accidents have many contributing factors. Investigators always reveal a chain of events that may even reach back to support organizations.

(Narrator)
Two-thirds of all C-F-I-T are a direct result of altitude error or lack of vertical situational awareness.

Pilots must remain aware of terrain when accepting radar vectors. Some believe that A-T-C will provide obstacle clearance while enroute off airways. This is not true! Remember, the pilot is ultimately responsible for obstacle clearance.

For example, in one accident, if the crew had known where they were and understood that the clearance they received would take them below the Minimum Enroute Altitude, the aircraft would not have struck the mountain just ten feet below the crest.
Some communication errors and misunderstandings are due to language differences, lack of standardized phraseology, readback errors, or heavy workloads.

Radar vectors force pilots to rely on A-T-C controllers for terrain avoidance. However, the pilots must retain vertical situational awareness while under radar vectors.

Barometric altimeter settings errors remain a problem. There have been cases where pilots use the wrong standard for the area.

(Weather forecast in foreign accent)

“CURRENT WEATHER IS TWO OCTAS AT TWELVE HUNDRED, FIVE OCTAS AT THREE THOUSAND, WIND TWO NINER ZERO AT TWELVE, GUST TWENTY, ALTIMETER NINER NINER EIGHT.”

For example, if pilots set inches of mercury instead of hectoPascals, it can eventually result in large errors in the altitude indicated on altimeters.

Cases of navigational errors involve disorientation with respect to the nav aid, improper transition on approach, selecting the wrong nav aid, or just plain lack of horizontal situational awareness.
Today’s modern airplanes have sophisticated flight directors, autopilots, autothrottles, and flight management systems. These devices make significant contributions to the overall safety of flight.

But remember, these are only machines that follow instructions. They’re smart, but they don’t think! They do whatever is asked of them... even if it’s wrong.

When commanded, they will unerringly follow your instructions straight into the ground! Each crew member must ensure that both vertical and horizontal modes are correct and engaged. Treat autopilots like inexperienced crewmembers. Cross-check them constantly!

Other factors include misinterpreting display range marks, procedure errors, database errors, or barometric pressure anomalies.

In the accident you’re about to see, many of the factors we just described occurred. As you watch this re-creation, see if you can identify these factors.

(Last three minutes of Flying Tigers re-creation)
46. CG bullets during Flying Tigers (at “OK, 4.0.0”):
 1. **Pilot-ATC communication error**
 CG at “You got 2-5-5....”:
 2. **Navigational Errors**
 CG at “You by there 3-20-9”:
 3. **Lack of Vertical Awareness**
 CG at “You’re alright, just...”:
 4. **Lack of Vertical Awareness**

47. **On-camera talent**

 This crew failed to react to eight G-P-W-S warnings. Why did the crew get into this situation? One of the solutions to the C-F-I-T problem is proper training. Let’s look at a training situation in the simulator where crews learn to avoid C-F-I-T as well as perform the escape maneuver.

Before takeoff the crew completed a departure review and briefing. Here we see them as they are going through the approach briefing.

The common thread running through C-F-I-T accidents is situational awareness. This includes not only horizontal awareness, knowing where you are over the ground, but vertical awareness as well.

Approach charts should be studied before leaving cruise altitude. Key fixes and airport elevation must be noted and associated with terrain and obstacles along the approach path. Pilots should have a good understanding of both approach and departure design criteria in order to fully

48. WS inside simulator with crew and instructor pilot doing nonprecision approach.

49. Scene continues.
 CG:
 Situational Awareness

50. WS inside simulator. Talent is checking approach charts.
 CG:
 Situational Awareness
 • Study approach charts
understand the obstacle clearance margins built into them.

Some Captains have spent hours studying a first-time approach into a terrain critical airport. Terrain and obstructions should be studied using a chart that shows elevation contours, preferably a chart with color.

Know your altitude and distance from the landing airport. Cross-check the altitudes with the approach charts or enroute maps. Understand that you are responsible for knowing this information, not the A-T-C controller.

Most modern airplanes use electronic displays that show your position. This information is a great help. But remember, errors can occur.

Make sure that the navigational radios are properly set. Several C-F-I-T accidents have occurred because the pilot was flying an instrument approach while the navigational radios were incorrectly tuned.

If your airplane has a flight management computer, make sure it is correctly programmed. Each pilot should independently verify the information entered into the computer.

51. CU of colored chart.

52. WS of sim (insert RMDI swinging). Add audio of Beacon. Crew calls out “1000 feet.”
CG:
Situational Awareness
• Know altitude and distance from airport
• Cross-check altitudes with charts

53. CU of EHSI.

54. MCU of round dial (steam gage).
HSI.
CG:
Situational Awareness
• Study approach acharts
• Know altitude & distance from airport
• Crosscheck altitudes with charts
• Check nav radios

55. CU of FMC (sim).
56. Simulator scene continued: MCUs of VOR/DME CUs (out before auto enagage).

CG:
Situational Awareness
Study approach charts
• Know altitude and distance from airport
• Cross-check altitudes with charts
• Check nav radios
• Monitor raw data

57. Add CG:
Use all data to assist you

58. Graphic of Approach plate with old glide path; then overlay with new glide path.

59. Simulator scene continued: CU of each pilot talking about approach.
CG:
Stabilized Approach

60. MS of stack of manuals.
CG:
Standard Operating Procedures

During the approach, the pilots must carefully monitor both raw data from the V-O-R, D-M-E, or N-D-B, and information from the barometric and radio altimeter.

Use every available aid to assist you in knowing your position and the recommended altitude at that position.

Hazards exist using low descent quadrant or step-down approaches. When authorized, a continuous descent angle of approximately three degrees is an effective way to fly a stabilized nonprecision approach.

Studies show that one of the common factors in C-F-I-T accidents is the lack of a stabilized approach. Operators considered the safest in the business all have procedures about when an approach must be stabilized and what the crew should do if it is not.

These same operators also have wel-defined standard operating procedures.
Communication is the key. Each pilot must have situational awareness to ensure the final descent path is correct. If any flight deck member is unsure, ...execute a missed approach.

One of the solutions to the C-F-I-T problem is classroom instruction and simulator training for the crews. Training needs to include not only C-F-I-T causes and traps, but recovery as well.

Based on extensive simulator studies, we’ve found that unless daylight visual verification is made that no hazard exists, the proper C-F-I-T escape maneuver is:

...React immediately to a G-P-W-S warning without hesitation. ...Positively apply max thrust and rotate to the appropriate pitch attitude for your airplane. ...Pull up with wings level to ensure maximum airplane performance. ...Always respect stick shaker.

CONSULT YOUR AIRPLANE MANUAL FOR THE EXACT MANEUVER.
65. WS inside full-flight sim as student pilots correctly perform CFIT avoidance.

66. Footage of enhanced GPWS use. Ambient audio: “Terrain, terrain! Pull…."

(Ambient sound of crew inside simulator performing CFIT avoidance)

The near future will see the installation of Enhanced G-P-W-S. This technology uses a database that includes the terrain around all major airports. Incorporating this terrain modeling with the current state-of-the-art G-P-W-S will enable the pilot to receive both aural and visual warnings much sooner than with current equipment.

Let’s review the major points of this program. We need to reduce C-F-I-T accidents. All of us can help. Worldwide regulations governing flight should be standardized.

This will allow aircrews to be familiar with procedures and approach charts, no matter where they are in the world.

Operators throughout the world must make sure that their standard operating procedures are correct, up to date, and understood by those that use them.

Air traffic control systems must continue to be upgraded. A-T-C controllers and aircrews must ensure that clearances are understood.

Aircrews must be constantly aware of the factors that can lead to a C-F-I-T accident. Some of these factors are: lack of both vertical and horizontal situational awareness.

67. CG: SUMMARY
Standardized Regulations

68. Inside 767 SAS in flight.

69. International footage.
CG:
Standard Operating Procedures

70. ATC room.
CG:
ATC Improvements

71. In flight.
CG:
Vertical and Horizontal Situational Awareness
72. Inflight.
 CG:
 Improved Communication

 CG:
 Altimeter Awareness

73. CU of nav setup.
 CG:
 Correct Navigation Radios

74. Flight deck.
 CG:
 Autoflight Modes Correct and Engaged

75. Classroom.
 CG:
 Training

76. Flight deck.
 CG:
 Study and Brief Departures and Arrivals

77. CU of altimeter on plate.
 CG:
 Cross-check Altitudes and Distances

78. Crew.
 CG:
 Timely Communication

Communication errors between A-T-C and the crew. Ultimately, the pilot is responsible for terrain avoidance. Be aware of barometric altimeter setting errors.

Always cross-check your position and know the navigational radio setup. Many accidents occur because the wrong nav aid is set in the radios.

Even with the state-of-the-art electronics and autopilots, remember, they are only machines. Cross-check them!

Training is the best way to make the crews aware of the C-F-I-T problem and to give them the knowledge to recognize a problem and get out of the situation.

Study and brief both the departure and arrival. Make sure everyone involved understands what is planned. Any deviations to the briefing should be immediately questioned.

Always cross-check altitudes and positions. Know where you are and what altitude is safe.

Good crew communication and callouts are essential.
79. CU of nav radio.
 CG:
 Monitor Navigation Radios

80. WS flight deck.
 CG:
 React Immediately to a GPWS Warning

81. CG:
 Apply Maximum Thrust

82. CG:
 Rotate Airplane to Proper Attitude

83. CG:
 Pull Up Wings Level

84. CG:
 Always Respect Stick Shake

85. On-Camera talent at Hurricane Ridge, Olympic Mountains. CFIT accident site in distance.

86. Same site of CFIT accident as used in opening: Hurricane Ridge, Olympic Mountains.

Check the navigational radios.

Unless daylight visual verification is made that no hazard exists, react immediately to a G-P-W-S warning without hesitation.

Apply maximum thrust.

Rotate the airplane to a pitch attitude recommended by the airplane manufacturer.

Pull up with wings level.

Always respect stick shaker. New technological advances are on the horizon, and more will follow.

(On-camera talent) By now, you should be aware of the C-F-I-T traps and some ways to avoid becoming a victim of a C-F-I-T encounter. All of us in the aviation industry can contribute to solutions. Effective C-F-I-T training is essential! Together, the aviation community can eliminate Controlled Flight into Terrain accidents.

(Music up)
Credits
(Fade to black)
Credits
CFIT Background Material

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 Introduction</td>
<td>5.1</td>
</tr>
<tr>
<td>5.1 General Goals and Objectives</td>
<td>5.1</td>
</tr>
<tr>
<td>5.2 Overview of Background Information</td>
<td>5.1</td>
</tr>
<tr>
<td>Human Factors Issues in CFIT Accidents 1984-1994</td>
<td>5.3</td>
</tr>
<tr>
<td>Human Factors and Training Issues in CFIT Accidents and Incidents</td>
<td>5.4</td>
</tr>
<tr>
<td>The Real World of Human Factors: Where Are We Going?</td>
<td>5.5</td>
</tr>
<tr>
<td>Chart Revision Could Enhance Non-Precision Operations</td>
<td>5.6</td>
</tr>
<tr>
<td>Managing Automation in the Cockpit</td>
<td>5.7</td>
</tr>
<tr>
<td>Flight Safety Foundation CFIT Checklist</td>
<td>5.8</td>
</tr>
<tr>
<td>Flight Safety Foundation Safety Alert</td>
<td>5.9</td>
</tr>
<tr>
<td>The Dollars and Sense of Risk Management and Airline Safety</td>
<td>5.10</td>
</tr>
<tr>
<td>FSF CFIT Task Force Aircraft Equipment Team Final Report</td>
<td>5.11</td>
</tr>
</tbody>
</table>

5.3 Flight Into Terrain Update

List of CFIT Accidents/Incidents Examples in this Report

Appendix

Index
CFIT Background Material

5.0 Introduction

Controlled flight into terrain is certainly not a new phenomenon, but when an accident does occur, it is guaranteed worldwide newspaper headlines. There are initiatives under way to improve flight crew training and also attack many other systemic problems that lead to CFIT accidents. Many people and organizations have been seeking solutions to prevent CFIT. This section includes information associated with some of this work. This selected information represents only a portion of the extensive literature available within the aviation industry.

5.1 General Goals and Objectives

The material in this section is intended to be a resource for those who are developing policies, procedures, and training standards. It may also be used to help develop classroom material and as a resource for answering questions during the training. Only through knowledge can a true understanding of the problem be realized. This section is intended to improve that understanding. The information in this section supports the overall goal of the CFIT Education and Training Aid, which is to prevent CFIT.

It is recommended that the user of this training aid include other appropriate information in this section so that all the information may be readily available in a single source.

5.2 Overview of Background Information

While all the selected information in this section is valuable, there are some documents that should be very useful in understanding and preventing CFIT. The Flight Into Terrain document that is included in this section is an extensive compilation of CFIT accidents and incidents, and it is a particularly valuable resource for instructors. Also included are the reports from the various CFIT Task Force Working Groups that provide the basis for much of the information in the previous sections. The Flight Safety Foundation CFIT Checklist is included, and it can be used to evaluate specific flight operations and enhance flight crew awareness of the CFIT risk. Additionally, the Safety Alert Bulletin is included to highlight the CFIT problem. The table of contents should be used to locate other readings.
PROJECT

SAFETY ANALYSIS

HUMAN FACTORS AND ORGANIZATIONAL ISSUES IN CONTROLLED FLIGHT INTO TERRAIN (CFIT) ACCIDENTS

1984 - 1994
Controlled flight into terrain (CFIT)
Human Factors and Organizational Issues

1. This is an update on the activities of the International Civil Aviation Organization (ICAO) Air Navigation Bureau (ANB) with respect to controlled flight into terrain (CFIT) occurrences, within the context of its Flight safety and Human factors Programme.

2. Since October 1993, the ANB has reviewed and analyzed data available from official sources in an attempt to identify the Human Factors and organizational issues underlying CFIT occurrences. The review has produced the data which is attached. The attachment also includes a description of the methodology used by the ANB in conducting the analysis of the data.

3. The accidents selected for analysis involved commercial air transport turboprop/turbojet aircraft accidents investigated by States between 1984 and 1994, independent of aircraft mass or seating capacity. The data gathered reflects factual data extracted from the States' official investigation reports, without inferences or assumptions by the Secretariat. The purpose of the analysis was to determine whether there exists a set of human performance issues involved in CFIT accidents which consistently emerge from official investigation reports. This analysis applied the Reason Model (succinctly discussed in the attachment) in an attempt to define the "anatomy" of a CFIT accident from the perspective of Human Factors.

4. It has been a fundamental premise of the ICAO Flight Safety and Human Factors programme since its inception that operational personnel performance does not take place in a social vacuum, but within operational contexts which either resist or foster inherent human weaknesses and flaws. This became obvious as the analysis of the official accident reports progressed. Lapses in human performance were cited in all CFIT reports analyzed. All the reports also disclosed flaws and deficiencies in the aviation system which adversely affected human performance in the particular circumstances under which accidents occurred.

5. The analysis thus discloses a dual pathway leading to CFIT accidents: an "active" pathway, generated by actions or inactions of front-line operational personnel (i.e., pilots, controllers, mechanics and so forth); and a "latent" pathway, generated by deficiencies in various aspects of the aviation system, for which managers and decision-makers are responsible.

6. The data indicates a preponderance of the "latent pathway" (approximately 88%), over the "active pathway", (slightly above 12%), in the genesis of CFIT occurrences. Figure 2 in the attachment provides an integrated picture of the Human Factors and organizational issues underlying CFIT occurrences. Figures 2 through 7 present a breakdown of the data obtained from the analysis.

7. The ANB intends to establish further correlations among this data. Likewise, the Secretariat will distribute this information among selected parties, including the Flight Safety and Human Factors Study Group, in an attempt to obtain feedback to further the analysis in depth. The analysis nevertheless clearly suggests the multi-dimensional aspects of Human Factors in CFIT accidents. This reaffirms the need for a systemic, collective approach to safety and prevention.
1. Sources of data

1.1 All accident information examined was extracted from the official investigation reports produced by the States’ safety agencies. The list of aviation accidents included in the study comprises the following.

Aircraft Occurrence Report, Nahanni Air Services Ltd. de Havilland of Canada DHC-6-100 C-FPPL, Fort Franklin, Northwest Territories, 9 October 1984. Report Number 84-H40004

Aviation Occurrence Report, Labrador Airways Ltd. de Havilland of Canada DHC-6-100 C-FAUS, Goose Bay, Labrador, Newfoundland, 11 October 1984. Report Number 84-H40005

Aviation Occurrence Report, Voyageur Airways Ltd. Beechcraft King Air A-100 C-GJUL, Chapleu, Ontario, 29 November 1988. Report Number 8800491

Aviation Occurrence Report, Air Creebec Inc., Hawker Siddley HS 748-2A C-GQSV, Waskaganish, Quebec, 3 December 1988. Report Number A88Q0334

Aviation Occurrence Brief, Ptarmigan Airways Ltd., Piper PA-31T Cheyenne C-GAMJ, Hall Beach, Northwest Territories, 17 April 1989. Brief Number A89C0069

Aircraft Accident Report, Aloha Islandair, Inc. Flight 1712, de Havilland Twin Otter, DHC-6-300, N707PV, Halawa Point, Molokai, Hawaii, October 28, 1989

Aviation Occurrence Report, Frontier Air Ltd., Beechcraft C99 Airliner C-GFAW, Moonsonee, Ontario, 30 April 1990. report Number A90H0002

Accident Investigation Report, Beech King Air E90 VH-LFH, Wondai, Queensland, 26 July 1990. BASI Report B/901/1047

Final report of the Federal Aircraft Accidents Inquiry Board concerning the Accident of the aircraft DC-9-32, ALITALIA. Flight No. AZ404, I-ATJA on the Stadlerberg, Weiach, 14 November 1990
Table 1. Organizational processes

<table>
<thead>
<tr>
<th>Organizing</th>
<th>Purchasing</th>
<th>Supporting</th>
<th>Planning</th>
<th>Scheduling</th>
<th>Managing operations</th>
<th>Managing maintenance</th>
<th>Managing projects</th>
<th>Managing safety</th>
<th>Managing change</th>
<th>Financing</th>
<th>Budgeting</th>
<th>Allocating resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating</td>
<td>Designing/specifying</td>
<td>Purchasing</td>
<td>Supporting</td>
<td>Researching</td>
<td>Marketing</td>
<td>Selling</td>
<td>Information-handling</td>
<td>Motivating</td>
<td>Monitoring</td>
<td>Checking</td>
<td>Auditing</td>
<td>Inspecting</td>
</tr>
</tbody>
</table>

2.1.2 Defences, barriers and safeguards

These are measures aimed at removing, mitigating or protecting against operational personnel hazards. They serve different functions and present different modes of application. Table 2 introduces a classification of defences, barriers and safeguards.

2.1.2.1 Corporate culture

A set of beliefs, values, norms and assumptions that the organization makes about itself, the nature of people in general and its environment. A set of unwritten rules that govern acceptable behaviour within and outside the organization ("The way we do business here"). Although not a distinct component of the model employed as analytical tool, corporate culture deserves a special mention, since it has been recognized by recent research undertaken by organizational psychology as one of the most important and effective barriers against hazards and safety breakdowns in high-technology systems.

Table 2. Defences, barriers and safeguards

Modes of application

- Engineered safety devices (automatic detection and shutdown, etc.)
- Policies standards and controls (administrative and managerial measures designed to promote standardised and safe working practices—together they constitute the safety management system and have as their adjuncts techniques (cause-consequence analyses, etc.)
- Procedures, instructions and supervision (measures aimed at providing local task-related know how).
- Training, briefing, drills (the provision and consolidation of safety awareness and safety knowledge).
- Personal protective equipment (anything from safety boots to space suits).
2.1.3 Latent Failures

Decisions taken in the managerial and organizational spheres. These are people separated in time and space from the operational interface. Latent failures are originated in flawed organizational processes which break through systems defences, barriers and safeguards. Latent failures may remain undetected for considerable periods of time, before they combine with active failures and local triggers to generate an accident.

2.1.4 Local working conditions

These are the factors that influence the efficiency and reliability of human performance in a particular work context. Table 3 and 4 present a breakdown of local working conditions and list the principal factors.

<table>
<thead>
<tr>
<th>Error factors</th>
<th>Common factors</th>
<th>Violation factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change of routine</td>
<td>Time shortage</td>
<td>Violations condoned</td>
</tr>
<tr>
<td>Negative transfer</td>
<td>Inadequate tools and equipment</td>
<td>Compliances goes unrewarded</td>
</tr>
<tr>
<td>Poor signal-noise ratio</td>
<td>Poor procedures and instructions (ambiguous or inapplicable)</td>
<td>Procedures protect system not person</td>
</tr>
<tr>
<td>Poor human-system interface</td>
<td>Poor tasking</td>
<td>Little or no autonomy</td>
</tr>
<tr>
<td>Poor feedback from system</td>
<td>Inadequate training</td>
<td>Macho culture</td>
</tr>
<tr>
<td>Designer-user mismatch</td>
<td>Hazards not identified</td>
<td>Perceived licence to bend rules</td>
</tr>
<tr>
<td>Educational mismatch</td>
<td>Undermanning</td>
<td>Adversarial industrial climate (them and us)</td>
</tr>
<tr>
<td>Hostile environment</td>
<td>Inadequate checking</td>
<td>Low pay</td>
</tr>
<tr>
<td>Domestic problems</td>
<td>Poor access to job</td>
<td>Low status</td>
</tr>
<tr>
<td>Poor communications</td>
<td>Poor housekeeping</td>
<td>Unfair sanctions</td>
</tr>
<tr>
<td>Poor mix of hands-on work and written instructions (i.e., too much reliance on knowledge in the head)</td>
<td>Bad supervisor/worker ratio</td>
<td>Blame culture</td>
</tr>
<tr>
<td>Poor shift patterns and overtime working</td>
<td>Bad working conditions</td>
<td>Poor supervisory example</td>
</tr>
<tr>
<td></td>
<td>Inadequate mix of experience and inexperienced workers</td>
<td>Tasks affording easy shortcuts</td>
</tr>
</tbody>
</table>
Table 4. Personal factors

<table>
<thead>
<tr>
<th>Error factors</th>
<th>Common factors</th>
<th>Violation factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attentional capture</td>
<td>Insufficient ability</td>
<td>Age and gender</td>
</tr>
<tr>
<td>Preoccupation</td>
<td>Inadequate skill</td>
<td>High risk target</td>
</tr>
<tr>
<td>Distraction</td>
<td>Skill overcomes danger</td>
<td>Behavioural beliefs</td>
</tr>
<tr>
<td>Memory failures</td>
<td>Unfamiliarity with task</td>
<td>(gains outweigh risks)</td>
</tr>
<tr>
<td>Encoding interference</td>
<td>Age-related factors</td>
<td>Subjective norms</td>
</tr>
<tr>
<td>Storage loss</td>
<td>Poor judgement</td>
<td>condoning violations</td>
</tr>
<tr>
<td>Retrieval failure</td>
<td>Illusion of control</td>
<td>Perceived behavioural control</td>
</tr>
<tr>
<td>Perspective memory</td>
<td>Lease effort (cognitive economics)</td>
<td>Personality</td>
</tr>
<tr>
<td>Strong motor programs</td>
<td>Overconfidence</td>
<td>Non-compliant</td>
</tr>
<tr>
<td>Frequency bias</td>
<td>Performance anxiety</td>
<td>Unstable extravert</td>
</tr>
<tr>
<td>Similarity bias</td>
<td>(deadline pressures)</td>
<td>Low morale</td>
</tr>
<tr>
<td>Perceptual set</td>
<td>Arousal state</td>
<td>Bad mood</td>
</tr>
<tr>
<td>False sensations</td>
<td>Monotony & boredom</td>
<td>Job dissatisfaction</td>
</tr>
<tr>
<td>False perceptions</td>
<td>Emotional stress</td>
<td>Attitudes to system</td>
</tr>
<tr>
<td>Confirmation bias</td>
<td></td>
<td>Management</td>
</tr>
<tr>
<td>Situational unawareness</td>
<td></td>
<td>Supervisors</td>
</tr>
<tr>
<td>Incomplete knowledge</td>
<td></td>
<td>Discipline</td>
</tr>
<tr>
<td>Inaccurate knowledge</td>
<td></td>
<td>Misperception of hazards</td>
</tr>
<tr>
<td>Inference & reasoning</td>
<td></td>
<td>Low self-esteem</td>
</tr>
<tr>
<td>Stress & fatigue</td>
<td></td>
<td>Learned helplessness</td>
</tr>
<tr>
<td>Disturbed sleep patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error proneness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.5 Active Failures

Errors and violations committed by operational personnel, the consequences of which are revealed immediately and have an immediate impact.

2.1.6 Local triggers

Technical failures, adverse weather conditions or any other particular (i.e., local) atypical/abnormal system operating conditions.
Organizational Processes

Local working conditions

Defences barriers and safeguards

Active Failures

Latent Failures

Event

Local triggers

Local triggers
CFIT accidents

- Active failures (12.2%)
- Latent Failures (19.6%)
- Defences (19.6%)
- Local Working Conditions (20.9%)
- Organizational process (27.8%)
FIGURE 3

Organizational Process
(based on 24 reports)

- Policy-making
- Monitoring
- Managing operations
- Checking
- Managing training
- Managing safety
- Goal-setting
- Managing change
- Controlling
- Organizing
- Information handling/communication
- Allocating resources
- Scheduling
- Planning
- Inspecting
- Supporting
- Designing
- Motivating
- Managing maintenance

Number of reports
Defences, barriers and safeguards

(based on 24 reports)

Crew coordination
Procedures and supervision
Policies and standards
Human Factors knowledge and training
Inadequate training
GPWS
Ergonomics
Other alerting devices
Corporate culture
ATC
Self-dispatch/flight planning
Approach charts
Pairing inexperienced crew
Incident reporting systems
Airport/approach facilities
Selection/hiring procedures
Communications (language)

[number of reports]
FIGURE 5

Latent Failures
(based on 24 reports)

- Deficiencies in training system
- Deficient policies & procedures
- Deficiencies in operational control
- Regulatory oversight
- Absence of mandatory HF training
- Deficiencies in crew scheduling
- Deficiencies in certification process
- Legislation/documentation
- Management stability
- Workstation/equipment design
- Deficiencies in dispatch
- Deficiencies in maintenance control
- Deficiencies in selection
- Deficiencies in airport operations
- Lack of WX reporting facilities

Number of reports
FIGURE 6

Local working conditions
(based on 24 reports)

Task
- Hostile environment
- Change of routine
- Violations condoned
- Poor supervisory example
- Negative transfer
- Perceived license to bend rules
- Time shortage
- Poor communications
- Low pay
- Low status
- Compliance goes unrewarded

Violations
- Personality
- Misperception of hazards
- Attitudes to the system
- Adversarial industrial climate
- Low self-esteem

Errors
- Situation unawareness
- Poor judgement
- False perceptions
- Incomplete/inaccurate knowledge
- Confirmation bias
- Distractions
- Unfamiliarity with the task
- Fatigue
- Others
- Age-related factors,

[Number of reports] 0 2 4 6 8 10 12 14 16 18 20 22 24
FIGURE 7

Actives Failures
(based on 24 reports)

Application/adherence to procedures
PNF did not monitor properly
Flight path/aircraft control
Flight & approach planning
Descent below applicable IFR altitude
Continued/attempted VFR into IMC
Briefing inadequate/incomplete
Unassertive/unsupportive ATCO
Maneuvering without adequate reference
No go-around
Erroneous assessment of a failure
PIC did not take over
Simulating failures during training
Aerobatics during a check ride
Captain overrode F/O decision
Fuel management
Replacing equipment without testing

Number of reports
HUMAN FACTORS AND TRAINING ISSUES IN CFIT ACCIDENTS AND INCIDENTS

Capt. Daniel Maunino
Secretary, Flight Safety and Human Factors Study Group, ICAO

INTRODUCTION

Controlled flight into terrain (CFIT) accidents and incidents are those in which an aircraft, under the control of the crew, is flown into terrain (or water) with no prior awareness on the part of the crew of the impending disaster (Wiener, 1977). Recent statistics suggest that close to 45% of aircraft losses during the period 1979-1990 can be accounted under this category (Flight Safety Foundation, 1992). This has led major international organizations, including the International Civil Aviation Organization (ICAO), the Flight Safety Foundation (FSF) and the International Air Transport Association (IATA), to multiply their endeavors destined to reduce CFIT accidents and incidents.

Concern over CFIT occurrences was first reflected in regulations after a B-727 struck a mountain during a non-precision approach to Dulles, Virginia. A premature descent was attributed to ambiguous pilot-controller communications and unclear information in the approach chart (NTSB-AAR-75-16). This was one in a series of accidents in which otherwise airworthy aircraft were flown into the surface by properly certificated flight crews. Implementation of the Ground Proximity Warning System (GPWS) requirement for large, turbine-powered airplanes engaged in international operations (ICAO Annex 6, 1978) and its ground counterpart, the Minimum Safe Altitude Warning (MSAW) as a feature of the automated radar terminal system (ARTS-3), were deemed the solution to preclude this type of accidents (Loomis and Porter, 1981). Although GPWS has reduced the incidence of CFIT occurrences, on balance it is a fair assessment that it has fallen short of fulfilling the expectations with which it was introduced. Slatter (1993) provides an excellent account of the shortcomings in the introduction of the GPWS as well as operational solutions to improve GPWS effectiveness as a safety net.

During the 1980s, enthusiasm regarding Human Factors led industry efforts to try to find solutions to CFIT occurrences through enhanced flight crew performance. The accident in which a DC-8 crashed during approach to Portland, Oregon, after running out of fuel (NTSB-AAR-79-7), was one of several approach and landing CFIT occurrences attributed to breakdowns in flight crew coordination and discipline. It acted as a trigger. Dedicated Human Factors training for flight crews, namely crew resource management (CRM) and Line-Oriented Flight Training (LOFT) (Cooper, White and Lauber, 1979; Lauber and Foushee, 1981; Orlady and Foushee, 1986, Helmreich, Kanki and Wiener, 1993), emphasizing the need for improved intra-cockpit communication, exchange of relevant operational information and situational awareness boomed across the airlines. This was accompanied by the inevitable exhortations about cockpit discipline and professional behaviour, elusive terms which escape sound definition and only generate unimaginative solutions with rather dubious results. As with GPWS, although the contribution of CRM and LOFT to aviation safety has been monumental, the pervasiveness of human error in CFIT occurrences suggests that Human Factors training is only a partial solution to CFIT occurrences.
Reducing CFIT occurrences requires recognition that such accidents and incidents are system-induced (Wiener, 1977), i.e., they are generated by shortcomings in the aviation system, including deficiencies in the organizations which constitute it. The accident in which a DC-10 crashed into an active volcano in Antarctica (Aircraft Accident Report No. 79-139) because of incorrect coordinates in its computer-generated flight plan has been asserted as an example of these shortcomings and the systemic nature of CFIT occurrences (Mahon, 1981; Vette, 1984; Johnston, 1985; Mcfarlane, 1991). Deploying people and funds -- always finite resources -- in furthering regulations, design or training will not likely improve CFIT statistics. Remedial and reform actions (Reason, 1990) aimed at reducing CFIT should address system failures and organizational deficiencies, since these are the areas where the greatest gains in safety improvement can be realised.

BACKGROUND

In dealing with CFIT occurrences, the industry followed a time-honoured approach. Upon observing one particular safety deficiency (CFIT), remedial action directed to operational personnel, essentially backwards-looking and aimed only at that deficiency led to regulations (Annex 6 and others), design (GPWS and MSAW) and training (CRM and LOFT). Remedial action based on regulations, design and training has worked reasonably well in the past, while the level of technology aviation employed to achieve its production goals (transportation of people and goods safely and efficiently) was relatively low, and the interactions between people and technology simple and predictable. On the other hand, the relatively unsophisticated level of technology utilized up to the 70's imposed considerable limitations on system goals, which in turn denied the system opportunities to foster human error. Examples of these limitations include, among others, simple air traffic control systems, high weather minima, operations restricted to visual conditions, flexible schedules, shorter legs, more layovers which alleviated circadian dishynrhythmia and simple equipment, transparent in use, demanding basic cognitive skills and responding to simple, well-rehearsed mental models.

Although systemic elements can be found in accidents and incidents since the beginning of aviation, human error in those times of low technology was more a consequence of operational personnel improperly applying their acquired knowledge and skills -- or not applying them at all -- because of shortcomings in equipment design, deficient training or silent regulations rather than induced by stringent system demands. Within this context, strengthening or adding local defenses (Maurino, 1992) through regulations, design or training appeared a sensible approach to follow. Such an approach provided considerable yields and elevated aviation to its status as the safest mode of transportation. The pitfall behind this progress is that every single piece of equipment designed and conceived to provide wider berth to human error eventually imposed greater demands over the very humans they were supposed to alleviate, by increasing system production demands. Technical advances are never used to increase the safety of the aviation system as a whole by creating wider safety margins. They are used to stretch system limits, leaving safety margins largely unchanged.

Aviation in the 90's has become an extremely complex system. It is also very sensitive, in the sense that even the smallest interference can lead to catastrophic consequences. In the quest to minimise human error and maximise production, high-technology has been introduced in large scale. Those who watched this introduction with impartial judgement suggest two basic flaws in it: (1) such introduction was technology-driven rather than
human-centred (Billings, 1992), and (2) it stopped short at the micro rather than at the macro level of system design analysis (Meshkati, 1992). The consequence of the first point is that technology, rather than eliminating human error, has merely displaced it (Wiener, 1988). The absence of macro analysis in the introduction of technology makes the system complicated and difficult to grasp conceptually rather than simple and easy to understand. New high technology is inherently opaque. The consequences of the interactions among people, technology and other system components in the safety of the system remain largely unknown (Reason, 1992).

People and technology interact at each human-machine interface. Both components are highly interdependent, and operate under the principle of joint causation (Pidgeon, 1991), i.e., people and machines are affected by the same causal events in the surrounding environment. Furthermore, these interactions do not take place in a vacuum, but within the context of organizations, their goals, policies and procedures (Bruggink, 1990). Understanding the principle of joint causation and the influence of the organizational context upon the aviation system operations is central to understanding CFIT occurrences and their prevention. Observing joint causation will avoid the piecemeal approaches based on design, training or regulations which have plagued past safety initiatives. Looking into the organizational context will permit to evaluate whether organizational objectives and goals are consistent or conflicting with the design of the organization, and whether the operational personnel has been provided with the necessary means to achieve such goals.

DISCUSSION

The success of the windshear training aid package (FAA, 1987) in reducing windshear-induced accidents has lured the aviation community into adopting similar approaches to other observed safety deficiencies. The recently produced takeoff training aid package (FAA, 1992) stands as a good example, and it will undoubtedly contribute in reducing aborted takeoff, overrun accidents. Not surprisingly, many advocate for a training package to reduce CFIT occurrences. It is asserted, however, that neither technical nor Human Factors training are the solution to reduce CFIT statistics. Furthermore, any CFIT training package would be redundant with existing training curricula and therefore an unnecessary and unproductive waste of resources.

The success of the windshear -- and hopefully the takeoff -- training aids resides in the fact that both windshear and aborted takeoff occurrences are specific situations, with inherent factors which can be punctually addressed. In both cases specific knowledge must be acquired, specific skills have to be developed and mental models must be revised. Examples of such punctual knowledge include understanding the dynamics of windshear, the consequences in terms of aircraft performance as well as the aerodynamics involved in an encounter, the certification conditions behind demonstrated takeoff distances, the sequence of controls selection or movements, etc. Specific skills must be developed and mental models changed to fly at high body angles, to "fly the stickshaker", to apply maximum braking, etc; improper application of punctual knowledge or skills specific to these situations may trigger occurrences.

There are no factors inherently specific to CFIT occurrences. All the factors listed as contributing to CFIT occurrences (Slatter, 1993) are currently addressed by existing training curricula: navigational errors, non-compliance with approach or departure procedures, altimeter setting errors, misinterpretation of approach
procedures, limitations of the flight director/autopilot, etc. All these factors are addressed either during ground school or simulator training. Those factors not covered by technical training are included in CRM training: maintenance/loss of situational awareness, deficient intra-cockpit interaction, flight crew communications etc. A dedicated training package would be a meager contribution to reduce CFIT occurrences.

The answer to CFIT occurrences lies in looking at them from a systems perspective, and act upon the latent failures which have slipped into the system, ready to combine with operational personnel active failures and, further compounded by adverse environmental conditions, may combine to produce an accident (Reason, 1990). Examples of these latent failures include poor strategic planning of operations, absence of clear channels of communication between management and operational personnel (a widely lamented but seldom acted upon, typical system failure), deficient standard operational procedures (a direct consequence of the aforementioned), corporate objectives which are difficult or impossible to achieve with existing resources and corporate goals inconsistent with declared safety goals, among others. It is impossible to act upon a problem unless awareness about it is gained. Therefore, it is advanced that the first answer to reduce CFIT occurrences is education. Education and training are terms loosely used among operational personnel. They are, however, quite distinct and certainly not interchangeable (ICAO, 1989). While familiar with training operational personnel is seldom exposed to education, since it is assumed that it forms part of the basic individual baggage everyone carries before being hired. Given the complex and opaque nature of today's aviation system, it has been suggested that it is time to review the need to further education in aviation (Kantowitz, 1992).

Rather than a training package, what is needed to decrease CFIT events is an educational package, directed both to management and operational personnel, to acquaint them with the concepts of high technology system failures, how they manifest through organizational deficiencies, how they may lead to incidents and accidents and the ways to cope with them. The second answer is to take into account Human Factors considerations during system design, both at the micro and macro level. At the micro level, the Human Factors analysis must go beyond knobs and dials in the traditional ergonomic sense, towards the more complex cognitive, information-processing and communication processes between people and between people and technology. At the macro level, the interface between the human-machine sub-system must be considered within the context of the aviation system as a whole, including the declared system goals and the resources allocated to achieve them. If education takes place, this second step is perfectly achievable.

A CASE STUDY

On 15 November 1975, a Fokker F-28 Mk1000 with six crew members and sixty-five passengers on board crashed while attempting to land, following a circling, non-precision night approach in poor weather conditions at Concordia, Argentina (Exp. No.xx/xx, JIAAC). In a "textbook" approach and landing, CFIT accident, the aircraft hit the densely forested, sloping terrain less than one mile short of the intended landing runway. The aircraft was completely destroyed, and although there were three injured (one of them the captain) there were no fatalities. The investigating agency took the view that the accident was attributable to pilot error. The pilot was fined by the civil aviation authority and demoted by the airline. Eventually -- and after duly receiving additional training -- he was re-instated to captaincy. Less than appropriate consideration was given to the difficulties of
the immediate environment, replete with visual illusion-inducing conditions and with precarious navigation and approach aids. Neither did the investigation addressed the reasons which induced the crew to attempt an approach in such adverse conditions. The safety and prevention lessons which might have been learnt were effectively buried by the honest, but undoubtedly misdirected investigation, limited to the cockpit activities immediately preceding the accident.

When looking at this accident from an organizational perspective, multiple latent failures within the airline become evident. The most obvious organizational deficiencies include lack of strategic planning regarding the F-28 operation and incompatibility between the corporate goals assigned to the F-28 fleet and the resources provided to achieve them. The F-28 had recently been introduced into the airline and the process had been plagued with problems, including the adequacy of the qualifications of the airline training staff as well as the stability of the training organization. Ground school was conducted in-house with inappropriate means and with scant consideration paid to the fact that student captains had no previous jet experience and student first officers were being inducted into the airline. No flight simulator was available at that time, so all training was conducted in the aircraft, with its inherent limitations. Line-indoctrination was hurriedly completed due to the pressing need for crews to meet an ambitious commercial schedule, notwithstanding the mentioned lack of jet experience.

Management's inability to establish clear lines of communication with operational personnel was another serious organizational deficiency. This translated into deficient crew scheduling and pairing, improper consideration to environmental and equipment limitations when scheduling regular commercial services into destinations with doubtful infrastructures and unfriendly environments and, most important, an absolute lack of guidance to flight crews in terms of standard operational procedures as well as the limitations inherent to the operations. Because of these deficient lines of communications, newly qualified flight crews had no clear guidance as to which were the operational behaviors management expected from them. This lack of guidance -- and support -- has been recognized as an organizational failure which contributes to flawed decision-making by operational personnel (Moshansky, 1992).

Lack of strategic planning, incompatible goals, failure to communicate goals and to properly train personnel to achieve them are but a few examples of latent failures. They generate working environments replete with conditions which foster human error. Most important, such environments oftentimes make violations inevitable if tasks are to be achieved. An example of violation-producing conditions are those air traffic control procedures which generate nuisance GPWS warnings. Unless revised, they force crews to ignore warnings, thereby generating violations to operational orders to fulfill such procedures. Eventually environment or task conditions which generate errors and violations lead to system-induced accidents. Accident databases are replete with CFIT occurrences which support this contention.

CONCLUSION

When looking for solutions to CFIT occurrences, it is imperative to think in collective rather than individual terms (Beatty, 1999). It is naive to brand an entire professional body as being mainly responsible for aviation safety. It is equally impossible to anticipate the many disguises human error may adopt to bypass even
the most cleverly designed safety devices. Lastly, it is an unattainable goal to eliminate all system deficiencies leading to accidents.

The solution rests in securing a maximum level of system "safety fitness" (Reason, 1992), by working upon latent system failures, such as incompatible goals, poor communication, inadequate control, training and maintenance deficiencies, poor operating procedures, poor planning and other organizational deficiencies which modern accident causation approaches syndicate as responsible for disasters in high technology systems.

Periodic checking of these system "health condition" markers and continuously actioning upon them remain the single most important keys to reduce CFIT occurrences.
The Real World of Human Factors:
Where are we, and where are we going?\(^1\)

John K. Lauber
National Transportation Safety Board
Washington, DC

Good morning—it is a real pleasure to be here with all of you in beautiful Semi-Ah-Moo! I look forward to the next couple of days—based on past experience, this is a meeting well worthwhile.

Let me start by thanking Bob Hilb, Bob Buley, and Will Russell for organizing this morning’s panel. And while I’m at it, let me note for the record that all of us owe a great debt of gratitude to Bob Buley and Will Russell for their outstanding efforts to promote the advancement of human factors within the airline community. Their efforts, under the aegis of the ATA Human Factors Task Force, have been instrumental in providing a broad blueprint for needed human factors efforts as embodied in the National Plan for Human Factors, and in securing needed support from both government and industry organizations. They have done an impressive job—thanks Bob and Will, and thanks to all of you for supporting their efforts.

The topic for our panel today is the real world of human factors, a topic that not too many years ago many of your predecessors might have said is an oxymoron. I will never forget a comment made by Hart Langer’s predecessor (several times removed), Bill Dunkle, about his views of NASA scientists in general, and human factors specialists in particular. “Human factors scientists,” Dunkle said, “always seem to me to be a bunch of people wearing white coats, seated around a big table, holding hands, and trying to establish contact with the living!” And lest you get the wrong impression, let me add quickly that Bill Dunkle was an extremely important, early proponent and supporter of human factors efforts to improve aviation safety—with his early support, the NASA program might well have gone nowhere.

But Dunkle’s point was a good one, then and fortunately to a much lesser extent, now. All too often, human factors specialists have not been good at establishing effective contact with the living, and for this reason, their work has often had little significant impact upon the real world. Too often, there has been a genuine disconnect between the profession and those people, like yourselves, who need practical, effective, and timely solutions to problems. The purpose of this panel, as I understand it, is to step back and take a look at where human factors stands, including a look at some of the successes, and a look at some of the areas where we need to redouble our efforts. As always, your support for this work is absolutely critical—without you there is no customer, no consumer, and therefore, no market.

I thought it might be useful to start at the beginning—with a definition of “human factors.” Unfortunately, the term has come to have many meanings, especially in the popular press. One of my favorite examples of this occurred a couple of years ago in New York City where I accompanied the “go-team” to conduct an investigation of a fatal subway accident. As frequently happens in these situations, one of the local papers, a classic New York tabloid, did a “human interest” story on the investigative team, including Board Member John Lauber. Although I tried carefully during the interview to define what human factors is all about, the headline the next day told the story: “NTSB Team Headed by Doctor of Human Tragedy.” When I got started in this business, I didn’t realize just what I was getting into!

Let me start with what human factors is NOT. It is not clinical psychology; it is not counseling psychology; it is not hand-holding; let’s-be-warm-and-fuzzy-hot tub stuff (although I personally have nothing against hot tubs or warm and fuzzy stuff). Human factors people do a lot of analysis, but they don’t “analyze people” if you get my drift.

\(^1\) Remarks presented at Air Transport Association of America Operations Forum. Semi-Ah-Moo, W.A.
September 19, 1994
Human factors is an eclectic combination of engineering, experimental psychology, neuroscience, computer science, and ergonomics—literally, "the science of work." It is the application of scientific methodology and principles to the study, design, maintenance, and operation of complex man-machine systems. Human factors focuses upon individuals, teams, and organizations; and upon controls, displays, and tasks. The primary objective of human factors engineering is to optimize the performance of systems by adapting humans to the machines, for example, through training, and by adapting the machines to the humans, for example, through the application of such design principles as "control-display compatibility." Human factors is, in short, a central, critical component of systems engineering.

Let's take a quick look at where we've come in aviation human factors. One of the best examples of how human factors research can contribute to the solution of real-world problems is CRM—Crew Resource Management—the notion that flying a modern aircraft involves considerably more than simple stick-and-rudder skills. Decision-making, communications, and good leadership and followership skills are just as important to the safe and efficient operation of your aircraft as are the highly tuned manual control skills traditionally associated with being a pilot. It is now difficult to go anywhere in the world and find no indication of at least some understanding or appreciation of the importance of good CRM. The concept is being applied in diverse organizations around the globe, although I must say, still with widely varying degrees of efficacy and success. Nevertheless, it is clear that the concept has had a major impact upon the way we train airline pilots everywhere. It's a concept that several of us here, including Clay and myself, have had a long association with, and I know that I can speak for both of us when I say that we are very proud of what has been accomplished in this area.

Another comparative human factors success story can be found in the NASA fatigue countermeasures program. There is an entire panel devoted to this topic later on this program, so I won't dwell on it here, but it is another example of how real-world oriented, scientifically sound human factors research can make a genuine contribution to safety and efficiency in aircraft operations.

While recounting where we have come in this area, let me also note that, compared to a decade or two ago, the operational community is much more highly aware of the importance of human factors problems and solutions. Note, for example, that it is difficult to pick up any trade publication, aviation safety journal, or other aviation-oriented publication without finding frequent reference to human factors issues in the aviation world. I take it as a special tribute to the human factors community that this panel comes first in your busy program, and that two other scheduled panels are also focused on human factors issues. Again, it is difficult to go anywhere in the operational world and not find some example illustrating the fact that as a community, the aviation industry is now much more knowledgeable about human factors problems, and solutions, than previously. ICAO has implemented requirements for pilot licensing that include a human factors educational component. Accident investigation authorities now nearly universally apply some form of human factors inquiry in their conduct of official accident investigations, including examination of individual, team, and corporate cultural factors as they might be related to individual accidents. All the major airframe manufacturers employ human factors practitioners in various stages of the design process, again with varying degrees of success. Government regulatory authorities likewise now display significant appreciation for the role of human factors in the aviation system. In short, I think we can safely say to Bill Dunkle that the human factors community has, in fact, been successful in establishing contact with the living. The challenge now is to keep that line of communication open.

That's the good news. But, can we just pack it up and go home? I think not, and here are a couple of thoughts about what else we as a community must do in the human factors arena—and I know each of the other panelists also intend to offer their views on this question of where do we go from here. Between the several of us, we ought to generate a fairly comprehensive set of concerns.

Let me start by talking about the role of human factors in design, although I know that Curt and Kathy also will address this area. It is clear, based on a history of recent incidents and accidents that we have not yet hit upon an optimal approach to the design of the interface between flight crew and highly automated aircraft. The accident at Nagoya, the incident at Hong Kong, and previous accidents involving highly automated aircraft all raise some unsettling questions. And although these events have largely involved aircraft from one manufacturer, it is not wise to assume that the underlying problems don't exist
elsewhere— I doubt that any manufacturers' aircraft are completely free of potential for human error incidents and/or accidents; i.e., they have, inherent in their design, what Professor James Reason calls, latent failures: pathogenic bugs that will only become manifest under the "right" set of conditions, sometimes with only embarrassing consequences, and sometimes with tragic ones. What this says to me is that human factors considerations are still not sufficiently integrated into the design process; it's not that manufacturers are producing bad designs, but they are not optimal designs, and they can, on occasion, trap the unwary (and sometimes even the wary). I think what is required is a more systematic, formal approach that incorporates human factors expertise not only in the preliminary and initial design stages of a product cycle, but throughout that product's service life, making use of information learned from in-service experience for appropriate design modifications, when appropriate, but probably more importantly, using such feedback from line service to other elements of the system, most importantly, procedure development, and training and educational programs. In short, ultimate solution of human factors related design issues is dependent upon the application of a true systems approach. Clearly, one implication of this is that a formal, open line of communications between you, the maintainers and operators, and the manufacturers is of vital importance.

Another area of concern that I have is, unfortunately, and unintentionally, implicit in the discussion just completed at this stage in the development and application of real-world human factors programs, the focus has been largely on the cockpit. It is a fact that many of our pressing problems have their origin well beyond the cockpit door. For example, there is increasing recognition of and attention to the problem of achieving effective integration of cockpit and cabin crews. There are some laudable efforts underway that apply CRM training and operating principles to cabin crew; similar comments can be made for dispatchers and maintenance personnel. I am a proponent of such efforts to extend the concept of crew resource management to the other legitimate members of the crew. I think the record clearly indicates that such efforts are worthwhile.

But in addition to the application of CRM principles to maintenance crew as well, I think one of the areas of highest potential payoff to you, both in terms of safety and economic benefits, is in attending to the fundamental human factors of aircraft and systems maintenance. David Marx, under Curt Graeber's direction at Boeing, has done some outstanding work in this area, and has some good quantitative data illustrating the magnitude of the problem (and thereby, the magnitude of the potential rewards). They have shown, for example, that a significant number of in-flight turnbacks are directly attributable to maintenance error. The very same principles of human error management and containment that apply to the cockpit apply to shop and line maintenance operations. And the very same fundamental solution—through the application of a true systems approach to the design, manufacture, and in-service operation of aircraft—apply in this area too.

Very similar comments can be made in one other area that also has direct, bottom-line impact on aviation safety and economics, air traffic control. Again, there are efforts underway to apply such concepts as CRM to the air traffic control suite; these seem to be promising. But also again, fundamental human factors issues ranging from selection and training, to task and equipment design, have not been adequately addressed at this time. Although outside your direct control, it seems clear to me that you have a vital interest in seeing that these issues are effectively treated, and the sooner the better.

Let me close on another point that I want you to consider. I mentioned at the outset of my remarks the National Plan for Human Factors, developed by Clay Foushee during his stay at the FAA using the broad blueprint provided by the ATA Human Factors Task Force. Although Clay did a tremendous job in overseeing the preliminary development and deployment of the plan, his departure left a hole that has never been filled. I can't in good conscience dance around the issue—I believe the National Plan for Human Factors is withering on the vine and has a good chance of dying unless there is a concerted effort to resurrect it by you and others who are the ultimate customers for its products. NASA-Ames, the institutional home of much of the research, and now, apparently, FAA's RE & D effort are undergoing major reorganizations, thus compounding the danger, at least in the short term. The program needs support, and most importantly, leadership, to reverse the entropic dissolution of what once was a highly promising start. This is only likely to happen with your direct support and efforts. The Administrators of both the FAA and NASA need to hear directly from you, the consumer of their primary products, that you
support the efforts of both agencies in this vital area. Congressional leaders need to know of this support as well. And I urge you to continue your support for these activities through the committee structure of your trade association; that of course, includes providing adequate resources—people—to make the system work. Such activities are vital if we are, as an industry, ever going to greatly diminish the proportion of accidents due to human error. If we don't succeed in this, we are dooming ourselves to repeat the sad experiences of those who have gone before, and stand in danger of losing the established lines of communication with the living.

Thanks again, and I look forward to hearing your views on this matter.
Chart design revision could enhance safety of non-precision approach and landing operations

The design of non-precision approach charts could be improved by providing the pilot with a stabilized, 3-degree approach profile.

THE PROBLEM posed by shallow final approach slopes in non-precision instrument approaches is being considered by a number of operators. One international operator has identified many non-precision approaches where the procedure appears to produce a shallow approach. State aviation authorities and operators have for many years supported the use of a standard approach slope of 3 degrees for all types of approach — visual and instrument, precision and non-precision. This is a part of the doctrine of the stabilized approach, which is considered vital to the safety of approach and landing operations. A 3-degree approach slope gives a rate of descent of 300 feet per nautical mile, or a 5 per cent descent gradient. Pilots are taught to approach a runway on a 3-degree slope and this, in general, is the approach provided by precision approach and visual approach slope indicator systems. As an extension of this concept, it follows that level flight should not be entered at the minimum descent altitude (MDA); instead, if visual contact is established, the descent is continued to land and, should no visual contact occur, a missed approach is initiated.

When designing a precision approach, the procedure designer considers the approach slope as an integral part of the design. Since glide slope guidance is provided on the profile shown on a precision approach chart, it is expected that the pilot will fly the procedure.

In the case of the non-precision approach, however, there is no consideration of the approach slope other than not exceeding the maximum descent rate of 400 feet per nautical mile. The profile shown on a non-precision approach chart is not then the profile that the pilot should fly but the one that provides the minimum prescribed obstacle clearance. The result is that a profile on a non-precision approach chart may show an apparent approach slope well below the desired 3 degrees. The profile shows, in effect, an obstacle clearance surface.

In the same way that pilots are trained and conditioned to fly 3-degree approaches, they are trained to fly the procedures given on an instrument approach chart. When a pilot accurately flies the profile for a non-precision approach, the approach is conducted with the minimum allowed obstacle clearance. It must also be remembered that the altitudes given are for international standard atmosphere (ISA) temperatures and the allowances have to be made, particularly in very cold conditions, to maintain the required clearance.

There are two problems. There is a difference in the type of information provided on a non-precision approach chart from that provided on a precision approach chart. There is also a difference between the outlook of the procedure designer and that of the pilot. The procedure designer provides obstacle clearance information for a non-precision approach. As a result of training and conditioning, however, the pilot will probably treat the non-precision profile as the procedure to be flown.

The ability to approximate a 3-degree approach slope has been available, where distance measuring equipment (DME) is provided, for many years. Many instructors have been teaching that non-precision approaches should be flown with a steady rate of descent of about 300 feet per nautical mile, even when no distance information is available. We now have increasing numbers of aeroplanes which are capable of internally generating an angle of descent. We also have navigation systems that can provide distance information.

It is apparent, therefore, that we should change the philosophy applicable to non-precision approach charts and provide on the profiles of those charts the desired, or 3-degree, approach which the pilot can fly while maintaining the normal stabilized approach procedures. Such an action would also effectively eliminate many of the stepped non-precision approach procedures since the 3-degree profile would be, in many cases, higher than the profiles currently provided on these charts. This logic cannot of course be applied where obstacles demand a steeper than 3-degree approach. Action to introduce a profile to be flown would materially increase the safety of non-precision approach and landing operations. The accompanying figure illustrates these points.

Discussion is required to finalize how best to include optimum flight path guidance on non-precision approach procedure charts while still showing the obstacle clearance information. It is time that this problem was solved.

MAY 1994
THOUGHTS ON THE SUBJECT OF NON-PRECISION INSTRUMENT APPROACH PROCEDURE DESIGN FROM THE POINT OF VIEW OF THE PILOT. CONCENTRATING UPON:

THE DESCENT GRADIENT PROVIDED IN SUCH APPROACH PROCEDURES;

THE POSSIBILITY THAT MULTIPLE PROCEDURES TO THE SAME RUNWAY, USING THE SAME NAVIGATION AIDS, COULD BE RATIONALIZED; AND

INCLUDING THE WAY IN WHICH THESE PROCEDURES ARE PRESENTED ON COMMERCIALLY AVAILABLE APPROACH PLATES AND IN THE APPROACH INFORMATION PROVIDED IN STATES AIPs.

INTRODUCTION

The problem of shallow final approach descent gradients has been raised of late, particularly by the CFIT Task Force, Aircraft Equipment Group at its recent meeting in Montreal. One major international operator, concerned with this problem, has identified ?? non-precision approaches where the final descent gradient is less than 4.3%, 2.5 degrees, at ?? different aerodromes in ? ICAO Regions. This operator has specified descent schedules for use by its own flight crews which provide a descent gradient of at least 2.5 degrees.

DISCUSSION

Pilot-training staff have been teaching for many years that the only way to conduct a consistently safe approach is to fly a stabilized approach. This means that, even in "visual" conditions, the aeroplane should be set up in the landing configuration with appropriate steady airspeed and power by the time it descends through 500 feet above touchdown. In the case of any instrument approach procedure this means that the approach must be stabilized from the commencement of the final descent. In the case of the non-precision approach, current teaching is that a stabilized approach should not include a change to level flight at the minimum descent altitude (MDA), whilst a visual search for the approach area and runway is made.

Pilots are taught that the correct flight path is a 3 degrees approach, or 5%, which equates to a descent of 300 feet per nautical mile. This is normal practise and most precision approaches approximate to 3 degrees. The standard setting for visual approach slope indicators (VASIS) is 3 degrees. Pilots know the configuration and the power requirements needed to achieve this approach slope (with appropriate adjustments for wind and loading). Pilots also become accustomed to the view of the aerodrome and the runway from a 3 degree approach. A 3 degree approach is the normal visual approach without any aids.

Descent on a non-precision approach should approximate to 3 degrees and, should the runway environment not be in view, when the aeroplane reaches the MDA, a missed approach procedure should be commenced. There should not be a level flight element at the MDA.
The concern here is with approaches at the great majority of aerodromes world-wide and not with special requirements or situations where, for example, a separate access landing system might be developed for the larger jets and commuter traffic.

The development of the 3 degree approach was no mistake, it is suitable for past and current aeroplanes. A steeper approach causes difficulty in airspeed control; there is insufficient drag, power may have to be reduced perhaps below that which provides adequate response to thrust demands. A shallower approach requires increased thrust which results in increased fuel consumption and noise; the view of the approach area deteriorates; most importantly, the aeroplane is closer to the terrain, at all stages of the descent, than is necessary. In either case the view of the runway from the final approach is not that to which most pilots are accustomed. Pilots are accustomed to the view from the 3 degree approach slope. This is not to say that some aeroplanes are not compatible with approach slopes greater than 3 degrees.

Any factor which deviates from normal practise is a potential hazard. The investigation into the problem of controlled flight into terrain (CFIT) accidents has revealed that there may be such a hazard in non-precision instrument approaches where they deviate from the optimum. There are approaches where the descent gradient is well below 5%, 3 degrees; one has been identified where the approach is less than one degree. A one degree approach gives a descent rate of 100 ft/min. There are also non-precision approaches where the angle of the approach is well above 3 degrees.

Another problem is posed by stepped descents in non-precision approaches. The use of a stepped procedure is contrary to the need to generate a steady descent to the MDA. Also the manner in which the vertical profiles of stepped approaches are shown on approach plates invites early descent to the step altitude. This type of depiction is not shown in the Aeronautical Chart Manual. Stepped approaches have been identified where the use of an optimum descent would eliminate any need for the steps. In these cases the entire approach, down to MDA would, if a 3 degree approach were used, be above the vertical profile of the current, stepped, procedures. It is probable that this would apply in many more cases and many stepped procedures could therefore be eliminated.

It is possible to understand that there may be cogent reasons for a descent gradient that is steeper than the optimum. ICAO PANS OPS (Doc 8168) states that the descent gradient, or slope, for the final descent in non-precision operations, should not exceed 5%, 3.0 degrees (PANS OPS, Vol II, Part III, 26.4.5). This paragraph further states that where a steeper descent gradient is necessary, the maximum permissible is 6.5%, 3.7 degrees. PANS OPS, whilst quoting an optimum final approach descent gradient, and a maximum, does not give a minimum descent gradient. The gradient is calculated from the distance from the final approach fix to the threshold, and the vertical distance between the height over the final approach fix and 15 m (50 ft) over the threshold.

Pilots may find it difficult to understand why it should ever be necessary to design an instrument approach procedure with a slope of less than the optimum. From an examination of the rules of procedure design, which starts with the departure from the approach fix into the procedure, from the altitude of the highest minimum sector altitude (MSA), it appears that approaches may be made to fit into the airspace below this MSA. Many instrument approaches do commence from an altitude above that of the MSA, however, it does appear that procedures are designed paying attention to the wrong priorities. It appears that instrument approach procedures are designed from the top down, whereas logically these procedures should be designed from the ground up, based on a 3 degree approach, unless there were unavoidable reasons for a steeper approach. PANS OPS, Volume II, Part III, 1.4, refers to
segment application and that the final approach track should be identified first. This paragraph does not state that the final approach profile should also be a controlling factor.

The current concept of efficient use of airspace may concentrate on the use of airspace in the terminal area. It is time that this concept was reversed and the priority given to the safety of the approach to land operation. This may mean that a particular instrument approach procedure may have to be redesigned to commence at a higher altitude. The overriding requirement must be for the safe approach and landing of the aeroplane. The provision of a safe approach would surely be the most efficient use of airspace.

The Instrument Flight Procedures Construction Manual (Doc 9368) contains more than one example of non-precision approaches which show the final approach descent gradient to be less than 3 degrees. The manual also shows approaches where a change in the descent gradient is indicated, from a figure less than the optimum to the optimum of 3 degrees. As stated above, it is difficult to understand why a descent rate of less than the optimum should ever be necessary. Such problems are illustrated on pages 3-19/3-20, 4-5/4-6, 5-7/5-8, and 10-6/10-7 of Doc 9368. Any of these examples may, in the absence of any definition of a minimum approach gradient, lead an instrument approach procedure designer to design an approach with a below optimum descent gradient. In some of the cases a higher, and optimum, descent gradient would resolve the problem that the designer was trying to solve with a stepped descent or a varied rate descent.

Other problems related to procedure design concern how these procedures are presented on approach plates. The problems examined here are those in the presentation of alternative approaches. The procedure provided for a VOR approach when the DME element of a VOR/DME approach is not available or the procedure provided for a localizer only approach when an ILS glide slope is not available. Annex 4, 11.10.6.2 c), states that the missed approach procedure profile should be shown by an arrowed broken line. Annex 4, 11.10.6.2 d) states that the profile for any additional procedure should be shown by an arrowed dotted line. This usage also applies to tracks. Guidance material in the Aeronautical Chart Manual (Doc 8697), pages 7-11-15, 7-11-17 and Specimen Chart 9, and in Circular 187, Instrument Approach Chart - ICAO, Guidance to Chart Makers provide illustrations of the Annex 14 Standard. Improper use is made of the broken line in both commercial and State material to indicate the vertical profile for additional approaches.

Profiles for non-precision approaches are also shown in a manner which invites pilots to carry out an early descent to the MDA and then to maintain level flight at the MDA, to the missed approach point. It should also be noted that Annex 4, 11.10.6.2 b), c), d) and e), Doc 8697 and Circular 187 all use the word "track" where "profile" should be used. The heading to Annex 4, 11.10.6 should also be amended to read "Portrayal of procedure tracks and profiles".

Some examples are given below to illustrate the types of problems with the slope of the final descent, stepped descents, and the presentation of the approach procedures, which have been described above. They occur both on commercially available approach plates and on approach procedures contained in States AIPs.
Non-precision approach - shallow final approach descent gradient.

The first example (Fig. 1) shows a VOR/DME or a VOR approach where the MDA/H for both approaches is 1960/395 ft.

![Diagram of a VOR/DME and VOR approach](image)

Figure 1. VOR/DME and VOR
(source - commercial approach plate, the State AIP gives the same information)

The distance provided for the final descent is 8.2 nm. The height through which the aeroplane must descend from the procedure turn to reach a point 50 feet above the threshold is 1385 feet. This gives a required descent rate of 170 ft/nm, an angle of 1.6 degrees. Considering the same distance for the final approach, a 3 degree approach would require that the procedure turn was raised by 1075 feet. To maintain the same final distance the procedure turn should be at an altitude of 4000 feet (to be exact 4075 feet).

Two accidents involving hull losses have occurred on this particular non-precision approach. Both aeroplanes, a DC-8 and a B 707, struck the terrain, within 1 nm of each other, at approximately 9 nm on finals, at night. In each case the crash occurred at a greater distance than that at which the final descent should have commenced. It is not possible to say what difference a 3 degree approach slope for the procedure would have made, other than to say that such a change might have broken the accident chain in one, or both cases. Since we have not received ADREP reports for either of these accidents we do not know whether the navigation aids were even working.

Non-precision approach - shallow stepped approach.

The second example (Fig. 2, 3 and 4) shows three shallow stepped VOR/DME approaches, to the same runway, where the MDA/H is 480/454 ft in each case.

The same commercial source provides these three procedures, VOR DME-1, VOR DME-2 and VOR DME-ARC, to the same runway using the same VOR/DME facilities. By comparing the vertical profiles in Figures 2, 3 and 4 it can be seen that all are shown as stepped descents, the average descent
Gradients are all well below 5%, 3 degrees. The final descents, for the three approaches, commence from two different altitudes and three different DME distances; the check DME points are either different, or if the same, indicate a different check altitude. The only features in which the three procedures agree are in the use of the same VOR/DME facility and the same MDA/H.

Figure 2. VOR DME-1
(source - commercial approach plate)

The procedure departs the VOR at 3000 ft QNH, commences a level turn at 7.5 DME at 1500 ft QNH. Distance to threshold 8 nm, descent 1424 ft, average 178 ft/nm or 1.67 degrees.

Figure 3. VOR DME-2
(source - commercial approach plate)
The procedure departs a holding fix at 12 DME on the extended approach at 3000 ft QNH commencing immediate descent. Distance to threshold 12.5 nm, descent 2924 ft, average 234 ft/nm, 2.2 degrees.

Figure 4. VOR DME-ARC
(source - commercial approach plate)

This procedure is based on a 10 DME arc flown at 3000 ft QNH. The final descent commences from 9 DME at 1500 ft QNH, distance to threshold 9.5 nm, descent 1424 ft, average 150 ft/nm, 1.4 degrees.

Information available from the State AIP, held in ICAO, covers only the VOR DME-ARC procedure. The vertical profile from the AIP is shown in Figure 5.

Figure 5. VOR DME-ARC
(source - State AIP)
Whilst Figure 5 does not show a stepped approach, the descent to the threshold is again 150 ft/nm, or 1.4 degrees. Figures 4 and 5 show arrival at the MDA, 480 ft, at a distance of 3 nm or more prior to the threshold. At 3 nm on this approach the altitude, for an optimum descent, should be 1000 ft (in fact $3 \times 300 + 50 + 26 = 976$ ft).

Approach plates for the VOR DME-1, VOR DME-2 and VOR DME-ARC approaches to this same runway are provided, for direct comparison, in Figure 6. There would not appear to be any reason why the three stepped final approaches to this runway should not be eliminated, and a 3 degree approach slope instituted. The descents should commence at the same DME and altitude. This would provide standardization for the approaches to the same runway, and the optimum approach slope. The check DME distances and altitudes on the descent for the final approach should be the same for each of these similar approach procedures. Different procedures will be required to bring aeroplanes to the inbound final track and to the point at which the descent should be commenced.

Non-precision approach - misleading depiction of vertical profile.

The third example (Fig. 7 and 8) shows an alternative localizer approach for an ILS glide slope out situation. The vertical profiles are taken from a commercial approach plate and from the AIP. The vertical profile shown in Figure 7 is a direct invitation to the pilot to make an early descent to the MDA. The ILS DA/H is 1814/252 ft and the LOC (GP out) MDA/H 1920/358 ft.
INFORMATION ON NON-PRECISION INSTRUMENT APPROACHES WHERE THE FINAL APPROACH IS LESS THAN 2.5 DEGREES. PROVIDED BY A MAJOR INTERNATIONAL OPERATOR
(material yet to be received from British Airways/AERAD)

CONCLUSIONS

1. It must be accepted by all operational personnel that standardization of instrument approaches and the use of the optimum final approach descent gradient is a major flight safety objective which would increase the safety of the approach to landing phase of flight. This is where the majority of accidents occur.

2. Non-precision instrument approaches should be designed with the priority on the optimum, 5%, or 3 degree, final approach descent gradient.

3. ICAO should publish a minimum final approach descent gradient in PANS OPS and apply more emphasis on the use of the optimum of 3 degrees.

4. ICAO instrument approach procedure design guidance material should be revised to ensure that there is no encouragement to design shallow approaches.
5. Immediate efforts should be made to have all non-precision approaches, where the final approach is less than 2.5 degrees, redesigned to a minimum of 2.5 degrees and preferably to 3 degrees.

6. Non-precision approaches that are stepped, and average less than a 3 degrees, should be redesigned with a minimum 3 degree approach which would eliminate many stepped procedures.

7. Efforts should be made to ensure that the depiction of a vertical profile for an alternative non-precision approach does not invite pilots to conduct an early descent to the MDA.

8. Efforts should be made to ensure the usage of arrowed broken and dotted lines, as set out in Annex 4, 11.10.6.1 and 2. Broken lines should not be used to show the vertical profiles, or tracks, of additional approaches, only for showing the missed approach profile and track.

9. Annex 4, 11.10.6 and the Aeronautical Chart Manual (Doc 8697) should be amended to properly reflect the different usage between "track" and "profile".

10. The Aeronautical Chart Manual (Doc 8697) should be expanded to include illustrations of various types of instrument approach procedure.

RTS 8 April 1994
Managing Automation in the Cockpit

John A. Wise, Donald S. Tilden, David Abbott, Jennifer Dyck, & Patrick Guide
Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900 USA
University of Central Florida
Orlando, FL 32816 USA

Paper presented at:
Flight Safety Foundation
47th Annual International Air Safety Seminar
International Federation of Airworthiness
24th International Conference
Oct 31-Nov 3, 1994
Lisbon, Portugal
Managing Automation in the Cockpit

John A. Wise, Donald S. Tilden, David W. Abbott, Jennifer L. Dyck, & Patrick C. Guide

Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900 USA

University of Central Florida
Orlando, FL 32816 USA

Abstract: Automation has been promoted as a way to improve both aviation safety and efficiency. In many ways automation has indeed kept its promise; in many other ways it has been found to be lacking. This study's data were collected using questionnaires, interviews, flight observation, and simulation training observation. While the findings were supportive of the earlier work of Wiener and Nagel, they also identified several new problems. The pilot-computer interfaces are generally non-intuitive for pilots. In addition, several interface problems were due to the inadequate memory of the host computer. These design shortfalls create management challenges for pilots and operators alike.

Key words: human factors, ergonomics, automation, human-computer interface, corporate aviation, regulations, safety, training

INTRODUCTION

Corporate aviation is expanding its use of automation, with some corporate aircraft having greater sophistication than air carrier aircraft. Previous studies (Wiener & Curry, 1980; Wiener, 1989) have identified a number of safety concerns associated with automation in the airline industry. The problems identified were often associated with periods of change (e.g., amendments in flight plan, vectors for traffic). Because the raison d'être of corporate aviation is flexibility and change, it would appear to follow that the corporate aviation industry may be more susceptible to some of the negative effects of automation. As a matter of fact, NASA's Aviation Safety Reporting System identified 84 self-reported incidents between 1986 and 1991 (Aviation Safety Reporting System, 1992) that involved advanced automated corporate aircraft.

Corporate aviation by its nature describes a very wide range of activities and sophistication. Operations vary from a small business where the owner personally flies herself to meetings, to dispersed fleets of large aircraft. As a result, the levels of automation vary from a simple two axis autopilot to sophisticated computer based flight management systems capable of flying the aircraft from lift-off to touch down while maintaining optimum performance throughout. It was therefore necessary to limit the scope of this study to only a those aircraft with both cathode ray tube based displays and computer-based flight management systems. The study included observations of flight departments that varied from dispersed multiple location operations to an operation where one person acted as manager, maintainer, and pilot (the aircraft used was approved for single-pilot operation).

Another area that makes corporate aviation unique is that its pilots are usually type-rated in more than one aircraft. While this was a challenge in the days of conventional controls and displays — where the pilots had to learn basic systems and flight characteristics of the various aircraft — the new world of automation also makes it necessary that pilots essentially learn different computer operating systems. This problem is exacerbated by the fact that the interface for

1 Corporate aviation is the part of general aviation that supports the travel of businesses and corporations, particularly the upper management of those organizations.

2 It should be noted that since it is a voluntary report, only a fraction of all incidents are reported to the System.
mechanical designs, and it may be some time until familiarity with the systems and creativity mix to allow the creation of a truly superior interface. But, improvements are needed if the real potential of the automation is to be achieved.

One area of the human-computer interface that needs significant work is coding. Much of the coding techniques have become aircraft and/or manufacturer specific. In some ways we have come full circle and now transitioning between automated aircraft is often like transitioning between aircraft in the ‘30s and ‘40s, when each manufacturer put the basic flight instruments where they wanted. Every time one changed airplanes (often within the same aircraft model) one had to learn a new cross-check sequence. Basic coding standards need to be developed and followed.

Standards are especially needed for color coding. Color appears to be primarily used as a marketing tool and very seldom is based on the perceptual and cognitive attributes of the color. Basic principle driven criteria need to be established and followed for color coding. The application of color without such guidelines can and often does result in decreased performance (e.g., errors).

Awareness of the mode within which the system is operating is an aspect of automation use which shows a steep learning curve that never asymptotes (even for those who spend over 400 hours per year in automated aircraft). The mode awareness survey showed that unexpected or unexplained FMS events tend to be infrequent, minor in nature, and quickly detected. However, the open ended responses were frequent and describe a variety of surprises experienced by the pilots. Such errors suggest that the feedback should be improved so that pilot awareness of system mode and expected action is more easily accomplished. For example, several inflight experiences demonstrated pilots changing from “Heading” to “FMS” mode and being surprised by the abrupt change in direction of flight. Such actions are technically correct for the automation, but not what the pilot intended. A clearer display of mode and/or the design of the system to more typically match the mental model pilots have of how things operate would reduce such experiences.

The pilot-computer interface problems identified by this study can usually be resolved by altering the human, the computer, or both. In many cases, the errors made by pilots are design-induced errors; that is, if the interface was designed differently, these errors would not occur. Thus, while it often appears easier to alter the human side of the equation (i.e., training), it is usually most efficient in the long run to alter the computer side of the equation. The following recommendations are offered for discussion.

• Human factors criteria for the human-computer interface of civilian aviation equipment should be developed. These criteria should be principle driven rather than “design specifications”.

• A minimal set of interface standards needs to be developed that would be required for all automated systems. An aircraft's equipment behavior and the pilot's expectations of that behavior should match and should be system independent.

• The amount and type of feedback from the automated systems to the pilots should be improved in order to decrease mode errors.

• Automated systems should be designed to be as consistent as possible, both within and across aircraft. Consistency is an overriding principle that affects usability of a system.
Flight Safety Foundation (FSF) designed this controlled-flight-into-terrain (CFIT) risk-assessment safety tool as part of its international program to reduce CFIT accidents, which present the greatest risks to aircraft, crews and passengers. The FSF CFIT Checklist is likely to undergo further developments, but the Foundation believes that the checklist is sufficiently developed to warrant distribution to the worldwide aviation community.

Use the checklist to evaluate specific flight operations and to enhance pilot awareness of the CFIT risk. The checklist is divided into three parts. In each part, numerical values are assigned to a variety of factors that the pilot/operator will use to score his/her own situation and to calculate a numerical total.

In Part I: CFIT Risk Assessment, the level of CFIT risk is calculated for each flight, sector or leg. In Part II: CFIT Risk-reduction Factors, Company Culture, Flight Standards, Hazard Awareness and Training, and Aircraft Equipment are factors, which are calculated in separate sections. In Part III: Your CFIT Risk, the totals of the four sections in Part II are combined into a single value (a positive number) and compared with the total (a negative number) in Part I: CFIT Risk Assessment to determine your CFIT Risk Score. To score the checklist, use a nonpermanent marker (do not use a ballpoint pen or pencil) and erase with a soft cloth.

Part I: CFIT Risk Assessment

<table>
<thead>
<tr>
<th>Section 1 – Destination CFIT Risk Factors</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport and Approach Control Capabilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATC approach radar with MSAWS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ATC minimum radar vectoring charts</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ATC radar only</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>ATC radar coverage limited by terrain masking</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>No radar coverage available (out of service/not installed)</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>No ATC service</td>
<td>-30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected Approach:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport located in or near mountainous terrain</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>ILS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VOR/DME</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>Nonprecision approach with the approach slope from the FAF to the airport TD shallower than $2 \frac{3}{4}$ degrees</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>NDB</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>Visual night “black-hole” approach</td>
<td>-30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Runway Lighting:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete approach lighting system</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Limited lighting system</td>
<td>-30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controller/Pilot Language Skills:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Controllers and pilots speak different primary languages</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>Controllers’ spoken English or ICAO phraseology poor</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>Pilots’ spoken English poor</td>
<td>-20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departure:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No published departure procedure</td>
<td>-10</td>
<td></td>
</tr>
</tbody>
</table>

Destination CFIT Risk Factors Total (-)
Section 2 – Risk Multiplier

Your Company’s Type of Operation (select only one value):

- Scheduled .. 1.0
- Nonscheduled .. 1.2
- Corporate ... 1.3
- Charter .. 1.5
- Business owner/pilot ...
- Regional .. 2.0
- Freight .. 2.5
- Domestic ... 1.0
- International ... 3.0

Departure/Arrival Airport (select single highest applicable value):

- Australia/New Zealand ... 1.0
- United States/Canada ... 1.0
- Western Europe ... 1.3
- Middle East ... 1.1
- Southeast Asia ... 3.0
- Euro-Asia (Eastern Europe and Commonwealth of Independent States) 3.0
- South America/Caribbean ... 5.0
- Africa .. 8.0

Weather/Night Conditions (select only one value):

- Night — no moon .. 2.0
- IMC .. 3.0
- Night and IMC .. 5.0

Crew (select only one value):

- Single-pilot flight crew ... 1.5
- Flight crew duty day at maximum and ending with a night nonprecision approach 1.2
- Flight crew crosses five or more time zones ... 1.2
- Third day of multiple time-zone crossings .. 1.2

Add Multiplier Values to Calculate Risk Multiplier Total

Destination CFIT Risk Factors Total ¥ Risk Multiplier Total = CFIT Risk Factors Total

Part II: CFIT Risk-reduction Factors

Section 1 – Company Culture

Corporate/company management:

- Places safety before schedule .. 20
- CEO signs off on flight operations manual ... 20
- Maintains a centralized safety function ... 20
- Fosters reporting of all CFIT incidents without threat of discipline 20
- Fosters communication of hazards to others ... 15
- Requires standards for IFR currency and CRM training .. 15
- Places no negative connotation on a diversion or missed approach 20

115-130 points Tops in company culture
105-115 points Good, but not the best
80-105 points Improvement needed
Less than 80 points High CFIT risk

Company Culture Total (+) ___ *
Section 2 – Flight Standards

Specific procedures are written for:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewing approach or departure procedures charts</td>
<td>10</td>
</tr>
<tr>
<td>Reviewing significant terrain along intended approach or departure course</td>
<td>20</td>
</tr>
<tr>
<td>Maximizing the use of ATC radar monitoring</td>
<td>10</td>
</tr>
<tr>
<td>Ensuring pilot(s) understand that ATC is using radar or radar coverage exists</td>
<td>20</td>
</tr>
<tr>
<td>Altitude changes</td>
<td>10</td>
</tr>
<tr>
<td>Ensuring checklist is complete before initiation of approach</td>
<td>10</td>
</tr>
<tr>
<td>Abbreviated checklist for missed approach</td>
<td>10</td>
</tr>
<tr>
<td>Briefing and observing MSA circles on approach charts as part of plate review</td>
<td>10</td>
</tr>
<tr>
<td>Checking crossing altitudes at IAF positions</td>
<td>10</td>
</tr>
<tr>
<td>Checking crossing altitudes at FAF and glideslope centering</td>
<td>10</td>
</tr>
<tr>
<td>Independent verification by PNF of minimum altitude during stepdown DME (VOR/DME or LOC/DME) approach</td>
<td>20</td>
</tr>
<tr>
<td>Requiring approach/departure procedure charts with terrain in color, shaded contour formats</td>
<td>20</td>
</tr>
<tr>
<td>Radio-altitude setting and light-aural (below MDA) for backup on approach</td>
<td>10</td>
</tr>
<tr>
<td>Independent charts for both pilots, with adequate lighting and holders</td>
<td>10</td>
</tr>
<tr>
<td>Use of 500-foot altitude call and other enhanced procedures for NPA</td>
<td>10</td>
</tr>
<tr>
<td>Ensuring a sterile (free from distraction) cockpit, especially during IMC/night approach or departure</td>
<td>10</td>
</tr>
<tr>
<td>Crew rest, duty times and other considerations especially for multiple-time-zone operation</td>
<td>20</td>
</tr>
<tr>
<td>Periodic third-party or independent audit of procedures</td>
<td>10</td>
</tr>
<tr>
<td>Route and familiarization checks for new pilots</td>
<td></td>
</tr>
<tr>
<td>Domestic</td>
<td>10</td>
</tr>
<tr>
<td>International</td>
<td>20</td>
</tr>
<tr>
<td>Airport familiarization aids, such as audiovisual aids</td>
<td>10</td>
</tr>
<tr>
<td>First officer to fly night or IMC approaches and the captain to monitor the approach</td>
<td>20</td>
</tr>
<tr>
<td>Jump-seat pilot (or engineer or mechanic) to help monitor terrain clearance and the approach in IMC or night conditions</td>
<td>20</td>
</tr>
<tr>
<td>Insisting that you fly the way that you train</td>
<td>25</td>
</tr>
</tbody>
</table>

- **Flight Standards Total**:
 - 300-335 points: Tops in CFIT flight standards
 - 270-300 points: Good, but not the best
 - 200-270 points: Improvement needed
 - Less than 200: High CFIT risk

Section 3 – Hazard Awareness and Training

Value

Your company reviews training with the training department or training contractor	10
Your company’s pilots are reviewed annually about the following:	
Flight standards operating procedures	20
Reasons for and examples of how the procedures can detect a CFIT “trap”	30
Recent and past CFIT incidents/accidents	50
Audiovisual aids to illustrate CFIT traps	50
Minimum altitude definitions for MORA, MOCA, MSA, MEA, etc.	15
You have a trained flight safety officer who rides the jump seat occasionally	25
You have flight safety periodicals that describe and analyze CFIT incidents	10
You have an incident/exceedance review and reporting program	20
Your organization investigates every instance in which minimum terrain clearance has been compromised	20
You annually practice recoveries from terrain with GPWS in the simulator ... 40
You train the way that you fly .. 25

285-315 points	Tops in CFIT training
250-285 points	Good, but not the best
190-250 points	Improvement needed
Less than 190	High CFIT risk

Hazard Awareness and Training Total (+) ___

Section 4 – Aircraft Equipment

<table>
<thead>
<tr>
<th>Aircraft includes:</th>
<th>Value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio altimeter with cockpit display of full 2,500-foot range – captain only</td>
<td>20</td>
<td>___</td>
</tr>
<tr>
<td>Radio altimeter with cockpit display of full 2,500-foot range – copilot</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>First-generation GPWS</td>
<td>20</td>
<td>___</td>
</tr>
<tr>
<td>Second-generation GPWS or better</td>
<td>30</td>
<td>___</td>
</tr>
<tr>
<td>GPWS with all approved modifications, data tables and service bulletins to reduce false warnings</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>Navigation display and FMS</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>Limited number of automated altitude callouts</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>Radio-altitude automated callouts for nonprecision approach (not heard on ILS approach) and procedure</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>Preselected radio altitudes to provide automated callouts that would not be heard during normal nonprecision approach</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>Barometric altitudes and radio altitudes to give automated “decision” or “minimums” callouts</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>An automated excessive “bank angle” callout</td>
<td>10</td>
<td>___</td>
</tr>
<tr>
<td>Auto flight/vertical speed mode</td>
<td>-10</td>
<td>___</td>
</tr>
<tr>
<td>Auto flight/vertical speed mode with no GPWS</td>
<td>-20</td>
<td>___</td>
</tr>
<tr>
<td>GPS or other long-range navigation equipment to supplement NDB-only approach</td>
<td>15</td>
<td>___</td>
</tr>
<tr>
<td>Terrain-navigation display</td>
<td>20</td>
<td>___</td>
</tr>
<tr>
<td>Ground-mapping radar</td>
<td>10</td>
<td>___</td>
</tr>
</tbody>
</table>

175-195 points	Excellent equipment to minimize CFIT risk
155-175 points	Good, but not the best
115-155 points	Improvement needed
Less than 115	High CFIT risk

Aircraft Equipment Total (+) ___

Company Culture + Flight Standards + Hazard Awareness and Training + Aircraft Equipment = CFIT Risk-reduction Factors Total (+) ___

* If any section in Part II scores less than “Good,” a thorough review is warranted of that aspect of the company’s operation.

Part III: Your CFIT Risk

Part I CFIT Risk Factors Total (–) ____ + Part II CFIT Risk-reduction Factors Total (+) ____

= CFIT Risk Score (±) ____

A negative CFIT Risk Score indicates a significant threat; review the sections in Part II and determine what changes and improvements can be made to reduce CFIT risk.

In the interest of aviation safety, this checklist may be reprinted in whole or in part, but credit must be given to Flight Safety Foundation. To request more information or to offer comments about the FSF CFIT Checklist, contact Robert H. Vandel, director of technical projects, Flight Safety Foundation, 601 Madison Street, Suite 300, Alexandria, VA 22314 U.S., Phone: 703-739-6700 • Fax: 703-739-6708

FSF CFIT Checklist © 1994 Flight Safety Foundation

Flight Safety Foundation
Flight Safety Foundation recommends immediate implementation of the following ground-proximity warning system (GPWS) procedures by all flight operations:

- When a GPWS warning occurs, pilots should immediately, and without hesitating to evaluate the warning, execute the pull-up action recommended in the company procedure manual;

- In the absence of a company procedure, an immediate maximum performance full-power climb should be initiated and continued until the GPWS warning stops and the crew determines that terrain clearance is assured;

- This immediate pull-up procedure should be followed except in clear daylight visual meteorological conditions when the flight crew can immediately and unequivocally confirm a false GPWS warning; and,

- Air traffic control (ATC) should be notified as soon as possible after a GPWS warning or pull-up.

Flight Safety Foundation, drawing on broad support from the worldwide aviation industry, has launched an ambitious international project to reduce by 50 percent the number of controlled-flight-into-terrain (CFIT) accidents and approach/landing accidents during the next five years. This Safety Alert is being distributed to air carriers and other flight operators throughout the world as a result of the Foundation CFIT task force’s early findings, which are listed below.

- CFIT represents the single largest risk to aircraft;

- Fifty percent of recent CFIT accidents occurred to aircraft without operational GPWS; many others involved early-generation GPWS known to give false warnings;

- Of those CFIT accidents in which aircraft were equipped with a properly operating GPWS, an alarming number of flight crews did not follow recommended pull-up procedures in response to GPWS warnings; and,

- Flight crews in CFIT accidents often ignored GPWS warnings; delayed recommended pull-up procedures while trying to evaluate the accuracy of the GPWS warning; or failed to respond with sufficient aggressive pull-up action.
FLIGHT SAFETY DIGEST

The Dollars and Sense of Risk Management And Airline Safety
The Dollars and Sense of Risk Management
And Airline Safety

Risk management programs are essential tools for airline management to achieve acceptable safety standards while pursuing production objectives, reports Flight Safety Foundation ICARUS Committee.

ICARUS Committee

Responsibility for aviation safety begins at the very top of an airline company. History has demonstrated repeatedly that without the complete commitment of the highest management levels within a company, operational safety margins are seriously eroded. This does not suggest that a company will have an accident, but it does suggest that the risk of having an accident is high — the laws of probability will prevail.

Management has great leverage in affecting operational safety within a company. Through its attitudes and actions, management influences the attitudes and actions of all others within a company: Management defines the safety culture of an organization. This safety culture extends all the way to the maintenance shop floor, to the ramp, to the cabin and to the cockpit. Furthermore, the public and government authorities are increasingly recognizing management's role in air safety by holding management accountable for a serious incident or accident; this accountability is magnified many-fold if a company suffers several such incidents or accidents during the course of a few years.

The following information is designed to provide insight into the costs, causes and prevention of aviation accidents — to be a practical guide for management, not a theoretical treatise.

Safety Fits into Production Objectives

Accidents and incidents are preventable through effective management; doing so is cost-effective. An airline is formed to achieve practical objectives. Although frequently so stated, safety is not, in fact, the primary objective. The airline’s objectives are related to production: transporting passengers or transporting goods and producing profits. Safety fits into the objectives, but in a supporting role: to achieve the production objectives without harm to human life or damage to property.

Management must put safety into perspective, and must make rational decisions about where safety can help meet the objectives of the organization. From an organizational perspective, safety is a method of conserving all forms of resources, including controlling costs. Safety allows the organization to pursue its production objectives without harm to human life or damage to equipment. Safety helps management achieve objectives with the least risk.

Although risk in aviation cannot be eliminated, risk can be controlled successfully through programs to identify and correct safety deficiencies before an accident occurs. Such risk management programs are essential tools for management to achieve acceptable levels of safety while pursuing the production goals of the organization.

The airline has to allocate resources to two distinct but interrelated objectives: the company’s primary production goals and safety. In the long term, these are clearly compatible objectives, but because resources are finite, there are on many occasions short-term conflicts of interest. Resources allocated to the pursuit of production objectives could diminish those available for safety and vice versa. When facing this dilemma, it may be tempting to give priority to production management over safety or risk management. Although a perfectly understandable reaction, it is ill-advised and it contributes to further safety deficiencies that, in turn, will have long-term adverse economic consequences.

1. Safety is of major concern to the aviation industry and to the public. When compared with other transportation industries — maritime, rail or road transportation — the aviation industry enjoys a superior safety record. Safety consciousness within the industry and the resources that aviation organizations devote to safety are among the reasons for this record.
Nevertheless, there are continuing concerns about maintaining, and improving, the favorable aviation safety record. The ever-increasing capacity of transport aircraft and the growth of global air traffic justify these concerns. For example, transport aircraft seating 300 to 500 passengers are now common, and plans for larger aircraft are under way; congestion in air traffic at complex hubs is also commonplace.

These are but two examples of what can become a statistician's — and an airline manager's — nightmare considering the potential for economic catastrophe to the industry. Newspaper headlines and extensive television coverage of aircraft accidents will become more sensational and more frequent even if safety levels remain the same. Simply put, as a consequence of growth, accident rates deemed acceptable in the past will be inappropriate in the future.

2. All those involved in aviation operations at every level have some responsibility for the safe outcome of such operations. There are, of course, different levels of human involvement and intervention. The physical proximity of a particular level to operational settings does not have a straight-line relationship with the potential for influencing risk in such operations.

Conventional wisdom allocates safety responsibilities almost exclusively to those at the operational end: flight crews, air traffic controllers, technicians and others.

Safety responsibilities often have been perceived to diminish as one moves away from the cockpit and toward the executive suite. Nevertheless, this notion does not hold true when viewed through the wider lens of systems safety.

From a top-down perspective, within any aviation organization there are at least four levels of human intervention that can greatly affect the level of risk:

- Senior management;
- Line management;
- Inspectors and quality control personnel; and,
- Operational personnel.

Within any civil aviation system, there are at least four major institutions to which these personnel might report:

- Civil aviation administration;
- Safety/accident investigation agency;
- Operators; and,
- Training, maintenance and other support organizations.

3. Each organizational and institutional level has unique opportunities to contribute to safety within the air transport industry, and overall system safety is determined by the interdependent actions of each. There are decisions that senior management — and only senior management — can make (or refrain from taking) that will directly affect safety. No other level can fully compensate for flaws in these decisions after they are implemented; they can only attempt to minimize the adverse consequences of flawed decisions.

By the same token, there are risky or unsafe decisions by operational personnel over which senior management has little or no direct control. And there are inherent limitations to the effectiveness of safety measures that operators can take when facing, for example, flawed regulations.

These flawed regulations may, in turn, result from the failure of an accident investigation agency to uncover fundamental safety deficiencies underlying accidents. Such deficiencies may be traced to deficient training of the investigators or may be fostered by flawed national legislation.

Actions and decisions within the exclusive domain of each organization can greatly affect the ability of the other organizations to discharge their safety responsibilities. Strong and sometimes complex interactions exist among the decisions and actions taken by various levels within and between air transportation organizations and institutions.

4. Historically, safety activities have focused on the organizational and institutional levels in closest temporal or physical proximity to an accident, i.e., operators and operational personnel. Improving the performance of operational personnel, primarily through high-quality training, has greatly enhanced aviation safety.

The industry, however, has reached a point of diminishing returns from this approach; it has reached the stage where a greater expenditure of resources at the operational end of the system will not result in proportionate safety benefits.

New methods of accident prevention emphasize looking at the total picture and taking into account accident prevention strategies in all industrial activities.

Another objective is to develop a perspective that views safety, or risk management, in the context of the primary production goals of civil aviation organizations. Because risk management activities, and the failure to manage risk, involve the expenditure of resources, it is critical that such a perspective be developed.
How Much Does It Cost To Have an Accident?

5. There are two basic categories of accident costs: (1) insured costs, generally including hull losses, property damage and personal liability; and (2) uninsured costs. Insured costs — those covered by paying premiums to insurance companies — can be recovered to a greater or lesser extent. Uninsured costs cannot be recovered, and they may double or triple the insured costs. Typical uninsured tangible and intangible costs of an accident include:

- Insurance deductibles;
- Increased operating costs on remaining equipment;
- Loss of spares or specialized equipment;
- Fines and citations;
- Legal fees resulting;
- Lost time and overtime;
- Increased insurance premiums;
- Cost of the investigation;
- Liability claims in excess of insurance;
- Morale;
- Corporate manslaughter/criminal liability;
- Cost of hiring and training replacements;
- Reaction by crews leading to disruption of schedules;
- Loss of business and damage to reputation;
- Loss of productivity of injured personnel;
- Cost of corrective action;
- Cost of restoration of order;
- Loss of use of equipment; and,
- Cost of rental or lease of replacement equipment.

6. The costs of accidents vary greatly from country to country, and although such costs may be quantified, the monetary value is not always the most critical factor. Some uninsured costs can acquire greater importance than the direct financial effect measured by accounting methods.

The economic and political context largely determines the relative importance of the monetary costs of an accident, as opposed to other factors. In industrialized nations, monetary costs of an accident may be the overriding consideration. In other countries, avoiding damage to the public's confidence in the nation's air transportation system may be a more important consideration. Where airlines are flag carriers, perceived damage to the national image among the international community may be the central consideration. In some situations, the loss of equipment in an accident might disrupt regular international services, a consideration that also might override the monetary costs. The fundamental message is twofold: first, there are economic consequences of aviation safety; second, the costs and benefits of safety cannot be measured only in economic terms.

7. “Unwanted outcomes” other than accidents also incur significant costs for an airline. Maintenance and ramp incidents, for example, present safety issues that can have significant costs, and must be considered as part of a global strategy for safety management. Ramp and ground-handling operations have the potential to cause a major accident, such as through unreported ground-handling damage to aircraft. Costs in maintenance and ramp operations should be a major concern, because aircraft and other equipment are easy to damage and expensive to repair. Indirect costs also include schedule disruption following damage of aircraft or equipment. The ramp and the hangar are also dangerous environments in which to work, given the risk of accidental death or disabling injury. As with flight accident prevention, responsibility for hangar and ramp safety resides at four levels within an organization:

- Senior management;
- Individual supervisors;
- Quality control personnel; and,
- Operational personnel.

Human Errors Occur at Management Level Too

8. Human error is the primary cause for hull losses, fatal accidents and incidents. To devise the appropriate countermeasures, human error must be put into context. Human error in aviation has been almost always associated with operational personnel (pilots, mechanics, controllers, dispatchers, etc.), and measures aimed at containing such error have usually been directed to them. Nevertheless, during the last decade or so, a significant shift toward a substantially different perspective on human error has developed. It has considerable implications in terms of prevention measures and strategies.

9. The aviation system includes numerous safety defenses. Accidents in such a system are usually the result of an unfortunate combination of several enabling factors, each one necessary, but in itself not sufficient, to breach the multiple
layers of system defenses. Because of constant technological progress, equipment failures rarely cause aviation accidents. Likewise, operational personnel errors — although usually the precipitating factors — are seldom root causes of accidents and incidents.

The analysis of recent major accidents both in aviation and in other high-technology industries suggests that it is necessary to look beyond operational personnel errors, into another level of human error: human decision-making failures that occur primarily in managerial sectors.

10. Depending on how immediate their consequences are, human failures can be viewed either as active failures — errors having an immediate adverse effect and generally associated with operational personnel (pilot, controller, technician, etc.) — or latent failures, which are decisions that may not generate visible consequences for a long time.

Latent failures become evident when combined with active failures, technical problems or other adverse conditions, resulting in a break-through of system defenses, thus producing accidents. Latent failures are present in the system well before an accident, and are originated most likely by decision makers and other personnel far removed in time and space from the event. Examples of latent failures include poor equipment design, improper allocation of resources to achieve the declared goals of the organization and defective communications between management and operational personnel. Through their actions or inaction, operational personnel unknowingly create the conditions under which these latent failures become apparent, often with tragic and costly consequences.

The implication for accident prevention strategies is clear. Safety management will be more successful and cost less if directed at discovering and correcting latent failures rather than at focusing only on the elimination of active failures. While it is vital to minimize them, active failures are only the proverbial tip of the iceberg.

11. Even in the best-run organizations, some important high-level decisions are less than optimum because they are made subject to normal human limitations. Typical latent failures in line management include inadequate operating procedures, poor scheduling and neglect of recognized hazards. Latent failures like these may lead to inadequate work-force skills, inappropriate rules or poor knowledge; or they may result in poor planning or workmanship.

12. Management’s appropriate response to latent failures is vital. Response may consist of denial, by which operational personnel involved in accidents are dismissed or otherwise punished and the existence of the underlying latent failures is denied; repair, by which operational personnel are disciplined and equipment modified to prevent recurrence of a specific observed active failure; or reform, by which the problem is acknowledged and global action taken, leading to an in-depth reappraisal and eventual reform of the system as a whole. Only the last response is fully appropriate.

To Err Is Normal

13. Error must be accepted as a normal component of human behavior. Humans, be they pilots, engineers or managers, will from time to time commit errors. Exhortations to “be professional” or to “be more careful” are generally ineffective, because most errors are committed inadvertently by people who are already trying to do their job professionally and carefully. They did not intend to commit the errors.

The solution is to devise procedures and equipment that resist human error. Because technology or training cannot prevent all errors, an equally vital step is to introduce error tolerance into equipment and procedures, so when an error does occur, it is detected and is corrected before there is a catastrophic outcome. Error resistance and error tolerance are important strategies in accident prevention. Of fundamental importance, however, is the recognition that human error must be treated as a symptom, rather than a cause, of accidents and incidents.

14. Psychological factors underlie human error. Often, personnel assigned to tasks do not possess the basic traits or fundamental skills needed to successfully perform them. While formal personnel selection techniques provide some degree of protection, it is impossible to guarantee that all candidates will be able to perform satisfactorily in line operations. The issue is further complicated because proper performance under unsupervised conditions — such as during line operations — rests essentially on proper motivation, and although most professional aviation personnel are highly motivated, other factors can adversely affect such motivation.

Even with these limitations, proper selection techniques constitute an important line of defense. If an organization uses inadequate personnel screening and selection techniques, a latent failure exists within that organization, and may only become manifest through a serious incident or accident.

15. Training deficiencies frequently underlie human error. Training aims at developing basic knowledge and skills required for on-the-job performance; deficient training will obviously foster deficient performance and pave the way for error. Other potential sources of human error include poor ergonomic design of equipment or deficient procedures for using such equipment. Training deficiencies and flawed operational procedures are
latent failures, and thus usually do not have immediate consequences. But, when combined with active failures in operational settings, these latent failures can lead to accidents.

16. Selection, training and equipment design focus on the performance of individuals in the system. Big dividends are obtained by addressing individual performance, but the biggest dividends require a larger frame of reference. Human performance does not take place in a social vacuum, but it is strongly influenced by the environmental, organizational and institutional context in which it occurs. The socioeconomic and legal environment, the way in which the organization is designed and the institutions to which personnel belong, all influence human performance. These are also the breeding grounds for latent failures. From a monetary viewpoint, it makes sense to address latent failures. Canceling one latent failure (for example, training deficiencies) will eliminate multiple active failures, and thereby have a major effect on risk. By focusing on identifying and correcting latent failures, management leverages its ability to control risk.

With the Proper Tools, Human Error Is Manageable

17. The primary message here is that human error is manageable. Error management requires understanding the individual as well as organizational and institutional factors. Human-error accidents, which most accidents are, can then be controlled cost-effectively.

18. Education is an essential prerequisite for effective management of human error. The concepts of accident causation, human error and error management discussed in this brief are the bedrock of such education. Implementing training systems that develop knowledge and skills among operational personnel consistent with organizational objectives, and operational procedures that are compatible with human capabilities and limitations, is fundamental. A quality control system that is oriented toward quality assurance rather than pointing fingers and allocating blame completes the necessary feedback loops to ensure effectiveness of training and procedure development programs.

19. An active management role is crucially important to safety promotion involves:

Allocation of resources. Management’s most obvious contribution to safety is allocating adequate resources to achieve the production objectives of the organization (transporting people, maintaining aircraft, etc.) at acceptable levels of risk.

Safety programs and safety feedback systems. Such programs should include not only flight safety, but also maintenance safety, ramp safety, etc.

Internal feedback and trend monitoring systems. If the only information arrives too late to be useful for controlling risk, because the events that safety management seeks to eliminate have already occurred. Identification of latent failures provides a much greater opportunity for proactive enhancement of safety.

Incident reporting programs. It has been estimated that for each major accident (involving fatalities), there are as many as 360 incidents that, properly investigated, might have identified an underlying problem in time to prevent the accident. In the past two decades, there has been much favorable experience with nonpunitive incident and hazard reporting programs. Many countries have such systems, including the Aviation Safety Reporting System (ASRS) in the United States and the Confidential Human Factors Incident Reporting Program (CHIRP) in the United Kingdom. In addition to early identification and correction of operational risks, such programs provide much valuable information for use in safety awareness and training programs.

Besides the national programs, many airlines have found it useful to add their own internal incident reporting systems. These systems can range in complexity and cost from simple and inexpensive telephone “hot lines” to more complex (and usually more cost-effective) systems involving computer databases, trend identification and monitoring programs, and other sophisticated safety management tools. Some of these systems have been made available to the airline community at a modest cost by their developers.

One notable system is the British Airways Safety Information System (BASIS), which allows active tracking of many different kinds of safety-related information. A similar system, “Safety Manager’s Tool Kit,” is available from the International Air Transport Association (IATA). Systems like these have tended to show a positive short-term economic benefit in addition to improved operational safety.

Standardized operating procedures. Standardized operating procedures (SOPs) have been recognized as a major contribution to flight safety. Procedures are specifications for conducting actions; they specify a progression of steps to help operational personnel perform their tasks in a logical, efficient and, most important, error-resistant way. Procedures must be developed with consideration for the operational environment in which they will be used. Incompatibility of the procedures with the operational environment can lead to the informal adoption of unsafe operating practices by operational personnel. Feedback from operational situations, through observed practices or reports from operational personnel, is essential to guarantee that procedures and the operational environment remain compatible.

Risk management. The purpose of internal feedback and trend monitoring programs is to allow managers to assess the risks involved in the operations and to determine logical approaches to counteract them. There will always be risks in aviation operations. Some risks can be accepted; some — but not all — can be eliminated; and others can be reduced to the point where
they are acceptable. Decisions on risk are managerial; hence
the term “risk management.”

Risk management decisions follow a logical pattern. The first
step is to accurately assess hazards. The second step is to
assess the risk involved in such hazards and determine
whether the organization is prepared to accept that risk. The
crucial points are the will to use all available information
and the accuracy of the information about the hazards,
because no decision can be better than the information on
which it is based. The third step is to find which hazards can
be eliminated and proceed to eliminate them. If none of the
identified hazards can be eliminated, then the fourth step is
to look for the hazards that can be reduced. The objective is
to reduce the probability that a particular hazard will occur,
or reduce the severity of the effects if it does occur. In some
cases, the risk can be reduced by developing means to cope
safely with the hazard.

20. In large organizations, such as airlines, the costs associated
with loss of human life and physical resources mean that risk
management is essential. To produce recommendations that co-
incide with the objectives of the organization, a systems approach
to risk management must be followed. Such an approach, in which
all aspects of the organization’s objectives and available resources
are analyzed, offers the best option for ensuring that recommenda-
tions concerning risk management are realistic.

Resources Are Required

21. The safety monitoring and feedback programs should be
administered by an independent company safety officer,
reporting directly to the highest level of corporate management.
The company safety officer and his or her staff must be
quality control managers, looking for ways to correct
corporate safety deficiencies, rather than pointing fingers
at individuals who commit errors.

To discharge their responsibilities for the company and the
industry, they need information that may originate through
several sources: internal safety audits that identify poten-
tial safety hazards; internal incident reporting systems; inter-
nal investigations of critical incidents and performance
monitoring programs. Armed with information, the safety
officer can implement a program for dissemination of safety
critical information to all personnel. The stage is then set for
a safety-oriented organizational climate.

22. Management attitudes can be translated into concrete actions
by the provision of well-equipped, well-maintained and
standardized cockpits and other workstations; the careful
development and implementation of, and rigid adherence to,
SOPs; and a thorough training and checking program that
ensures that operational personnel have the requisite skills to
operate the aircraft safely. These actions build the foundation
on which everything else rests.

23. Honest and forthright self-examination is one of the most
powerful, and cost-effective, risk-management tools available,
and should be performed regularly by all organizations. To
help airline managers identify risks and hazards in their or-
ganizations, an “ICARUS Self-audit Checklist” is in final de-
velopment and will be available from Flight Safety Foundation
in mid-1995. Its questions are designed to identify specific
areas of vulnerability and potential latent failures within a
company so that appropriate corrective and preventive mea-
ures may be taken. Various sections should be completed by
the appropriate organizational elements within a company.

24. Flight Safety Foundation is a valuable and affordable risk
management resource. In addition to sponsoring a variety of
safety workshops, seminars and other meetings, the Foundation
also has a group of operations and safety experts available to
conduct independent aviation safety audits. These audits are
comprehensive and confidential, and are conducted by senior
personnel who have direct experience in airline operations and
management.

25. Aircraft and equipment manufacturers also can be a
valuable resource for risk identification and management.
Manufacturers can be particularly helpful in providing
guidance for the development of operating procedures,
operating manuals, maintenance and personnel training. Often,
they can provide experienced operational and maintenance
personnel to help carriers operate their equipment safely and
efficiently.

26. Many valuable safety publications are available from
government and research organizations to assist managers
and decision makers in their safety objectives. Some of the
most prominent of these sources of information are:

- Accident investigation reports from national authorities;
- Flight Safety Foundation reports and publications;
- International Civil Aviation Organization (ICAO);
- International Air Transport Association (IATA); and,
- U.S. National Aeronautics and Space Administration
 (NASA).

No matter what resources are available, they will be of the
greatest value in a company that demonstrates that aviation
safety begins at the very top of its management.

[Editorial note: The preceding article was adapted from a
briefing prepared by the ICARUS Committee and presented in
a workshop in Geneva, Switzerland, in October 1994.]
Final Report

Presented by

Capt. D.E. Walker
Chairman
Table of Contents

Introduction .. 3
CFIT Aircraft Equipment Team .. 4
Executive Summary .. 5
Report Format .. 6
CFIT Accident Data Base ... 7
Chart Presentation .. 8

Ground-proximity Warning System (GPWS) .. 10
 Updating of GPWS Equipment .. 10
 Use of Terrain Data to Improve GPWS Capability and Performance 11
 Use of GPWS in Domestic as Well as in International Operations 12
European Organization for Civil Aviation Engineers (EUROCAE) Working Group
 WG 44, Ground-collision Avoidance System (GCAS) ... 13
Approach Procedure Design ... 14

Vertical Navigation ... 17
 Barometric Altimetry .. 17
 Three-pointer and drum-pointer altimeters ... 17
 QNH/QFE .. 18
 Altimeter setting units ... 19
 Radio Altimetry ... 20
 Altitude callout ... 20
 Approach waypoints ... 21

Use of the Global Navigation Satellite System (GNSS) .. 23
Excessive-bank-angle Warning .. 25
Head-up Display (HUD) .. 27
Enhanced and Synthetic Vision .. 28
Minimum Safe Altitude Warning System (MSAW) .. 29
Visual Approach Slope Indicator System (VASIS) .. 30
Communication Blocking ... 31
Conclusions ... 32

Appendices

CFIT Aircraft Equipment Team
Introduction

The Controlled-flight-into-terrain (CFIT) Aircraft Equipment Team, formed as part of a Flight Safety Foundation (FSF)-led industrywide CFIT accident reduction effort, has completed its mandate. This report summarizes the objectives achieved and presents proposals for action by the CFIT Steering Committee.

The CFIT Aircraft Equipment Team focused on aircraft equipment as a means of reducing the risk of CFIT accidents. Membership included representatives of industry, regulators, research organizations and the International Civil Aviation Organization (ICAO). Three full meetings of the team were held. Various subgroup meetings were held on an *ad hoc* basis. Meeting reports have been distributed to the members.

The team focused on the assignment of priorities for action. The time frame for completion of the recommendations is five years. A consensus was achieved for all decisions.
CFIT Aircraft Equipment Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capt. M. Aziz</td>
<td>Middle East Airlines, Lebanon</td>
</tr>
<tr>
<td>Capt. T. Baberg</td>
<td>Lufthansa German Airlines</td>
</tr>
<tr>
<td>D. Bateman</td>
<td>AlliedSignal, United States</td>
</tr>
<tr>
<td>Capt. C. Bechet</td>
<td>Avions de Transport Regional (ATR), France</td>
</tr>
<tr>
<td>X. Chazelle</td>
<td>Dassault Électronique, France</td>
</tr>
<tr>
<td>K. Darby</td>
<td>FlightSafety International, Canada</td>
</tr>
<tr>
<td>J.F. Desmoulins</td>
<td>Airbus Industrie, France</td>
</tr>
<tr>
<td>J.A. Diaz de la Serna</td>
<td>International Civil Aviation Organization, Canada</td>
</tr>
<tr>
<td>Capt. D. Flemming</td>
<td>British Airways, United Kingdom</td>
</tr>
<tr>
<td>P. Giordano</td>
<td>FlightSafety International, Canada</td>
</tr>
<tr>
<td>S. Hall</td>
<td>British Airways AERAD, United Kingdom</td>
</tr>
<tr>
<td>J. Hart</td>
<td>Air Canada</td>
</tr>
<tr>
<td>Dr. R. Khatwa</td>
<td>National Aerospace Laboratory (NLR), Netherlands</td>
</tr>
<tr>
<td>T. Lively</td>
<td>Bombardier Inc., Canada</td>
</tr>
<tr>
<td>J.F. Manfroy</td>
<td>Dassault Électronique, France</td>
</tr>
<tr>
<td>P. Mayes</td>
<td>Bureau of Air Safety Investigation, Australia</td>
</tr>
<tr>
<td>M. Moon</td>
<td>General Electric Co. (GEC) Marconi Avionics, United Kingdom</td>
</tr>
<tr>
<td>J. Moore</td>
<td>Smiths Industries, United Kingdom</td>
</tr>
<tr>
<td>B.L. Perry</td>
<td>International Federation of Airworthiness (IFA) Technical Committee, United Kingdom</td>
</tr>
<tr>
<td>Capt. R.T. Slatter</td>
<td>International Civil Aviation Organization, Canada</td>
</tr>
<tr>
<td>B. Spindler</td>
<td>Direction Générale de l'Aviation Civile/Service Technique de la Navigation Aérienne DGAC/STNA, France</td>
</tr>
<tr>
<td>H. Thomas</td>
<td>Honeywell Inc., United States</td>
</tr>
<tr>
<td>Capt. T. Van Heerden</td>
<td>South African Airways</td>
</tr>
<tr>
<td>Capt. D.E. Walker (Chairman)</td>
<td>Aviation Consultant, Canada</td>
</tr>
<tr>
<td>K. Wilson</td>
<td>Transport Canada</td>
</tr>
<tr>
<td>Capt. P. Woodburn</td>
<td>British Airways, United Kingdom</td>
</tr>
<tr>
<td>Capt. T. Young</td>
<td>Air Line Pilots Association, United States</td>
</tr>
</tbody>
</table>
Executive Summary

This report summarizes the work of the FSF CFIT Task Force’s Aircraft Equipment Team. The tasks defined fall into the following broad categories:

- CFIT accident data base;
- Standards for procedural design and chart production;
- Recommended practices/systems;
- Ground-collision warning systems;
- Recognition of proximity to terrain;
- Accurate vertical navigation;
- Accurate horizontal navigation;
- Understanding factors involved in CFIT; and,
- Potential systems for future consideration.

A consensus was achieved for the recommendations concerning each item. Our recommendations were weighted within these categories according to the estimated cost/benefit ratio. In addition to our recommendations, and ICAO actions, it is important that individual States review their regulations in concert with ICAO action.
Report Format

The reports on items under specific headings or subheadings are organized in the following manner:

a) Title or subtitle;
b) Problem statement: Brief overview of the problem;
c) Recommendations: FSF CFIT Task Force recommendations;
d) Results: What is being accomplished;
e) Action: Action to be taken by the CFIT Task Force; and,
f) References: Supporting documents, some of which are located in the Appendices.
CFIT Accident Data Base

Problem statement
The team has used the accident data base to focus on those areas showing the greatest need. Much of the existing accident data base provides only partial coverage of CFIT accidents because it concentrates on larger aircraft. The data originally published by ICAO in 1992 covered all turbine-engine aircraft in commercial and general aviation operations.

Recommendations
As a matter of urgency, improve the means of collecting and disseminating CFIT accident data. Accident investigation agencies are urged to forward their findings to ICAO in the proper format and in a timely manner. This is particularly critical for the nonheavy jet category.

Develop a means to measure the success of the CFIT prevention program.

Results
ICAO and others have continued to collect and refine CFIT data for all turbine-engine aircraft. These agencies report that the CFIT accident data are often incomplete and usually very tardy. The data are collected and refined in specific areas of interest.

Action
All concerned should continue to monitor and record CFIT occurrences.

The CFIT Steering Committee will require a means to measure the effect of the implementation of the CFIT prevention program.

References
CFIT Accidents and Risk for U.S. Airlines Large Commercial Jets (Appendix A).
Corporate, Regional and Air Taxi CFIT Accidents 1989 to 1994 (Appendix B).
Chart Presentation

Problem statement

Navigation errors are a principal cause of CFIT accidents. Improved charts are seen as a major resource in the reduction of navigation errors.

The transition to and from en route charts to departure/arrival charts was of concern and had not been addressed, nor has the question of applying contours and color tinting to other charts. The problem of scale presentation has to be overcome. These items need to be addressed both within ICAO and by the various panels.

Instrument approach charts, standard instrument departure (SID) and standard terminal arrival (STAR) charts often contain a considerable quantity of vital information essential for the safe conduct of flights, in the vicinity of airports and in close proximity to terrain. These charts are frequently complex, with densely packed information. Presentation can result in chart clutter that may cause the pilot to overlook vital information. Errors of extraction and interpretation are known to have contributed to a number of accidents and many incidents. Chart producers should pay particular attention to the need to eliminate clutter and for the need to display only information essential for the safe and proper execution of required procedures. All other related secondary information should be removed to a separate panel or page.

Recommendations

Colored contours should be used to present either terrain or minimum flight altitudes on instrument approach charts.

It is also recommended that ICAO re-examine the specifications for instrument approach charts in ICAO Annex 4, Chapter 11. The objective of this re-examination should be the inclusion of Standards requiring either a presentation showing terrain contours or a presentation including minimum flight altitudes. Further Standards should require the use of brown hypsometric tinting in terrain contour presentations and green tinting in minimum flight altitude presentations. Both presentations should provide for the use of white for the level of the aerodrome to provide contrast and aid the interpretation of the chart. Significant spot heights should be shown on the terrain contour presentation. The terrain profile below an approach should also be shown.

Results

In March 1995 the ICAO Air Navigation Commission (ANC) tasked the Secretariat to review the adequacy of the Annex 4 Aeronautical Charts provisions regarding: the portrayal of terrain contours; the portrayal of minimum flight altitudes; use of color tinting; and the provision of the terrain profile under the final approach segment. Major commercial providers of charts are already using the recommended contour and color tinting systems.

Action

Re-emphasize the importance attached to the recommendation for colored contours and re-examination of instrument approach chart specifications to ICAO and to all providers and users.
Recommend that the Society of Automotive Engineers (SAE) G-10 Committee address the problems raised about the role of navigation errors in CFIT accidents.

Inform all State Civil Aviation Authorities and operators of the advantages and availability of instrument approach procedure charts with contour presentations and of the recommendations to ICAO and SAE.

Reference

Ground-proximity Warning System (GPWS)

Updating of GPWS Equipment

Problem statement
The Aircraft Equipment Team is aware that the continued use of older unmodified GPWS equipment results in the persistent experience of false and nuisance GPWS warnings that could be avoided if the earlier standard of equipment was taken out of service and all equipment was modified to the latest standard available. These unnecessary, and now avoidable warnings, contribute adversely to the acceptance of the GPWS and the prompt reaction required to GPWS warnings by the flight crew.

Recommendation
Early GPWS equipment should be taken out of service and replaced by modern equipment or updated, where modifications are available. Such action would decrease the number of unwanted warnings experienced and thus increase the integrity and reliability of the GPWS and the likelihood of timely pilot response.

Results
In March 1995 the ICAO ANC stressed the need for the provision of adequate GPWS equipment. The minimum requirements in the proposed U.S. Federal Aviation Administration (FAA) Technical Standard Order (TSO)-C92c would add to the existing requirements: a requirement for an aural message to identify the reason for a warning; call for the inclusion of airspeed logic to improve warning time; and a requirement for altitude callout in nonprecision approaches. These features are all available in currently produced equipment. The requirements of the proposed TSO-C92c are considered an example of the minimum adequacy of GPWS equipment.

ICAO has adopted amendments to Annex 6, Parts I and II, that extend the requirement to carry GPWS to all turbine-engine airplanes in international commercial/corporate/private operations where the maximum certificated takeoff mass is in excess of 5,700 kilograms (12, 500 pounds) or which are authorized to carry more than nine passengers. These extended requirements, based on an FSF CFIT Task Force recommendation, are effective from 1 January 1999. The amendments include specification of the minimum functions of the GPWS. These are the original functions dating from the 1970s that have not previously been established as ICAO Standards, and some have been intentionally deactivated in GPWS installations in the past.

Action
Re-emphasize to ICAO the importance of taking out of service or updating early GPWS equipment.

Stress to civil aviation authorities and operators the importance of taking older and less effective GPWS equipment out of service.
Use of Terrain Data to Improve GPWS Capability and Performance

Problem statement
The capability now exists to use terrain data to provide predictive ground-proximity warning capabilities and to provide a visual display of the terrain to the flight crew. This is demonstrated in the enhanced GPWS being developed. Although a limited amount of terrain data are currently available to the flight crew from the aircraft charts and maps, the increasing availability of worldwide terrain data, in digital form, has opened opportunities for many new cockpit systems. ICAO has established requirements for use of the World Geodetic System 1984 (WGS-84) from the beginning of 1998.

Recommendation
Such developments should be actively supported.

Results
In March 1995 the ICAO ANC noted the support of the CFIT Task Force for the further development and introduction of terrain data base proximity warning systems; stressed the need for an accurate worldwide terrain data base; and urged States to facilitate the release of terrain data in digital form of suitable accuracy and geodetic reference for use in civil aviation, in accordance with Article 28c of the Convention on Civil Aviation.

There is a need for development of specifications for a format and parameters for a universal digital terrain data base.

Recommendation
Radio Technical Commission for Aeronautics (RTCA) and European Organization for Civil Aviation Engineers (EUROCAE) are asked to establish a joint working group to define an international specification that details a suitable format and other relevant parameters for a universal digital terrain data base.

Reference
Terrain Data Integrity Requirements (Appendix G).
Use of GPWS in Domestic as Well as in International Operations

Problem statement

The Standards of ICAO Annex 6, Part I, apply to international commercial operations. The new Annex 6, Parts I and II Standards, which take effect 1 January 1999, will apply to both international commercial and international corporate and private operations. Many States have introduced requirements for GPWS in domestic commercial operations as well as in international operations. Other States have not extended requirements to domestic operations.

The CFIT accident record shows that the greater proportion of CFIT accidents have taken place in domestic operations. It is necessary to persuade civil aviation authorities that have not yet extended requirements to domestic commercial operations, to undertake this extension. Such action is essential if the objective of the CFIT prevention program is to be achieved.

Very few States require the carriage of GPWS in corporate or private operations. Thought must be given to this area by the regulatory authorities because the new ICAO Standards for general aviation, corporate and private operations, come into force on 1 January 1999. Some corporate operators have voluntarily equipped their aircraft with GPWS, and the business aviation community is showing a great interest in CFIT prevention.

Recommendation

All aircraft in commercial and corporate use should be equipped with GPWS, even where these airplanes are used only in domestic operations.

Results

In June 1995, the ICAO Council approved a report for the ICAO Assembly (19 September to 4 October 1995) on CFIT prevention activity. In addition to the report, the Council will present a draft resolution for adoption by the Assembly to urge States to implement the CFIT prevention program and the related ICAO provisions, particularly those concerning the carriage of GPWS, in domestic as well as in international operations.

Action

Every opportunity should be taken to stress to civil aviation authorities and operators the importance of CFIT prevention in domestic operations. Maximum use should be made of the ICAO 31st Assembly Resolution if this is adopted.

Reference

European Organization for Civil Aviation Engineers (EUROCAE) Working Group WG 44, Ground-collision Avoidance System (GCAS)

Problem statement
This group is preparing minimum operational performance specifications (MOPS) for ground-collision avoidance systems (GCAS). This document defines, inter alia, mandatory and nonmandatory warnings, pull-up/reaction times and acceptable failure rates. Lateral guidance is currently not mandatory. It is expected that Joint Aviation Regulations–Operations (JAR-OPS) and the Joint Transport Service Orders (JTSO) for GPWS will reference the GCAS document.

Recommendations
Preparation of MOPS for a ground-collision avoidance system.

That a coordinated effort be made by the appropriate bodies to establish standards for the ground-collision avoidance system. These efforts are to be correlated with ICAO standards.
Approach Procedure Design

Problem statement

The design of the nonprecision approach was seen by the group as an area where much could be accomplished at little cost. This objective can be met by the simplification of the nonprecision approach, the specification of a stabilized approach and the provision of a nominal three-degree glide path.

Recommendations

General

Nonprecision approach procedures should be constructed, whenever possible, in accordance with established stabilized approach criteria.

It is also recommended that ICAO re-examine the specifications for the design and presentation of nonprecision approach procedures in the Procedures for Air Navigation Services Aircraft Operations (PANS-OPS,Doc. 8168), Volume II, Annex 4 Aeronautical Charts and associated guidance material. The objective of this re-examination is to require consideration of the stabilized approach; the provision of a final approach fix; and to require the provision of a three-degree approach slope, where compatible with the obstacle environment. The need to show the underlying obstacle clearance profile on these instrument approach charts should also be considered.

Specific

One final approach segment per navigation aid/runway combination;

If a stepped nonprecision approach cannot be avoided, then the intermediate profile-angles should be shown; and,

The position of the start of the final descent path is to be published.

Recommendations to operators

Nothing in ICAO PANS-OPS prevents the immediate introduction by operators of specific nonprecision instrument approach procedures that take into account the recommendations of the CFIT Task Force, and some operators have been doing so for many years. The concept will require the definition of a fix at the position at which the intermediate approach altitude/height intersects the nominal glide path. Proposals for the amendment of PANS-OPS, from the tenth meeting of the ICAO Obstacle Clearance Panel (31 October to 10 November 1994), would introduce optimum descent gradients for some types of nonprecision approaches where currently only the maximum and minimum gradients are specified.
Recommendation to ICAO

Amplify the 1994 recommendation to ICAO as follows:

Nonprecision approach procedures should be constructed, whenever possible, in accordance with established stabilized approach criteria. If a stepped nonprecision approach cannot be avoided, then the intermediate profile-angles should be shown;

There should be one final approach segment per navigation aid/runway combination;

The final approach glide path should be a nominal three degrees where terrain permits; where a steeper glide path is necessary, up to the maximum angle permitted. A continuous descent is preferred to a stepped approach;

The final segment should start 2,000 feet to 3,000 feet (610 meters to 915 meters) above airport elevation;

There should be provision and publication of a fix at the intersection of the intermediate approach altitude/height and the nominal glide path; and,

Nonprecision approach charts should show the descent profile to be flown;

There should be provision for and publication of appropriate altitude/height checks on the glide path; and,

The profile of the terrain beneath the final approach segment should be provided.

Recommendation to Civil Aviation Authorities and Operators

Continue to emphasize to civil aviation authorities and operators the need to improve the safety of nonprecision approaches by use of the stabilized approach, a three-degree glide path, a final approach point and a final approach fix and the urgency for action on this matter.

Results

In March 1995, the ICAO ANC tasked the Obstacle Clearance Panel to take account of the need for a stabilized approach, based on a three-degree glide path and a final approach fix, in the design and presentation of nonprecision approaches.

References

Information provided by KLM, 19 August 1994 (Report to Committee).

Vertical Navigation

Loss of vertical positional awareness is a principal factor contributing to CFIT accidents. Improved indications of both altitude and height above terrain are seen as reducing the risk of a CFIT accident.

Barometric Altimetry

Three-pointer and drum-pointer altimeters

Problem statement

There is ample evidence that pilot misinterpretation of three-pointer and drum-pointer altimeters can lead to CFIT accidents. There is a long documented history of these errors.

Recommendations

All States and operators should be informed of the dangers inherent in the use of three-pointer and drum-pointer altimeters and usage of these altimeters should be discontinued.

ICAO should examine the case for discontinuing the usage of three-pointer and drum-pointer altimeters and should take appropriate action to amend Annex 6 in this respect.

Results

In March 1995, the ICAO ANC tasked the Secretariat to consider the need to limit the use of three-pointer and drum-pointer altimeters. This action is in hand through initial consultation with the ICAO Operations Study Group.

ICAO Annex 6, Parts I, II and III, Sections II and III amendments adopted in 1995 include the addition of a note to the requirement for sensitive pressure altimeters: “Note. Due to the long history of misreadings, the use of drum-pointer altimeters is not recommended.” While the addition of a note was possible in a short time scale, this action is not sufficiently comprehensive or strong enough to answer the problem posed by both these types of altimeters.

Action

Stress to civil aviation authorities and operators the dangers inherent in the use of three-pointer and drum-pointer altimeters.

References

Human Factors Digest No. 6 (Circular 238): 19.

Problem statement

These very different altitude and height reference systems are in widespread use. The Aircraft Equipment Team was unable to recommend a resolution of these differences. During the past few years many operators have changed to the use of QNH [code: "To what should I set my altimeter to read your airfield height?"] for takeoff and landing operations. This was done from the time that radio altimeters provided at least some height information that could be taken to replace the height above touchdown provided by using QFE [code: "To what should I set my altimeter to obtain height above your location?"] Also, the barometric pressure reported by a particular station]. The impulse to use only QNH is driven by the resulting reduction in need to adjust the altimeter setting. Reduction in the number of times the altimeter setting is changed materially reduces the possibility of error. But there are problems where operators use QFE in an area where the majority use QNH and more particularly in those international operations where users of one system fly to airports where the other system is in use. Although it should be possible to obtain both QNH and QFE altimeter settings, this is not universally the case.

There may not be a solution to this problem. It is similar to the problem of different units for distance and altitude, in that different aviation traditions have established different systems. Use of QFE does give the pilot a direct statement of height above touchdown, which those using QNH can only obtain through a mental computation or comparison of pointer position to a bezel bug set at the touchdown zone (TDZ) elevation. For these reasons instrument approach charts give both altitudes and heights for relevant points in procedures. Use of QNH reduces the number of altimeter setting changes and eliminates the need to make a change during a missed approach, where this would otherwise be necessary.

Both altitude and height information could readily be provided in flight management system (FMS)-equipped aircraft where currently only altitude is provided on the situation display, in addition to the conventional altimeters. Such provision of a direct height above touchdown readout would only require a software change.

Recommendations

Develop rigorous procedures and training in the use of both systems for all flight crews who operate under both systems; and,

There is no doubt that the ideal solution would be to have one system in universal use and that logically this should be the system that calls for fewer changes to the altimeter settings. At the same time, other means of displaying the height above touchdown should be investigated.

Results

In March 1995, the ICAO ANC was informed that the CFIT Task Force would report at a later date on the use of QNH and QFE. Revised ATC procedures have been recommended to the ATC Team.
Action

Recommend that ICAO consider the specification of the use of the QNH reference system for all operations below the transition level/altitude.

Investigate the provision of a direct “height above touchdown” display on aircraft equipped with FMS.

Altimeter setting units

Problem statement

Although international standards call for the use of the hectopascal as the unit for the reporting of atmospheric pressure, the continued use of inches and millimeters of mercury, as well as hectopascals, for reporting atmospheric pressure in different areas of the world, and thus for altimeter setting units, was recognized as likely to continue for some time.

Because of the above differences, specific procedures are used to identify the units used in meteorological reports, but these procedures do not extend to usage in ground-to-air transmissions where the identification of the units is currently optional.

Recommendation

All States should standardize on the use of hectopascals for altimeter settings in accordance with the established international standards, and thus eliminate the potential hazard of mis-setting of the altimeter.

Results

In March 1995 the ICAO ANC was provided with the above recommendation and informed that the CFIT Task Force would be reporting further on this question.

To avoid some errors in altimeter settings resulting from misinterpretation of which units have been provided in a ground-to-air transmission, it is suggested that the unit of measurement be transmitted with the first mention of altimeter setting at international airports. The unit of measure should also be included in automatic terminal information system (ATIS) broadcasts, either voice or datalink. Rigorous procedures and training are necessary where flight crews may be exposed to the use of barometric units other than those to which they are normally accustomed. The use of the term “hex” instead of hectopascal was seen as improving the communication of the altimeter setting between controller and pilot. These questions are also to be discussed by the CFIT Task Force ATC Team.

It has been established that within areas where a specific pressure unit, particularly “inches” is used (and the atmospheric pressure can at times be very low), there is a tendency to set too high a setting through nonrecognition or nonacceptance of the low value. Settings such as 28.98 inches have been mis-set as 29.98 inches, resulting in an altitude/height error of 1,000 feet (305 meters) low. The suggestion in these circumstances is to interpose the word “low” immediately before the pressure setting in ground-to-air transmissions. This proposal has also been referred to the ATC Team.
Action
Re-emphasize the 1994 recommendation and urge States to comply with the international standard for the reporting of atmospheric pressure;

Propose the statement of the applicable pressure unit in the first ground-to-air transmission of an altimeter setting at an international airport and statement of the units in ATIS broadcasts, either voice or datalink;

Propose consideration of the abbreviated term “hex” for the unit “hectopascal” to refer to this unit, which is simpler for users of languages other than English; and,

Propose the interposition of the word “low” before very low altimeter settings, to assist recognition of low settings by flight crew. Actual values to trigger action would need to be determined.

Radio Altimetry

Altitude callout

Problem statement
The team discussed ways in which existing radio altimeter installations could be used to provide terrain clearance information. It was accepted that the widespread operational experience already available on such callouts could provide better guidance on their use than a new simulation program.

Many aircraft have radio altimeters, primarily to support Category II and III operations. However, many operators also employ radio altitude to enhance terrain awareness through a variable combination of crew callouts, automated callouts and associated procedures. These practices have been confirmed through a survey of international operators, who are members of the IATA Flight Operations Advisory Committee (FLOPAC).

It was concluded that use of radio altimetry could enhance terrain awareness and that the full capability of radio altitude information should be exploited. Automated voice callouts of appropriate radio altitudes and associated flight crew procedures should be provided. Some operators have instituted an automated callout at 500 feet (153 meters). This callout, known as a “smart” callout, is arranged to occur only during a nonprecision approach to alert the pilot to proximity of terrain. Use of crew callout, where automated callout was not provided, was also seen as a valuable and unexploited means of enhancement of terrain awareness. Neither automated callouts nor crew callouts will provide protection unless appropriate crew procedures and training are provided.

Recommendations
The radio altitude callout facility should be employed to enhance situational awareness of proximity to terrain. Operators should ensure that the facility is used and appropriate procedures provided. Where altitude callout is not available, or where GPWS is not fitted, a radio altimeter
can be used to provide enhanced situational awareness with the use of appropriate procedures.

Results

The ICAO ANC discussed the question of automated altitude callout when it considered the amendments to the GPWS requirements that have now become part of Annex 6. It was considered that altitude callout was not necessarily a function of the GPWS, but may be provided by other means. In March 1995 the ANC noted that the CFIT Task Force was intending to report further.

Further thinking on the altitude callout has prompted confirmation of this means of enhancement of situational awareness. Since altitude callout can, and is, being provided by some manufacturers by means not associated with the GPWS, a requirement for automated callout should not be associated with the GPWS. It is suggested that automated callout be required as a function to assist in the prevention of CFIT specifically to warn of the proximity of terrain and that the radio altimeter reading should be included in the instrument scan and with the nonprecision instrument approach. The precise detail of the function should be left to the individual operator.

Action

Propose that all aircraft that are required to be equipped with GPWS also be provided with the means to generate automated altitude callouts for initial warning of proximity to terrain and for use during nonprecision instrument approach procedures;

Propose that crew callouts are used in all aircraft not required to be equipped with GPWS, but which are equipped with radio altimeters, for initial warning of proximity to terrain and during the conduct of nonprecision approach procedures; and,

Inform all civil aviation authorities and operators of the necessity for appropriate flight crew procedures and training to support the general introduction of automated and flight crew callouts.

Approach waypoints

Problem statement

With a nominal three-degree slope extending upwards from 50 feet (15 meters) above the runway threshold to at least 2,000 feet (610 meters) above airport elevation, the notion of waypoints along that slope becomes valid.

The first waypoint is located at the intersection of the intermediate segment and the final approach segment where the nominal glide path commences, normally not less than 2,000 feet above airport elevation. Some AIPs now define that point. That point may be above the maximum range of the radio altimeter.

The second and third waypoints are defined exclusively by radio altimeter readout. Because of terrain mapping difficulties, the horizontal position of those waypoints may not be defined. The second point is defined by the radio altimeter indicating 1,000 feet above ground level (AGL). The third is where the radio altimeter indicates 500 feet AGL.
Several major air carriers use radio altimeter heights for an aural alert to the crews with defined crew responses. Examples are 2,500 feet (763 meters, when the radio altimeter comes alive), 1,000 feet and for a nonprecision approach, a so-called “smart call” at 500 feet on the radio altimeter.

Action

Propose that the notion of crew alerting by radio altimeter heights be adopted as standard for use with related cockpit procedures developed by the Operations Group.

Reference

Use of the Global Navigation Satellite System (GNSS)

Problem statement
Many aircraft are now fitted with GNSS equipment. Although GNSS equipment may not yet be approved as a stand-alone means of navigation, it does provide the flight crew with further data on their location when they have reason to question the availability and/or accuracy of the primary navigation system(s). Such errors or failures may be critical, particularly in the approach-and-landing phase of a flight in difficult terrain.

The use of GNSS should be encouraged to provide back-up navigation information, particularly in the approach-and-landing phase of flight. To achieve this safety benefit, the GNSS output must be displayed in a way that is readily usable by the flight crew and that will alert them to potential navigation errors. Appropriate crew procedures and training will also be required.

Recommendation
The development and availability (of GNSS) should be strongly supported.

Results
In March 1995 the ICAO ANC stressed to States the potential for accuracy and the safety inherent in the GNSS. The ANC also informed three ICAO panels, the Global Navigation Satellite System Panel (GNSSP), the All Weather Operations Panel (AWOP) and the Obstacle Clearance Panel (OCP), of the urgent need for application of GNSS to nonprecision instrument approach procedures.

At the ICAO Special Communications/Operations Divisional Meeting (1995) (SP COM/OPS/95), Montreal, Canada, 27 March to 7 April 1995, the need for the development of GNSS nonprecision instrument approach procedures for the overlay of existing procedures and for new procedures was again stressed. GNSS nonprecision approaches will provide all the detail required to apply the stabilized approach and the three-degree glide path. Implementation of these approach procedures will reduce the dangers in many conventional nonprecision approaches where there is no distance-to-threshold information and those without a final approach fix. Progressive development of the GNSS precision approach capability will enable the elimination of the nonprecision approach in all its forms, except a few circling approaches.

Rapid development and publication of appropriate GNSS nonprecision instrument approach procedures are necessary to reduce the risk of unofficial use of the GNSS navigation capability. There are a large number of GNSS receivers available and in use.

Action
Propose the rapid introduction of specifically designed GNSS nonprecision approach procedures where an appropriate level of accuracy is available that conforms to the use of the stabilized approach and the three-degree glide path with a defined final approach point. Glide path angles steeper than three degrees may be used if necessary, up to the maximum permitted.
References

ICAO. Procedures for Air Navigation Services, Aircraft Operations (PANS-OPS, Doc 8168), Volumes I and II.

ICAO Obstacle Clearance Panel, 10th Meeting Report.
Excessive-bank-angle Warning

Problem statement
The Aircraft Equipment Team is convinced that excessive-bank-angle warning would help avoid CFIT and loss-of-control accidents. Aircraft have been destroyed in accidents when excessive bank angles developed without detection by the flight crew. High undetected bank angles have resulted in loss of vertical control. The risk of future occurrences remains high. Excessive-bank-angle occurrences have been classed with CFIT occurrences because GPWS models from the MK V have provided an excessive-bank-angle warning facility. Excessive-bank-angle warning is provided by some airframe manufacturers independently of the GPWS.

Results
The ICAO ANC discussed the question of excessive-bank-angle warning when it considered the amendments to the GPWS requirements that have now become part of Annex 6. It was considered that this warning was not necessarily a GPWS function, but may be provided by other means. In March 1995 the ANC noted that the CFIT Task Force was intending to include the excessive-bank-angle warning in its next report.

Many of these incidents occur because of lack of tactile sensory feedback. These sensations are often masked by the inadvertent lowering of the aircraft’s nose with subsequent altitude loss. Further analysis of excursions in bank angle indicates that these occurrences have had various causes:

- Undetected and uncommanded roll with autoflight engaged;
- Looking outside the cockpit at inadequate visual reference during low altitude maneuvers;
- Vertigo; and,
- Failed attitude reference display.

It is therefore proposed that means be provided to alert the flight crew to an excessive bank angle, particularly when maneuvering close to terrain. Actual values at which the warning should activate depend on the phase of flight. The function should involve:

- Built-in maximum-bank limiters in fly-by-wire aircraft;
- Enhanced/emphasized high bank angles on the attitude display; and,
- Visual or aural alert of high or unusual roll angles.

Action
Propose that all aircraft required to be equipped with GPWS also be provided with the means to generate an excessive-bank-angle warning.
Reference

Partial List of Excessive-bank-angle CFIT Accidents/Incidents (Appendix C).
Head-up Display (HUD)

Problem statement
The team believed that the head-up display (HUD) may be of benefit in all phases of flight, particularly in the final approach phase of nonprecision instrument approaches and visual approaches. The CFIT Working Group is aware of the increasing use of HUDs for air carrier operations and knows why operators with fully automatic instrument approach systems do not want to fit HUDs.

Recommendations
HUD benefits should be publicized more widely. Their use should be encouraged and development should be continued to eliminate known limitations. Further investigations that could demonstrate whether or not the use of HUDs has the potential to reduce the CFIT risk are recommended.

Results
In March 1995 the ICAO ANC noted the CFIT Task Force’s support for HUD and the HUD’s potential to contribute to safety in nonprecision approach and visual approach and landings.

Action
Such developments should be strongly supported.

References

Enhanced and Synthetic Vision

Problem statement
The team was aware of developments in sensor and database technologies in the field of enhanced and synthetic vision systems. Such systems attempt to give the flight crew an enhanced image of the external environment, or a completely synthetic reproduction of the external environment, and may have the potential to reduce the CFIT risk. However, many unresolved issues exist with respect to these systems. The CFIT Equipment Team recommends any activities that could demonstrate and quantify whether such systems are, or would be, able to offer safety benefits.

Recommendation
Such developments should be strongly supported.

Results
In March 1995 the ICAO ANC noted the support for the development and introduction into service of enhanced and synthetic vision systems.
Minimum Safe Altitude Warning System (MSAW)

Problem statement
This system is used to assist in the detection of inadvertent flight towards terrain. It is the understanding of the Team that MSAW can be readily implemented at little cost.

Action
Remind the ATC team of the recommendations for use of MSAW and other means of alerting ATC to the terrain proximity of aircraft under their control; and,

Present proposals to the ICAO Air Navigation Commission and individual administrations to make MSAW a standard for CFIT prevention.
Visual Approach Slope Indicator System (VASIS)

Problem statement
The VASIS display is sometimes disabled during certain weather conditions.

Recommendation
VASIS signals are accepted pilot aids. The use of VASIS should be encouraged under all approach conditions. They should not be turned off at any time.

Action
Recommend to ICAO that VASIS installation and continuous operation be supported.
Communication Blocking

Problem statement
The CFIT Working Group is aware that the inability to communicate because of such factors as “stuck” microphones, failures of flight crew to release the press-to-talk (PTT) switch, PTT switch failures and other disruptions have been present in a number of incidents. This can hamper or prevent the transfer of crucial information between ATC and crew in a timely manner.

Recommendation
The CFIT Working Group encourages the use of any appropriate means (which has the required level of integrity and reliability) that restores normal communications and/or prevents communications blockage.
Conclusions

CFIT Accident Data Base
 • Continuous measurement of the incident/accident rate is essential to assess any changes as a result of CFIT prevention activities.

Chart Presentation
 • Improved charting should be made available to every pilot on every flight. This may be the only CFIT prevention tool available.

Ground-proximity Warning System (GPWS)
 • Improved systems are available.
 • The trained pilot is an essential component of any system.

Approach Procedure Design
 • Nonprecision approaches show high CFIT risk.
 • Simplifying them reduces the risk.

Vertical Navigation
 • Errors in vertical navigation have many causes.
 • Each of the suggested actions reduces the risk.

Use of GNSS/GPS
 • Lateral navigational errors could be reduced by reference to GPS/GNSS

Excessive-bank-angle Warning
 • Inappropriate bank angles at low altitudes contribute to CFIT accidents.
 • Alerting or prevention systems would reduce the incidence.

ICAO Actions
 • Only international standards will reduce the CFIT accident rate to the target level. Application of international standards in domestic operations is seen as a major step towards reduction of CFIT rates.

Other Topics Considered
 • There are many systems that could contribute to the reduction of the CFIT rate. Only those that are likely within the next five years were considered.
David E. Walker
Chairman, CFIT Aircraft Equipment Team
5125 Patricia, Montreal, QC
Canada, H4V 1Y9
Phone: (514) 482-9583
Fax: (514) 481-3273
Internet 75346.1331@compuserve.com
CFIT ACCIDENTS AND RISKS FOR UNITED STATES AIRLINES

LARGE COMMERCIAL JETS

CFIT ACCIDENTS AND RISK

<table>
<thead>
<tr>
<th>TYPE OF CFIT LOSS</th>
<th>CFIT ACCIDENTS AND RISK</th>
<th>REDUCTION ((\times)) OR INCREASE (+) TIMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE-GPWS 1960 thru 1975</td>
<td>POST-GPWS 1976 thru 1994</td>
</tr>
<tr>
<td>Initial Climb</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>Descent</td>
<td>6</td>
<td>0.17</td>
</tr>
<tr>
<td>Accelerating</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Climb out</td>
<td>6</td>
<td>0.17</td>
</tr>
<tr>
<td>Initial approach</td>
<td>0.14</td>
<td>0</td>
</tr>
<tr>
<td>Missed approach</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>Note configured to land</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>Configured to land/no glideslope</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>Below glideslope</td>
<td>8</td>
<td>0.22</td>
</tr>
<tr>
<td>Excessive descent rate</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>TOTAL CFIT ACCIDENTS & RISKS</td>
<td>30</td>
<td>0.85 x 10</td>
</tr>
</tbody>
</table>

Flight segments: 35 x 10 / 108 x 10
Aircraft numbers: 2800 in 1976 / 4800 in 1994

CFIT Risk 1990 thru 1994 (5 years) 0.028 x 10- flights with 7-\(_\) x 10 flights per year
CFIT Risk 1985 thru 1994 (10 years) 0.074 x 10- flights

In the United States (2) 0.033 x 10 flights
Outside the United States (3) 0.44 x 10 flights

If aircraft had been fitted with MK II or better, losses would have been reduced probably to 6 (0.055 x 10-).
If aircraft has been fitted with MK V/VI/VII system with “smart” altitude callouts, the losses would have probably been reduced to 3 (0.03 x 10-) .

10 CFIT Accidents. One accident with NO GPWS installed. One accident with glideslope receiver failure. Nine accidents equipped with MK I GPWS.
APPENDIX B

CORPORATE, REGIONAL AND AIR TAXI CFIT ACCIDENTS

1994

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE, AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>9 Jan</td>
<td>Athens, Greece DO-228</td>
<td>Hit ridge-powerlines 7 NM from runway, VOR-DME 18L.</td>
<td>--</td>
</tr>
<tr>
<td>Freight</td>
<td>14 Jan</td>
<td>Sydney, Australia AC 690</td>
<td>Flew into sea 10 NM short at night, rwy 34.</td>
<td>1</td>
</tr>
<tr>
<td>Positioning</td>
<td>18 Jan</td>
<td>Kinshasa, Zaire LJ-24D</td>
<td>Hit short 10 NM at night, visual 24.</td>
<td>2</td>
</tr>
<tr>
<td>Charter</td>
<td>24 Jan</td>
<td>Attenrhein, Switzerland Ce-425</td>
<td>Flew into lake - 2 NM, final 10.</td>
<td>5</td>
</tr>
<tr>
<td>Positioning</td>
<td>27 Jan</td>
<td>Meadow Lake, Sask. IAI-1124</td>
<td>Hit 2 NM SE - stall?, circling 26.</td>
<td>2</td>
</tr>
<tr>
<td>Scheduled</td>
<td>23 Feb</td>
<td>Tingo Maria, Peru Yak-40</td>
<td>Flew into mountain FLI31, NDB departure.</td>
<td>31</td>
</tr>
<tr>
<td>Positioning</td>
<td>7 March</td>
<td>Virginia AC-690</td>
<td>Hit trees on approach</td>
<td>1</td>
</tr>
<tr>
<td>Freight</td>
<td>9 March</td>
<td>Australia SA-226</td>
<td>Hit short on approach</td>
<td>1</td>
</tr>
<tr>
<td>Business</td>
<td>23 March</td>
<td>Bogota, Colombia Ce-VI</td>
<td>Hit hillside, initial approach.</td>
<td>4</td>
</tr>
<tr>
<td>Scheduled</td>
<td>6 April</td>
<td>Latacunga, Ecuador DHC-6</td>
<td>Hit 13,400 mtn 300' below crest, premature descent.</td>
<td>17</td>
</tr>
<tr>
<td>Regional</td>
<td>25 April</td>
<td>Nangapinoh, Indonesia BN-2A</td>
<td>Hit mtn at 5400' level, initial descent.</td>
<td>10</td>
</tr>
<tr>
<td>Regional</td>
<td>27 April</td>
<td>Stratford, CT PA-31T</td>
<td>Hit 3 NM short, final 06.</td>
<td>8</td>
</tr>
<tr>
<td>Corporate</td>
<td>7 May</td>
<td>Zaire Be-200</td>
<td>Hit short of runway</td>
<td>9</td>
</tr>
<tr>
<td>Medevac</td>
<td>26 May</td>
<td>Papeete, Tahiti Mu 2B</td>
<td>Hit short by 4 NM on ILS Rwy 04 approach</td>
<td>5</td>
</tr>
<tr>
<td>Perry</td>
<td>27 May</td>
<td>Germany Be-90C</td>
<td>Hit in steep turn back to runway</td>
<td>1</td>
</tr>
<tr>
<td>Medevac</td>
<td>31 May</td>
<td>Thompson, Manitoba Merlin II</td>
<td>Hit FAF NB 3.4 short, B/C LOC, rwy 33.</td>
<td>2</td>
</tr>
<tr>
<td>Regional</td>
<td>13 June</td>
<td>Uruapan, Mexico Metro II</td>
<td>Hit terrain while maneuvering for 3rd approach.</td>
<td>9</td>
</tr>
<tr>
<td>Scheduled</td>
<td>18 June</td>
<td>Palu, Indonesia F-27</td>
<td>Hit mtn 3-1/2 NM short, initial approach.</td>
<td>12</td>
</tr>
<tr>
<td>Charter</td>
<td>19 June</td>
<td>Washington DC-Dulles LJ-25D</td>
<td>Hit 1-1/2 NM short, ILS 1R.</td>
<td>12</td>
</tr>
<tr>
<td>Charter</td>
<td>26 June</td>
<td>Abidjan, Ivory Coast F-27</td>
<td>Hit 2-1/4 NM short, VOR/DME 21</td>
<td>17</td>
</tr>
<tr>
<td>Government</td>
<td>9 July</td>
<td>Kulu, India Be-200</td>
<td>Hit mtn 7 NM SW of airport, NDB.</td>
<td>13</td>
</tr>
<tr>
<td>Charter</td>
<td>17 July</td>
<td>Fort de France BN-2B</td>
<td>Hit at 2780' mtn, 15' below crest, 6 NM, VOR/DME.</td>
<td>6</td>
</tr>
<tr>
<td>Private</td>
<td>24 July</td>
<td>Portsmouth, OH PA-32T</td>
<td>Hit trees on rising terrain, departure rwy 18.</td>
<td>5 of 6</td>
</tr>
<tr>
<td>Gov t (Drug Enforce)</td>
<td>27 Aug</td>
<td>Pucalpa, Peru CASA-212</td>
<td>Hit hill, NDB/VOR.</td>
<td>5</td>
</tr>
<tr>
<td>Charter</td>
<td>13 Sept</td>
<td>Abuja, Nigeria DHC-6</td>
<td>Hit 5 NM short, VOR-DME 22.</td>
<td>2 of 5</td>
</tr>
<tr>
<td>Corporate</td>
<td>17 Sept</td>
<td>Texas HS-125</td>
<td>Hit Trees on approach</td>
<td>--</td>
</tr>
<tr>
<td>Private</td>
<td>10 Oct</td>
<td>Missouri AC 690</td>
<td>Hit into gound in initial climb</td>
<td>1</td>
</tr>
<tr>
<td>Freight</td>
<td>29 Oct</td>
<td>Ust-Ilimsk, Russia AN-12</td>
<td>Hit short on approach by 1-2 NM at night.</td>
<td>21</td>
</tr>
<tr>
<td>OPERATION</td>
<td>DATE</td>
<td>PLACE</td>
<td>AIRCRAFT TYPE</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Charter, Freight</td>
<td>4 Nov</td>
<td>Kebu, Nabire, New Guinea</td>
<td>DHC-6</td>
<td>Hit hill, approach.</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>19 Nov</td>
<td>Saumer, France</td>
<td>Be-C90</td>
<td>Hit ground while circling after successful locater; (NDB) approach.</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>22 Nov</td>
<td>Bolvovig, New Guinea</td>
<td>BN2A-2D</td>
<td>Hit hillside on initial approach.</td>
</tr>
<tr>
<td>Scheduled</td>
<td>10 Dec</td>
<td>Koyuk, Alaska</td>
<td>Ce-402</td>
<td>Hit short on approach.</td>
</tr>
<tr>
<td>Business</td>
<td>16 Dec</td>
<td>Michigan</td>
<td>Ce-501</td>
<td>Hit short into approach lights</td>
</tr>
<tr>
<td>Scheduled</td>
<td>17 Dec</td>
<td>Tabubil, Papua N. Guinea</td>
<td>DHC-6</td>
<td>Hit ridge enroute to Selbang (25 miles east) on initial climb.</td>
</tr>
</tbody>
</table>

| (3) Large Turboprop | (7) 10 Seat Turboprop | No GPWS equipment on any of the above aircraft |
| (6) 10 to 30 Seat Turboprop | (5) 6 Seat Jet |

CFIT Aircraft Equipment Team
APPENDIX B (Continued)

1993

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional-Schd</td>
<td>6 Jan</td>
<td>Paris, France</td>
<td>DHC-8</td>
<td>Hit short while repositioning ILS 27 to ILS 28</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>8 Jan</td>
<td>Hermosillo, Mexico</td>
<td>L-35A</td>
<td>Hit Mountain on approach to VOR 23</td>
<td>9</td>
</tr>
<tr>
<td>Private</td>
<td>29 Jan</td>
<td>Marfa, TX</td>
<td>Be-90</td>
<td>Circling to runway 12, IMC after VOR 30</td>
<td>0 of 8</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>30 Jan</td>
<td>Ackh, Inur, Malaysia</td>
<td>SC-7</td>
<td>Hit terrain en route</td>
<td>16</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>7 Feb</td>
<td>Iquacu, Brazil</td>
<td>Be-90</td>
<td>Hit 0.6 NM short - IMC; heavy rain</td>
<td>6</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>8 Feb</td>
<td>Lima, Peru</td>
<td>PA-42-720</td>
<td>Hit mountain Initial descent</td>
<td>6</td>
</tr>
<tr>
<td>AT-Non Sched</td>
<td>27 Feb</td>
<td>Rio de Janeiro</td>
<td>L-31</td>
<td>Hit short by 300 feet</td>
<td>--</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>18 Mar</td>
<td>Trijillo, Peru</td>
<td>Be-90E</td>
<td>Hit mountain initial descent 50NM short</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>19 Mar</td>
<td>Dagali, Norway</td>
<td>Be-200</td>
<td>Hit 3 NM short LOC/DME 26, night</td>
<td>3 of 7</td>
</tr>
<tr>
<td>Reg I-NonSched</td>
<td>23 Mar</td>
<td>Cuiaba, Brazil</td>
<td>EMB 110</td>
<td>Hit terrain on climb out</td>
<td>6</td>
</tr>
<tr>
<td>Private-Trng</td>
<td>1 April</td>
<td>Blountiville, Texas</td>
<td>SA-226T</td>
<td>Undershoot outside outer marker</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi-Med.</td>
<td>6 April</td>
<td>Casper, WY</td>
<td>MU-2B-35</td>
<td>Hit terrain on DME Arc ILS 8, night</td>
<td>4</td>
</tr>
<tr>
<td>Private</td>
<td>1 May</td>
<td>Mount Ida, AR</td>
<td>Be-90</td>
<td>Hit Mt. Ida (3 NM short). Climb IMC</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi-Trng</td>
<td>25 May</td>
<td>Sante Fe, NM</td>
<td>SA-226T</td>
<td>Hit hill while circling to Rwy 15.5 NM short at night</td>
<td>4</td>
</tr>
<tr>
<td>Reg Cargo NS</td>
<td>5 June</td>
<td>El Yo Pal, Colombia</td>
<td>DHC-6</td>
<td>Hit short while circling</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>11 June</td>
<td>Young, Australia</td>
<td>PA-31</td>
<td>Hit rising ground while circling after ND approach</td>
<td>7</td>
</tr>
<tr>
<td>Reg-Carg-Sch</td>
<td>25 June</td>
<td>Atinues, Namiba</td>
<td>Be-200</td>
<td>Hit terrain on missed approach</td>
<td>3</td>
</tr>
<tr>
<td>Government</td>
<td>15 July</td>
<td>Bombay, India</td>
<td>Be-90</td>
<td>Hit hill on approach IMC</td>
<td>4</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>31 July</td>
<td>Bharatpur, Nepal</td>
<td>DO-228</td>
<td>Hit mountain on initial approach</td>
<td>19</td>
</tr>
<tr>
<td>Air Taxi-Med.</td>
<td>7 Aug</td>
<td>Augusta, GA</td>
<td>Be-90</td>
<td>Hit 1-1/2 NM short on approach IMC to ILS 17</td>
<td>4</td>
</tr>
<tr>
<td>AT-Positioning</td>
<td>17 Aug</td>
<td>Hartford, CT</td>
<td>SA-226T</td>
<td>Hit 1/3 NM short IMC to Rwy 02</td>
<td>2</td>
</tr>
<tr>
<td>AT-Positioning</td>
<td>27 Sept</td>
<td>Lansing, MI</td>
<td>Be-300</td>
<td>Hit 2 NM after 7.0 IMC turning</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>19 Oct</td>
<td>Orchid Is., Taiwan</td>
<td>DO-228</td>
<td>Undershoot</td>
<td>--</td>
</tr>
<tr>
<td>Regional-NS</td>
<td>25 Oct</td>
<td>Franz Josef Glacier, NZ</td>
<td>Nomad</td>
<td>Hit Glacier VMC into IMC</td>
<td>9</td>
</tr>
<tr>
<td>Gov t-FAA</td>
<td>26 Oct</td>
<td>Winchester, VA</td>
<td>Be-300</td>
<td>Hit terrain while awaiting IFR clearance</td>
<td>3</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>27 Oct</td>
<td>Namos, Norway</td>
<td>DHC-6</td>
<td>Hit 3 NM short on NDB approach</td>
<td>12</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>1 Dec</td>
<td>Hibbing, MN</td>
<td>BAe JS-31</td>
<td>Hit 3 NM short on LOC (B/C) Rwy 13</td>
<td>18</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>10 Dec</td>
<td>Sandy Lake, Ontario</td>
<td>HS 748</td>
<td>Climbing turn, back into terrain</td>
<td>7</td>
</tr>
<tr>
<td>AT-Positioning</td>
<td>30 Dec</td>
<td>Dijon, France</td>
<td>Be-90</td>
<td>Hit short on approach IMC</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) Large Turboprop (16) 10 Seat Prop. Except for DHC-8, there was no GPWS on any of the above aircraft.

(9) 10 to 30 Seat Turboprop (2) 6 Seat Jet
APPENDIX B (Continued)

1992

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional-Schd</td>
<td>3 Jan</td>
<td>Saranac Lake, NY</td>
<td>Be-1900</td>
<td>Hit short at FAF on ILS 23 IMC.</td>
<td>2F/2S</td>
</tr>
<tr>
<td>Private</td>
<td>11 Feb</td>
<td>Lakeland, FL</td>
<td>Ce-425</td>
<td>Hit short of runway 05 IMC.</td>
<td>1</td>
</tr>
<tr>
<td>Charter</td>
<td>16 Feb</td>
<td>Big Bear, CA</td>
<td>PA-31T</td>
<td>Hit terrain at 6740 7 NM east of airport.</td>
<td>7</td>
</tr>
<tr>
<td>Private</td>
<td>5 Mar</td>
<td>New Castle, CO</td>
<td>MU-2B</td>
<td>Hit mtn - LOC/DME “A” Gear Down; Approach flaps 10-1/2 NM short.</td>
<td>6</td>
</tr>
<tr>
<td>Private</td>
<td>29 Mar</td>
<td>Taos, NM</td>
<td>AC-390</td>
<td>Hit rising terrain on climb out; IMC night 3940 (visual); radio altimeter installed.</td>
<td>1, 5S</td>
</tr>
<tr>
<td>State Aircraft</td>
<td>9 April</td>
<td>St. Augustine, FL</td>
<td>Be-90</td>
<td>Hit short on VOR approach 007: 10 EDT IMC.</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Tour</td>
<td>22 April</td>
<td>Maui, Hawaii</td>
<td>Be-18</td>
<td>Hit mtn enroute.</td>
<td>9</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>8 June</td>
<td>Anniston, AL</td>
<td>Be-99</td>
<td>Hit terrain during LOC 5 approach.</td>
<td>3F/2S</td>
</tr>
<tr>
<td>Personal</td>
<td>24 June</td>
<td>Alamagordo, NM</td>
<td>MU-2B</td>
<td>Hit mtn VMC during climbout 12:21 MDT - Night.</td>
<td>6</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>24 July</td>
<td>Ambeu, Indonesia</td>
<td>Vickers Viscount</td>
<td>Hit mtn during initial approach ILS/04.</td>
<td>71</td>
</tr>
<tr>
<td>Personal</td>
<td>13 Aug</td>
<td>Osway, MO</td>
<td>PA-31</td>
<td>Hit short rwy 32-IMC.</td>
<td>- -</td>
</tr>
<tr>
<td>Personal</td>
<td>4 Sept</td>
<td>Longion, KS</td>
<td>PA-42</td>
<td>Hit wires on approach.</td>
<td>- -</td>
</tr>
<tr>
<td>Government</td>
<td>19 Oct</td>
<td>Pesqueria, Mex (Monterey)</td>
<td>AC-680T</td>
<td>Hit terrain during climbout IMC.</td>
<td>6</td>
</tr>
<tr>
<td>Comm/Air Taxi</td>
<td>31 Oct</td>
<td>Grand Junction, CO</td>
<td>PA-42</td>
<td>Hit mtn 10 NM north RNAV-Cleared to ILS rwy 11. "Macks" int. eastbound 9400 -7800 cliff; IMC day 0315.</td>
<td>3</td>
</tr>
<tr>
<td>National Guard</td>
<td>11 Nov</td>
<td>Juneau, AK</td>
<td>Be-200</td>
<td>Hit mtn LOC/DME 20+ NM from runway.</td>
<td>8</td>
</tr>
<tr>
<td>Government</td>
<td>10 Dec</td>
<td>Quito, Ecuador</td>
<td>Sabreliner</td>
<td>Hit 3 NM short during VOR/ILS 35 approach.</td>
<td>12</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>13 Dec</td>
<td>Goma, Zaire</td>
<td>F-27</td>
<td>Hit short into terrain during initial approach VOR/DME 36.</td>
<td>37</td>
</tr>
<tr>
<td>Government</td>
<td>22 Dec</td>
<td>Quito, Ecuador</td>
<td>PA-31</td>
<td>Hit 3 NM short during VOR/ILS 35 approach.</td>
<td>5</td>
</tr>
</tbody>
</table>

(2) Large Turboprop (13) 10 Seat Prop No GPWS installed on any of the above aircraft.

(2) 10 to 30 Seat Turboprop (1) 6 Seat Jet
APPENDIX B (Continued) 1991

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate</td>
<td>11 Jan</td>
<td>Belo Horizontes, Brazil</td>
<td>LJ-25</td>
<td>Hit 2 NM short.</td>
<td>5</td>
</tr>
<tr>
<td>Air Taxi-Ferry</td>
<td>8 Feb</td>
<td>Stansted, UK</td>
<td>Be-200</td>
<td>Hit 2-1/2 NM short of the runway; possible altimeter error.</td>
<td>2</td>
</tr>
<tr>
<td>Corporate</td>
<td>12 Feb</td>
<td>Uganda, Kenya</td>
<td>HS-125</td>
<td>Hit mtn on initial approach.</td>
<td>3</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>15 Mar</td>
<td>Brown Fld, CA</td>
<td>HS-125</td>
<td>Hit mtn on departure 8L.</td>
<td>10</td>
</tr>
<tr>
<td>Corporate</td>
<td>18 Mar</td>
<td>Brasilia, Brazil</td>
<td>LJ-25</td>
<td>Hit short.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>21 May</td>
<td>Bauchi, Nigeria</td>
<td>Ce-550</td>
<td>Hit short.</td>
<td>3</td>
</tr>
<tr>
<td>Corporate</td>
<td>17 June</td>
<td>Caracas, Venezuela</td>
<td>G-II</td>
<td>Hit 5 NM short to rwy 10.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>4 Sept</td>
<td>Kota Kinabalu, Malaysia</td>
<td>G-II</td>
<td>Hit mtn during missed approach.</td>
<td>12</td>
</tr>
<tr>
<td>Charter</td>
<td>17 Sept</td>
<td>Djibouti</td>
<td>L-100</td>
<td>Hit mtn VMC during initial approach.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>25 Sept</td>
<td>Holtenou Klel, Germany</td>
<td>DS-20</td>
<td>Missed approach.</td>
<td>1</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>27 Sept</td>
<td>Guadalcanal, Sol.</td>
<td>DHC-6</td>
<td>Hit mtn enroute.</td>
<td>15</td>
</tr>
<tr>
<td>Corporate</td>
<td>8 Oct</td>
<td>Hanover, Germany</td>
<td>Ce-425</td>
<td>Hit short on ILS 27R.</td>
<td>7</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>22 Nov</td>
<td>Romeo, MI</td>
<td>Be-100</td>
<td>Hit 3 NM short on VOR/DME approach, IMC-fog.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>27 Nov</td>
<td>Paloma, Majorca</td>
<td>Be-400</td>
<td>Hit 1/4 NM short.</td>
<td>--</td>
</tr>
<tr>
<td>Corporate</td>
<td>30 Nov</td>
<td>Kelso, WA</td>
<td>AC 690</td>
<td>Hit mtn 13 NM short.</td>
<td>5/1S</td>
</tr>
<tr>
<td>Corporate</td>
<td>11 Dec</td>
<td>Rome, GA</td>
<td>Be-400</td>
<td>Hit mtn on departure.</td>
<td>9</td>
</tr>
</tbody>
</table>

(1) Large Turboprop (5) 10 Seat Prop No GPWS installed on any of the above aircraft.
(2) 10 to 30 Seat Turboprop (8) 6 Seat Jet
CFIT Aircraft Equipment Team

APPENDIX B (Continued)

1990

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional-Schd</td>
<td>15 Jan</td>
<td>Elko, Nevada</td>
<td>Metro III</td>
<td>Hit mtn at FAF VOR-A.</td>
<td>4-5/16</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>16 Jan</td>
<td>San Jose, Costa Rica</td>
<td>CASA</td>
<td>Hit mtn on departure.</td>
<td>23</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>17 Jan</td>
<td>Denver to Montrose, CO</td>
<td>Ce-208A</td>
<td>Hit 50 below Mt. Massive (14,221') near Leadville, CO.</td>
<td>1</td>
</tr>
<tr>
<td>Corporate</td>
<td>17 Jan</td>
<td>West Point, MS</td>
<td>Be-400</td>
<td>Undershoot.</td>
<td>--</td>
</tr>
<tr>
<td>Corporate</td>
<td>19 Jan</td>
<td>Little Rock, AR</td>
<td>G-II</td>
<td>Hit short on ILS.</td>
<td>7</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>29 Jan</td>
<td>Williston, VT</td>
<td>Ce-208B</td>
<td>Hit trees, power lines on climb out at major IMC.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>29 Jan</td>
<td>Schuyler Falls, NY</td>
<td>Ce-208B</td>
<td>Hit 1-1/2 NM beyond rwy 19 during climb out IMC, night.</td>
<td>1</td>
</tr>
<tr>
<td>Schd-Freight</td>
<td>21 Mar</td>
<td>Tegucigalpa, Honduras</td>
<td>L-188</td>
<td>Hit mtn 6 NM short VOR/DMB rwy 1.</td>
<td>3</td>
</tr>
<tr>
<td>Business</td>
<td>27 Mar</td>
<td>Uvalde, TX</td>
<td>Be-100</td>
<td>Hit terrain 4 NM south of field on approach in IMC-night.</td>
<td>--</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>20 Apr</td>
<td>Moosonee, Ontario</td>
<td>Be-99</td>
<td>Hit 7 NM short on VOR rwy 24.</td>
<td>1 of 4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>28 Apr</td>
<td>Tamanrasset, Algeria</td>
<td>Be-90A</td>
<td>Hit 4 NM short on approach.</td>
<td>6</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>4 May</td>
<td>Wilmington, NC</td>
<td>GN-24</td>
<td>Hit short on B/C Loc 16.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>11 May</td>
<td>Cairns, Australia</td>
<td>Ce-500</td>
<td>Hit mtn on initial approach.</td>
<td>11</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>13 Aug</td>
<td>Cozuneli, Mexico</td>
<td>AC 1121</td>
<td>Undershoot.</td>
<td>1</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>11 Sept</td>
<td>New Mexico</td>
<td>MS-7607</td>
<td>Hit mtn on departure.</td>
<td>2</td>
</tr>
<tr>
<td>Business</td>
<td>22 Sept</td>
<td>White Plains, NY</td>
<td>AC 690B</td>
<td>Hit short by 3 NM in IMC.</td>
<td>0 of 6</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>24 Sept</td>
<td>San Luis Obispo, CA</td>
<td>Ce-500</td>
<td>Hit short on approach LOC 11.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>21 Nov</td>
<td>Keller Jock, Australia</td>
<td>Be-200</td>
<td>Initial approach.</td>
<td>3</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>29 Nov</td>
<td>Sebring, FL</td>
<td>Ce-550</td>
<td>Undershot on approach rwy 11.</td>
<td>--</td>
</tr>
<tr>
<td>Business</td>
<td>30 Nov</td>
<td>Kelso, WA</td>
<td>AC-690A</td>
<td>Hit short by 8 NM night on initial approach into mountain.</td>
<td>5 of 6</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>21 Dec</td>
<td>Cold Bay, AK</td>
<td>Ce-208</td>
<td>Hit mountain enroute.</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) Large Turboprop (12) 10 Seat Prop No GPWS installed on any of the above aircraft.

(3) 10 to 30 Seat Turboprop (5) 6 Seat Jet
CFIT Aircraft Equipment Team

APPENDIX B (Continued)

1989

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private</td>
<td>2 Jan</td>
<td>Mansfield, OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>7 Jan</td>
<td>Paducah, KY</td>
<td>Be-90</td>
<td>Hit mtn on departure.</td>
<td>3 of 15</td>
</tr>
<tr>
<td>Schd Freight</td>
<td>12 Jan</td>
<td>Dayton, OH</td>
<td>M-2B</td>
<td>Hit 8 NM short during an ILS 24 approach circle for 23. Night, IMC.</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>12 Jan</td>
<td>Caracas, Venezuela</td>
<td>Be-200</td>
<td>Hit terrain while diverting in low cloud.</td>
<td>2</td>
</tr>
<tr>
<td>Charter</td>
<td>19 Feb</td>
<td>Orange County, CA</td>
<td>Ce-404</td>
<td>Hit mtn 20 NM short.</td>
<td>10</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>23 Feb</td>
<td>Altensheim, Lake</td>
<td>AC-690</td>
<td>Hit short to rwy 10. VMC into IMC.</td>
<td>11</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>24 Feb</td>
<td>Helsinki, Finland</td>
<td>SA-226T</td>
<td>Hit short on ILS approach IMC.</td>
<td>6 of 7</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>10 April</td>
<td>Valence, France</td>
<td>FH-27T</td>
<td>Hit mtn, initial approach.</td>
<td>22</td>
</tr>
<tr>
<td>Air Taxi-Ferry</td>
<td>10 May</td>
<td>Azusa, CA</td>
<td>Be-200</td>
<td>Hit San Gabriel Mountain at 7300 level (departed Santa Monica).</td>
<td>1</td>
</tr>
<tr>
<td>Corporate</td>
<td>29 June</td>
<td>Cartersville, GA</td>
<td>DA-20</td>
<td>Initial climb, shallow into terrain.</td>
<td>2</td>
</tr>
<tr>
<td>Regional</td>
<td>31 July</td>
<td>Auckland, New Zealand</td>
<td>CV-580</td>
<td>Hit during initial climb.</td>
<td>34</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>3 Aug</td>
<td>Samos, Greece</td>
<td>SD-330</td>
<td>Hit mtn enroute.</td>
<td>16</td>
</tr>
<tr>
<td>Charter</td>
<td>7 Aug</td>
<td>Gambella, Ethiopia</td>
<td>DHC-6</td>
<td>Hit power lines - fog.</td>
<td>3 of 7</td>
</tr>
<tr>
<td>Air Taxi-Med</td>
<td>21 Aug</td>
<td>Mayfield, NY</td>
<td>Be-100</td>
<td>Hit 1/4 NM short at night IMC.</td>
<td>6</td>
</tr>
<tr>
<td>Business</td>
<td>15 Sept</td>
<td>Terrace, BC</td>
<td>Metro III</td>
<td>Missed approach LDA/DME.</td>
<td>7</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>26 Sept</td>
<td>Hurdle Mills, NC</td>
<td>Ce-550</td>
<td>Hit 2-1/2 NM short on approach.</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>28 Oct</td>
<td>Molokai, Hawaii</td>
<td>DHC-6</td>
<td>Hit mtn enroute.</td>
<td>20</td>
</tr>
<tr>
<td>Corporate</td>
<td>7 Nov</td>
<td>Ribeiro Das, Nevez</td>
<td>LJ</td>
<td>Hit hill on approach.</td>
<td>5</td>
</tr>
<tr>
<td>Private</td>
<td>2 Dec</td>
<td>Ruidoso, NM</td>
<td>Be-90</td>
<td>Hit short in procedure turn NDB approach IMC.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi-Positioning</td>
<td>22 Dec</td>
<td>Beluga River, Alaska</td>
<td>PA-31T</td>
<td>Hit 8 NM short.</td>
<td></td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>26 Dec</td>
<td>Pasco, WA</td>
<td>BAe JS-31</td>
<td>Hit short on ILS 2IR.</td>
<td>4</td>
</tr>
</tbody>
</table>

(3) Large Turboprop (10) 10 Seat Prop No GPWS installed on any of the above aircraft.
(6) 10 to 30 Seat Turboprop (2) 6 Seat Jet
APPENDIX C

PARTIAL LIST OF EXCESSIVE-BANK-ANGLE CFIT ACCIDENTS/INCIDENTS

<table>
<thead>
<tr>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>PHASE OF FLIGHT</th>
<th>CIRCUMSTANCES</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various</td>
<td>World-wide</td>
<td>Glass cockpit</td>
<td>En-route</td>
<td>Slow undetected rolls</td>
<td>--</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 June 92</td>
<td>Panama</td>
<td>B737-200</td>
<td>En-route</td>
<td>Slow undetected roll to 90 degrees believed to be ADI or autopilot</td>
<td>47</td>
</tr>
<tr>
<td>15 Feb 92</td>
<td>Toledo, OH</td>
<td>DC8-63</td>
<td>Missed approach</td>
<td>Slow undetected roll; autopilot; night</td>
<td>4</td>
</tr>
<tr>
<td>12 Dec 91</td>
<td>NWT Canada</td>
<td>B747-100</td>
<td>En-route</td>
<td>Slow undetected roll; autopilot; FL310 to FL190 recovery</td>
<td>--</td>
</tr>
<tr>
<td>1990</td>
<td>Montreal - Paris</td>
<td>B747-200</td>
<td>En-route</td>
<td>Slow undetected roll (71 degrees)</td>
<td>--</td>
</tr>
<tr>
<td>30 April 89</td>
<td>Miami - London</td>
<td>B747-200</td>
<td>En-route</td>
<td>Slow undetected roll (52 degrees)</td>
<td>--</td>
</tr>
<tr>
<td>12 Jan 89</td>
<td>Dayton OH</td>
<td>HS-748</td>
<td>Take-off climb</td>
<td>Slow roll to 50 degrees for turn during climb out; night</td>
<td>2</td>
</tr>
<tr>
<td>28 Oct 88</td>
<td>Paris</td>
<td>B747-100</td>
<td>Final</td>
<td>Visual transition, alignment to runway at night, overbank to 17 degrees at 150 ft.</td>
<td>--*</td>
</tr>
<tr>
<td>19 Feb 99</td>
<td>Raleigh-Durham</td>
<td>Metro III</td>
<td>Take-off climb</td>
<td>Expedited departure, overbanked to 45 degrees at 300 ft.</td>
<td>12</td>
</tr>
<tr>
<td>Dec 87</td>
<td>Edmonton, Canada</td>
<td>DC8-63F</td>
<td>Final</td>
<td>Visual transition at night to align with runway. Overbanked to 15 deg. at 150 ft.</td>
<td>--*</td>
</tr>
<tr>
<td>Nov 86</td>
<td>London</td>
<td>B747-200</td>
<td>Final</td>
<td>Visual transition at night to align with runway</td>
<td>--*</td>
</tr>
<tr>
<td>12 Nov 80</td>
<td>Cairo</td>
<td>C-141</td>
<td>Turning base to final</td>
<td>Overbanked at night; visual; no lights on ground</td>
<td>13</td>
</tr>
<tr>
<td>1 Jan 87</td>
<td>Bombay</td>
<td>B747</td>
<td>Departure climb</td>
<td>Rolled to 80 degrees at 1400 ft; night ADI failure, no flag</td>
<td>213</td>
</tr>
<tr>
<td>Sept 77</td>
<td>Geneva</td>
<td>B747</td>
<td>Departure climb</td>
<td>Roll, slow but detected in time by FO; ADI failure, no flag</td>
<td>--</td>
</tr>
</tbody>
</table>

*Significant change
1. CFIT accidents are those in which an otherwise serviceable aircraft, under the control of the crew, is flown into terrain, obstacles or water with no prior awareness on the part of the crew of the impending disaster. Inadvertent flight into ground or water has been a problem since the early days of aviation. Although many of the accidents have occurred in the less developed areas of the world, regions such as Western Europe and North America are not immune from the CFIT threat.

Despite all the anti-CFIT measures taken to date, CFIT accidents continue to occur at an unacceptable rate, and a number of common factors have continued to contribute to CFIT accidents. The list is long and the examples include nonstandard phraseology, noncompliance with procedures, visual illusions, confusing charts, crew fatigue, misreading/mis-setting altimeter, disabling GPWS, nonoptimal approach procedure design and ATC errors.

It is crucial to realize that various elements of the aviation infrastructure outside the flight deck can contribute to the cause of the accidents by virtue of their adverse effects on flight crew performance. Crews have often found themselves in the final link in the chain of events that lead to a CFIT accident. An NLR CFIT taxonomy suggests that the combination of variables that normally contribute to a CFIT accident belong to at least two of the following groups: flight crew, environment, approach, ATC aircraft equipment and organizational and regulatory factors. A reduction in the CFIT risk will therefore require a concentrated effort from all elements of the industry.

2. CFIT accidents are generally associated with a high level of kinetic energy, and the result is usually the complete destruction of the aircraft and the loss of almost all the occupants. ICAO statistics for commercial and general aviation operations indicate that for the period 1978–1991 there were 260 CFIT accidents resulting in 5,500 casualties. Both older-generation and newer glass-cockpit aircraft have been involved in the accidents, although data suggest that the risk appears to be higher for the former category.

Most accidents occurred to aircraft engaged in domestic commercial operations. For one particular State alone, between 1976 and 1990 there were 171 CFIT accidents to aircraft engaged in domestic operations. This averages one CFIT accident approximately every four weeks for 14 years for that State alone. A significant proportion of the accidents occurred within a radius of 25 nautical miles of the threshold and on the runway approach path. Data indicate that although the vertical profile is a major source of error, many accident flight descent paths were approximately parallel to a nominal three degree glide path. The absolute number of accidents involving nonprecision approaches appears to be exceptionally high. A large percentage occur during VOR-DEM/LOC-DME approaches. IMC or night IMC conditions are commonly associated with CFIT accidents. It is also evident that a significant number of crews had received little, if any, training specific to recovery procedures.
This survey was completed by senior management pilot representatives affiliated with most of the world's international airlines.

CONCLUSIONS
• There was unanimous consensus that radio altimeters improve terrain awareness.
• There was very strong support for selected radio altitudes to be properly integrated within flight crew procedures and supported by automatic voice callouts.
• Nearly all airlines were aware of and intended pursuing the provision of superior radio altimeter features, to enhance terrain awareness.

British Airways — Stabilized Approach Criteria
• Fleet-specific criteria for desired speed/configuration at 1,000 feet radio altimeter are promulgated, and consideration should be given to a go-around in the event that the 1,000-foot criteria are not achieved.

• On all approaches, the aircraft must be stabilized at 500 feet radio altitude in the planned landing configuration, the glide slope or correct vertical profile must be established with approach power set and indicated airspeed no more than the target threshold speed plus 20 knots. If these criteria are not achieved, an immediate go-around must be carried out.

ICAO
Amendments to Annex 6, Parts I and II

Allied Signal/D. Bateman
• Map location of 40 CFIT Accidents/Incidents from the Runway Threshold Vertical.
TAKING THE “NON” OUT OF THE NONPRECISION APPROACH

By Capt. D.E. Walker

The nonprecision approach is the culprit in most CFIT accidents. The point of impact for most CFIT accidents is in line with the intended runway for landing, but anywhere from one to several miles away from the runway. Several aspects of the nonprecision approach contribute to the risk of a CFIT accident short of the runway. The very idea of a nonprecision approach providing no guidance to the pilot in the vertical plane is an anathema. What steps can we take to reduce the risk of this sort of CFIT? By providing precise guidance to the pilot conducting the nonprecision approach? How can we do that?

The first and most obvious step is to provide the pilot with a standard descent slope. Many, if not most, nonprecision approaches provide crossing altitudes at the final approach fix (FAF) that would require a descent path of less than the standard three degrees. There is no minimum approach slope and some nonprecision approaches show a possible descent profile of less than one degree.

Some nonprecision approach charts show the altitude at which a three-degree slope crosses the FAF. In addition, those charts often display the recommended descent rates required to maintain that profile. The pilot is trained to intercept and descend on that three-degree profile. His nonprecision descent has now been made more precise.

Raising the crossing altitude at the final approach fix to establish a three-degree slope would also reduce the number of steps now common during a nonprecision approach. Pilots descending at the wrong step point is a frequent factor in the aircraft colliding with terrain well short of the runway. This is a major cause of CFIT accidents. These inappropriate descents usually result from some sort of navigation blunder.

The often catastrophic result of a navigation blunder may be averted, provided there is some means of alerting the pilot to that error. GPWSs alert the pilot to a descent that is excessively steep. They provide no warning to a pilot descending towards an airport that is not where he expects it to be. The radio altimeter with its audio height callout is used by many operators to alert the pilot to terrain proximity. Some of these devices are being used with so-called “smart callouts,” which alert the pilot to 500 feet above terrain whenever a nonprecision approach is under way. That is a very worthwhile feature. Its warning comes late, but better late than never.

What additional alert would we wish from such a device?

Usually, a nonprecision approach penetrates 1,000 feet above terrain only after passing the FAF. This penetration of the 1,000 feet above terrain will occur at an easily defined point on the three-degree slope from the FAF to the runway. That point should be marked on all nonprecision approach charts. A tentative name of terrain proximity point or TPP is suggested. It is the first opportunity that the pilot has to confirm that vertical tracking is as desired and that the aircraft is actually on the three-degree slope to the runway. Having the radio altimeter system call out when the 1,000-foot AGL veneer is penetrated (TPP) should be time for the pilot to confirm that the aircraft is at the position defined on his chart for penetrating that 1,000-foot veneer on the desired three-degree slope. It is our first opportunity to confirm our vertical navigation with reference to underlying terrain.

Summarizing, we want a standard descent profile of nominally three degrees established for all nonprecision approaches. We need to have that slope published on all nonprecision approach charts. Pilots need to be trained to fly that standard descent profile for all, rather than just precision, approaches. Some means of alerting the pilot to his position relative to the desired profile is required. This alert should occur before the aircraft becomes too close to terrain.

I suggest that this combination will do much to reduce the number of aircraft impacting in the final approach zone. These concepts were presented to the CFIT ATC working group meeting in Washington. I propose that they become the principal focus our next meeting of the aircraft equipment group.
1. **TERRAIN DATA INTEGRITY REQUIREMENTS** (from AlliedSignal sources)
 The required integrity (accuracy) of terrain data depends on its intended use and purpose. Four levels of integrity are:
 - **Level 1** Terrain data that are used for navigation, three axis guidance + display with aircraft performance purposes. Its accuracy is generally ± 10 meters. Usage: typical examples would be military attack aircraft using terrain for tactical advantages and helicopters.
 - **Level 2** Terrain data that are used for auto-correlation to update inertial navigation purposes and lateral guidance. Its accuracy is generally ± 30 metres.
 - **Level 3** Terrain data that are used for supplemental terrain awareness purposes, indication, and relatively crude prediction purposes. Typical accuracy requirements are ± 1/2 Nautical Mile to ± 8 NM, depending on proximity to an airport.
 - **Level 4** (Lowest Integrity) Terrain data that are used for supplemental secondary applications transparent to the pilot or other systems. Its integrity is typically ± 1NM accuracy and elevations ± 300 feet. One application is “Envelope Modulation” features found in GPWS.

2. **FAA Letter, Jan. 11, 1995**
 "Operational Approval of Stabilized Instrument Approach Procedures for Flight Management/Guidance System Equipped Aircraft."

3. **Extract from KLM FAX, 19 Aug. 1994**
 "KLM tries to provide a stabilized nonprecision final approach even if no DME facility is available, e.g., by using an outbound timing from a navaid. ...
 "We also took notice of your article in the *ICAO Journal* and as you may have guessed, we fully agree with it. ...
 "We think that ICAO should bring pressure to bear on States in order to persuade them to stop publishing DME stepdown nonprecision approaches, for reasons of safety."

4. **Flight Safety Foundation**
 CFIT Awareness Video.
 FSF CFIT Checklist.

5. **Transport Canada Video, “Preventing CFIT Accidents.”**

---END---
FLIGHT SAFETY FOUNDATION CFIT TASK FORCE
FLIGHT CREW TRAINING & PROCEDURES WORKING GROUP

- A REPORT -

Presented to

Flight Safety Foundation
International Air Safety Seminar
Seattle, Washington, U.S.
Nov. 7, 1995

by

Douglas Schwartz
Director, Flight Standards
FlightSafety International Inc.
OVERVIEW

The Flight Crew Training & Procedures Working Group was established in 1993, as one aspect of the Flight Safety Foundation (FSF) CFIT (Controlled Flight into Terrain) Task Force. The Working Group’s mission was to “develop and present guidelines and recommendations for flight crew operating policies, procedures and associated training and evaluation to reduce the risk of having CFIT encounter” (London, May 1993).

Composed of a broad spectrum of international experts in aviation safety and training, the Working Group encompasses knowledge and experience pertaining to the CFIT phenomenon. Regional and technical diversity was a specific objective in composing the Working Group team. This is reflected in its broad regional representation, with active participation from Africa, Asia, Europe, North America and South America. Technical diversity of the Working Group is also reflected in the range of companies and organizations represented, including airline companies, aircraft manufacturers, training centers, pilot associations (U.S. Air Line Pilots Association [ALPA], International Federation of Air Line Pilots Associations [IFALPA]) and international organizations (FSF, International Civil Aviation Organization [ICAO], IATA).

The Working Group identified three products to deliver to the industry, through Flight Safety Foundation. Each product was developed by a small task team that reported to the full Working Group. Each of the three products was considered an important element of a coordinated strategy to achieve the Working Group’s objectives. The products are:

A CFIT awareness package;

A set of recommended policies and procedures related to CFIT risks encountered by flight crews; and,

A model CFIT training program.

This paper describes the status of each of these products.
CFIT AWARENESS PACKAGE

The objectives of the CFIT awareness package are to:

Increase awareness among decision makers about CFIT risks; and,

Promote support for appropriate CFIT safety and prevention strategies.

The awareness package target audience includes:

Airlines;
Government regulators;
Industry groups and associations;
ATC authorities;
Insurers;
Aircraft operators of all kinds;
Lessors;
Financial institutions; and,
Other related groups.

The Awareness Package Task Team has completed its work. Their accomplishments include several important achievements:

A Safety Alert issued worldwide by Flight Safety Foundation in late 1993 (Appendix A). This alert warns of the CFIT accident risk and contains recommendations for flight crew response to ground-proximity warning system (GPWS) warnings:

“When a GPWS warning occurs, pilots should immediately, and without hesitating to evaluate the warning, execute the pull-up action recommended in the company procedure manual. ... This procedure should be followed except in clear daylight visual meteorological conditions when the flight crew can immediately and unequivocally confirm a false GPWS warning”;

A recommendation to outfit all aircraft with state-of-the-art GPWS systems;

[In 1995, the CFIT Task Force’s recommendation for broadening the use of GPWS was adopted by ICAO. New standards,
effective Dec. 31, 1998, require GPWS in all aircraft used in “international commercial and general aviation operations, where the MCTM (maximum certified takeoff mass) is in excess of 5,700 kilograms (12,500 pounds) ... or (that) are authorized to carry more than nine passengers,” the ICAO ruling said. ICAO said that the new standards also “specify the minimum modes in which GPWS is required to operate.”]; and,

A CFIT awareness video, specifically targeting regional airlines and corporate flight operations.

[The FSF CFIT checklist, distributed worldwide by Flight Safety Foundation, enables a flight crew to calculate the CFIT risk for any route or destination. The checklist assigns positive or negative values to a series of factors to be encountered in the flight or approach.]
CFIT POLICY & PROCEDURES RECOMMENDATIONS

The team was tasked to provide a set of baseline flight crew operating policies and procedures to support reduction of CFIT accident risk. This work of the Policy & Procedures Task Team is complete.

The recommendations that were produced target:

- Airlines;
- Government regulators;
- Pilot associations; and,
- Individual flight crew members.

This spectrum of end-users provides a safety net intended to ensure the benefit of the recommendations. Placing a consistent set of procedures in the hands of multiple levels of decision makers provides the redundancy to do this. Each level of authority has the capacity to embrace and implement the recommended CFIT avoidance strategies and achieve productive advantage independently of the others. When all levels do so in coordination with one another, maximum effect is achieved.

The task team produced 15 policy and procedure recommendations. Two are recommendations to corporate management, which have been referred to the CFIT Task Force Implementation Committee for action. The other 13 recommendations relate to flight operations and training.

The policy recommendations to management are contained in Appendix B. The operations and training recommendations are contained in Appendix C. Each is described in terms of a problem statement and associated policy or procedure recommendations. Recommendations address the following topics:

Policy Recommendations to Management (Appendix B)

A policy statement for establishing a safety-oriented corporate culture; and,
A recommendation to implement systemic safety performance measurements.
Flight Operations & Training Recommendations (Appendix C)

Altitude awareness, adherence to altitude clearances and procedures to confirm adequate terrain clearance;
Use of autopilots during approaches and missed approaches;
Acceptance of ATC clearances;
Approach and departure briefings;
Chart supply for flight crews;
Use of checklists;
Allocation of flight crew duties/use of monitored approach procedures;
GPWS warning response;
Nonprecision approach procedures;
Rate-of-descent policy;
Route and destination familiarization;
Stabilized approaches; and,
Ground briefing materials.
MODEL CFIT TRAINING PROGRAM

The CFIT Training Program Task Team was charged with producing a model CFIT training program curriculum. This model was completed in early 1995 and forms the basis of the CFIT Education & Training Aid. This aid will be the most visible product of the Working Group’s activity and is patterned after similar training aids previously produced on topics such as wind shear, rejected takeoffs and takeoff performance. It is intended for use by all providers and users of flight crew training.

Resources for development and production of the CFIT Education & Training Aid, along with associated materials and an instructional video, have been provided by the Boeing Commercial Airplane Group. The development group was headed by Capt. Dave Carbaugh, assisted by Capt. Skip Cooper and Steve Morman. The Training & Procedures Working Group is grateful to these dedicated professionals for their support, effort and persistence.

The Training Aid is composed of two parts:

- An instructional video; and,
- A detailed written document.

The instructional video contains a history of CFIT accidents, a review of worldwide CFIT accident statistics and trends, an analysis of the “traps” with CFIT accident potential that flight crews might encounter, and CFIT avoidance and recovery strategies. Interviews with aviation industry leaders from throughout the world highlight the importance of the Task Force initiative and call on industry executives at the highest level of organizations to support this effort. The video also includes sample training situations that illustrate how the aid can be used by an operator.

The written document is composed of five sections:

- Management Overview
 An executive level briefing package to educate senior level executive management about the CFIT phenomenon and the role of management in CFIT reduction strategies;

- Decision Maker Guide
Important considerations to help operations managers implement CFIT training and associated policies and procedures;

Operators Guide
CFIT policy and procedures recommendations;

CFIT Training Program
A flight crew training program containing associated instructor documentation, support materials and participant manuals. The program includes specific ground school and simulator training lessons and recognition, avoidance and recovery strategies. Aircraft-specific CFIT recovery procedures are given for aircraft for which appropriate technical data were available; and,

Background Data
Supporting reference material containing engineering and testing data developed and used to support Training Aid recommendations.
ACKNOWLEDGMENTS

The Flight Crew Training & Procedures Working Group would like to express appreciation to the following companies, organizations and individuals, without whose support this effort would not have been possible.

Airbus Industrie
U.S. Air Line Pilots Association (ALPA)
AlliedSignal
America West Airlines
Britannia Airways
Don Bateman
Boeing Commercial Airplane Group
British Airways
Delta Air Lines
Flight Safety Foundation
FlightSafety International
Gulfstream Aerospace
International Air Transport Association (IATA)
International Civil Aviation Organization (ICAO)
International Federation of Air Line Pilots’ Associations (IFALPA)
Japan Airlines
Lockheed Martin
McDonnell Douglas Corporation
SAS
United Airlines
Varig Brazilian Airlines
- APPENDIX A -

FLIGHT SAFETY FOUNDATION
CFIT SAFETY ALERT
APPENDIX B

POLICY RECOMMENDATIONS TO MANAGEMENT TEAM
Problem Statement
Consistent levels of safety cannot be achieved without a genuine commitment from management to support reasonable initiatives and the dedication of employees to contribute to a safe operating environment.

Recommendation to Steering Committee
Companies should support and adopt a mission statement along the following lines:

All employees, at all levels, share responsibility for safety and for the enhancement of the overall corporate safety culture. Safety priorities are considered in decision making within all departments. To this end, there should be a structure in place, supported at the highest level, to manage and support safety-related issues, as well as to ensure that safety is measured as an integral part of operational efficiency.

The company shall foster confidence that the decisions of all departments with regard to rational safety decisions will be supported and not subject to adverse reaction.

Scrutiny of safety-related decisions will be dedicated exclusively to developing improvements in the operational integrity of support systems.

Refer to Implementation Committee for action.
Problem Statement
Companies have insufficient systems and infrastructure for monitoring and evaluating the operational performance of management, crew and equipment.

Recommendation to Steering Committee
All companies should provide systems and infrastructure for monitoring and evaluating the operational performance of management, crew and equipment with the objective of enhancing operational integrity. This can be accomplished by means of some, or preferably all, of the following:

- Flight data recorder analysis;
- Quick access recorder analysis;
- Flight operations quality assurance (FOQA) programs;
- Data bases for safety analysis;
- Defined criteria for safety reporting;
- Establishment and encouragement of a “no blame” reporting culture;
- Management process/culture to apply accumulated data effectively; and,
- An independent quality audit function to achieve operational integrity.

Recommendations & Notes
Operational Integrity describes a set of interrelated performance measures that might be employed to measure safety in relation to other key indicators. It presents a set of indices to measure performance of the infrastructures within a system that support safety. The performance measures described are:

- Safety;
- Cost efficiency;
Schedule performance;
Customer satisfaction;
Regulatory compliance; and,
Adherence to operating policies and procedures.

Refer to Steering Committee for further action.
- APPENDIX C -

POLICY AND PROCEDURE RECOMMENDATIONS
FOR FLIGHT OPERATIONS & TRAINING
ALTITUDE AWARENESS

Problem Statement
Many incidents/accidents have occurred as a result of crews not having sufficient awareness of altitude and proximity to terrain.

Policy/Procedure Statement
It is essential that flight crews always appreciate the altitude of their aircraft relative to terrain, and assigned or desired flight path. Methods by which flight crews will monitor and cross-check assigned altitudes, as well as verify and confirm altitude changes, should be established and followed.

As a minimum, procedures should encompass the following items:

The crew must be responsible for ascertaining the applicable minimum safe altitude (MSA) reference point. Crews are cautioned that the MSA reference point for an airport may vary considerably according to the specific approach in use;

The crew must be aware of the applicable transition altitude or transition level;

There should be a checklist item to ensure that all altimeters are correctly set in relation to transition altitude/level;

Any crew member(s) should call out any significant deviation or trend away from assigned clearances;

Minimum operating altitudes should be adjusted in conditions of low temperatures, low pressures and/or excessive winds. It is suggested that the following corrections be applied:

For low temperature add 4 percent per 10 degreesC below ISA;
For low pressure (if flying on standard pressure setting of
1013 hPa or 29.92 inches), add 30 feet (9.2 meters) per hPa below standard setting; and,
For winds in excess of 30 knots add 500 feet (153 meters) per 10 knots above 30, up to a maximum correction of 2,000 feet (610 meters).

In all cases, air traffic control will be notified when altitude corrections are applied;
A call-out should be made at the following times:
Upon initial indication of radio height, at which point altitude vs. height above terrain should be assessed and confirmed to be reasonable, and radio height will be added to the standard instrument scan of pilots;
Above or below approaching assigned altitude (adjusted as required to reflect specific aircraft performance);
Approaching relevant approach minimums (specific height to be determined by operator); and,
Passing transition altitude/level;

Consideration should be given to incorporating a 500-foot (153-meter) radio height call-out on final approach (strongly recommended for all nonprecision approaches). At this point, altitude vs. height above terrain should be assessed and confirmed to be reasonable or an immediate missed approach initiated;

The pilot flying should announce, and the pilot not flying confirm, any changes to aircraft altitude or heading (excluding minor corrections);

Flight crew members should confirm altimeter-setting units. It is recommended that this be done by repeating all digits and altimeter units in clearance readbacks and by cockpit call-outs between crew members; and,

On crossing the final approach fix, outer marker or equivalent position, the pilot not flying will cross-check actual crossing altitude/height, against altitude/height as depicted on the approach chart.
Notes
Reference item 7 above: the Working Group feels that automated call-outs are preferable to manual call-outs.

Refer to ATC Working Group to advise item #5.
USE OF AUTOPILOTS

Problem Statement
Crews do not take full advantage of automatics as a means to manage the progress of a flight and reduce workload.

Policy/Procedure Statement
The use of autopilots is encouraged during all approaches and missed approaches, in instrument meteorological conditions, when suitable equipment is installed. It is incumbent on operators to develop specific procedures for the use of autopilots and autothrottles during precision approaches, nonprecision approaches and missed approaches, and to provide simulator-based training in the use of said procedures to all flight crews.
Problem Statement
From time to time, air traffic control (ATC) issues flawed instructions that do not ensure adequate terrain clearance. Such clearances are too often accepted by pilots without considering consequences and/or questioning instructions.

Policy/Procedure Recommendation
Flight crews should not assume that ATC clearances will ensure terrain clearance. If an ATC clearance is given that conflicts with the pilot's assessment of terrain criteria relative to known position, the clearance should be questioned and, if necessary, refused and suitable action taken.

Refer to ATC Working Group (Bob Vandel) for information purposes and perhaps to include in air traffic controller training/orientation.
Problem Statement
The failure of flight crews to conduct thorough briefings causes uncertainty about intentions, hazards and other special conditions relevant to terrain clearance during approach and departure.

Policy/Procedure Recommendation
Flight crews will conduct predeparture and preapproach briefings. Flight crew briefings will include discussions of hazardous terrain features and avoidance strategies with appropriate consideration for aircraft performance capabilities. Briefings should include use of applicable charts with specific attention to departure routings, departure procedures, arrival routings, approach procedures, missed-approach procedures and altitude changes that ensure terrain clearance relative to planned approach or departure paths.
Problem Statement
The failure of companies to provide crew members with adequate supplies of current navigation and approach charts is a significant barrier to safety of flight. Furthermore, in some instances, current charting standards do not provide adequate information to flight crew members about terrain hazards, or are so complex as to make clear interpretation difficult.

Recommendation to Airborne Equipment Working Group and Steering Committee
Each pilot will be provided with accurate, current charts with clear depiction of hazardous terrain. Charts provided should depict hazardous terrain in a manner that is easy to recognize and understand. Electronic displays should resemble printed chart displays to the maximum extent feasible.

Refer to Airborne Equipment Working Group (David Walker) for further action.
USE OF CHECKLISTS

Problem Statement
Poorly conceived procedures for checklist use can result in task saturation of crew members during critical phases of flight. Incidents/accidents have occurred because of noncompletion of relevant checklist(s).

Policy/Procedure Recommendation
It is recommended that a detailed policy on checklist use be formulated by each operator and a strict discipline regarding their use be maintained. Such policies should require that checklists be completed early in the approach phase so as to minimize distraction while maneuvering close to the ground. In all cases, checklists should be completed no later than 1,000 feet (305 meters) above ground level (AGL).
Problem Statement
The majority of CFIT incidents/accidents are known to occur in instrument meteorological conditions (IMC) and night conditions when the pilot flying the approach also lands the aircraft.

Policy/Procedure Statement
Proper management of crew workload during night and IMC requires that precise and unambiguous procedures be established. It is recommended that operators adopt a monitored approach procedure during approaches and missed approaches conducted in these conditions. In this case, the first officer will fly approaches and missed approaches. The captain will monitor approach progress and subsequently land the aircraft after obtaining sufficient visual reference.
Problem Statement
Incidents/accidents have occurred because flight crews have failed to make timely response to ground-proximity warning system (GPWS) alerts.

Policy/Procedure Recommendation
When a GPWS warning occurs, pilots should immediately, and without hesitating to evaluate the warning, execute the pull-up action recommended in the company procedure manual. This procedure should be followed in all but clear daylight visual meteorological conditions when the flight crew can immediately and unequivocally confirm a false GPWS warning.
PROBLEM STATEMENT
Most CFIT incidents/accidents occur during nonprecision approaches. Nonprecision approach procedures are different from precision approach procedures. Furthermore, stepdown nonprecision approach procedures can increase the risk of unstabilized approaches.

POLICY/PROCEDURE STATEMENT
Approaches should be constructed and managed so that nonprecision approaches are as similar to precision approaches as possible, incorporating a stabilized approach concept. From a point prior to the final approach fix, pilots will establish an approximate three-degree approach path to touch down, in a stabilized condition for landing.

At the briefing stage, on nonprecision approaches, particular attention should be made regarding locations at which configuration changes will take place, as well as crossing altitudes. Rates of descent on final approach and relevant timings from the final approach fix that can be expected, as well as criteria for continuing the approach visually, should be confirmed. Special attention should be paid to relevant call-outs and monitoring.
Problem Statement
High rates of descent in close proximity to terrain are dangerous. They result in increased risk of CFIT, high crew workload and reduced margins for safety.

Policy/Procedure Recommendation
A policy should be established that restricts the rate of descent allowed within a prescribed vertical distance of (1) the applicable minimum safe en route altitude, and (2) the minimum sector altitude as defined by ICAO PANS-OPS/TERPS.

For example, the restriction could be 2,000 feet (610 meters) per minute maximum rate of descent at or below 2,000 feet above either of these altitudes.
ROUTE & DESTINATION FAMILIARIZATION

Problem Statement
Crews may be inadequately prepared for CFIT-critical conditions, both en route and at destination.

Policy/Procedure Recommendation
Flight crews shall be provided with adequate means to become familiar with en route and destination conditions for routes deemed CFIT-critical. One or more of the following methods are considered acceptable for this purpose:

When making first flights along routes, or to destinations, deemed CFIT-critical, captains should be accompanied by another pilot familiar with the conditions; or,

Suitable simulators can be used to familiarize crew members with airport critical conditions when those simulators can realistically depict the procedural requirements expected of crew members; or,

Written guidance, dispatch briefing material and video familiarization using actual or simulated representations of destination and alternates can be provided.
STABILIZED APPROACHES

Problem Statement
Unstable approaches contribute to many incidents/accidents.

Policy/Procedure Statement
Pilots will establish a stabilized approach profile for all instrument and visual approaches. A stabilized approach has the following characteristics:

- A constant rate of descent along an approximate three-degree approach path that intersects the landing runway approximately 1,000 feet (305 meters) beyond the approach end and begins not later than the final approach fix or equivalent position;
- Flight from an established height above touchdown should be in a landing configuration with appropriate and stable airspeed, power setting, trim and constant rate of descent; and,
- Normally, a stabilized approach configuration should be achieved no later than 1,000 feet above ground level (AGL). However, in all cases if a stabilized approach is not achieved by 500 feet (153 meters) AGL, an immediate missed approach shall be initiated.
Problem Statement
The absence of information to adequately assess routings, terrain and hazards relevant to destination and possible alternates contributes to poor planning and decision making on the part of flight crews.

Policy/Procedure Recommendation
Crew members will be provided with and review suitable materials to conduct thorough briefings for the route to be flown. This must include departure, en route, destination and potential alternates.

As a minimum this should include these materials:
 Current NOTAMs;
 Current weather conditions and forecasts;
 Seasonal weather analysis; and,
 Specific procedures critical to terrain avoidance.

Desirable materials that might also be used are:
 Video route briefings;
 Video destination and alternate airport briefings; and,
 A data base of materials describing unique features/conditions specific to route, destination and alternate airports.
FLIGHT INTO TERRAIN AND THE GROUND PROXIMITY WARNING SYSTEM (GPWS)
CREDIT:

- I thank the few, the individuals and organizations around the world who provided much of the information used in this report. They are the real heroes and heroines in flight safety.

- I thank Hans Hugli, Steve Johnson, Christine Stahl, Ev Vermilion, and Al Loos, in Engineering, for their help in the flight path to terrain profile construction and simulation.

- I thank Jon Hegstrom, Lisa Isaksen, Steve Garnels and Bruce Raccine's Art Department.

- I thank Jeanette Mefferd for helping with the text and typing.

- I also thank our test and demo pilot Lyle Flick (now retired) for getting us started in the first place.

Don Bateman

Disclaimer:

The accuracy and completeness of the accident/incident examples in this report are limited by the quality of data publicly available. Corrections are incorporated as official data and reports become available. We encourage participation in providing information that would enhance our understanding of these events. Our goal is a continual improvement in aviation safety.
Title: Flight into Terrain and the Ground Proximity Warning Systems
150 Plus Accidents and Examples

Purpose: Provide examples of Transport Category Aircraft accidents and events where the aircraft was either inadvertently flown into the ground, or nearly flown into the ground. These examples include aircraft equipped with Ground Proximity Warning Systems (GPWS) and other with no GPWS.

These examples can then be used for:

1. Flight Crew Training
 - To illustrate to the pilots some of the dangers and "traps" that can lead to such incidents in both ATC radar and non radar environments.
 - To illustrate recovery procedures and development of such procedures utilizing Flight Simulation.
 - To illustrate the use and limitations of GPWS and the various models of GPWS.

2. Encouraging aircraft operators to utilize the existing GPWS equipment on their aircraft and to keep it operational and maintained.

3. Encouraging aircraft manufacturers, aircraft owners and operators to install the latest available GPWS equipment and to develop better procedures and other cockpit instrumentation aids.

4. Encourage GPWS designers to improve future GPWS effectiveness.

[Signature]

Don Bateman
CONTROLLED FLIGHT TOWARDS TERRAIN (C-FTT) INCIDENTS EXAMPLES
WHERE GPWS WAS HELPFUL IN SUCCESSFUL RECOVERIES (40+)

<table>
<thead>
<tr>
<th>DATE</th>
<th>LOCATION</th>
<th>AIRCRAFT</th>
<th>GPWS TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Jan 95</td>
<td>Manaus</td>
<td>DC-8-62</td>
<td>MK II</td>
</tr>
<tr>
<td>Jan 95</td>
<td>Atlanta</td>
<td>B727</td>
<td>MK I</td>
</tr>
<tr>
<td>June 94</td>
<td>Portland</td>
<td>A320</td>
<td>MK III</td>
</tr>
<tr>
<td>May 94</td>
<td>San Jose</td>
<td>B737</td>
<td>MK V</td>
</tr>
<tr>
<td>Jan 94</td>
<td>Phoenix</td>
<td>A320</td>
<td>MK III</td>
</tr>
<tr>
<td>Jan 94</td>
<td>Ft. St. John</td>
<td>DHC-8</td>
<td>MK I</td>
</tr>
<tr>
<td>Dec 93</td>
<td>Dallas-Fort Worth</td>
<td>B737</td>
<td>MK V</td>
</tr>
<tr>
<td>Nov 93</td>
<td>Anchorage</td>
<td>B747</td>
<td>MK II</td>
</tr>
<tr>
<td>Oct 93</td>
<td>Graner</td>
<td>DC-8</td>
<td>MK II</td>
</tr>
<tr>
<td>Oct 93</td>
<td>Gunnison</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>Sept 93</td>
<td>Helena</td>
<td>B727</td>
<td>MK I</td>
</tr>
<tr>
<td>July 93</td>
<td>Cape Town</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>April 93</td>
<td>Portland</td>
<td>L-1011</td>
<td>MK I</td>
</tr>
<tr>
<td>Mar 93</td>
<td>Bogota</td>
<td>MD-80</td>
<td>MK II</td>
</tr>
<tr>
<td>Sept 93</td>
<td>Naples</td>
<td>DC-9</td>
<td>MK II</td>
</tr>
<tr>
<td>June 92</td>
<td>Margarita</td>
<td>B767</td>
<td>MK III</td>
</tr>
<tr>
<td>May 92</td>
<td>Ft. Lauderdale</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>May 92</td>
<td>Denver</td>
<td>DHC-7</td>
<td>MK I</td>
</tr>
<tr>
<td>April 92</td>
<td>Portland</td>
<td>B727</td>
<td>MK II</td>
</tr>
<tr>
<td>Mar 92</td>
<td>Quito</td>
<td>DC-8</td>
<td>MK II</td>
</tr>
<tr>
<td>Jan 92</td>
<td>Medford</td>
<td>B737</td>
<td>MK II</td>
</tr>
<tr>
<td>Sept 91</td>
<td>Mexico City</td>
<td>A300</td>
<td>MK II</td>
</tr>
<tr>
<td>June 90</td>
<td>San Diego</td>
<td>A320</td>
<td>MK III</td>
</tr>
<tr>
<td>Jan 90</td>
<td>Spokane</td>
<td>B727</td>
<td>MK I</td>
</tr>
<tr>
<td>Dec 89</td>
<td>Pointe de Pitre</td>
<td>B747</td>
<td>MK I</td>
</tr>
<tr>
<td>Nov 89</td>
<td>Spokane</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>July 89</td>
<td>Copenhagen</td>
<td>DC-10</td>
<td>MK I</td>
</tr>
<tr>
<td>Oct 88</td>
<td>Long Beach</td>
<td>MD80</td>
<td>MK I</td>
</tr>
<tr>
<td>Oct 88</td>
<td>El Paso</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>July 88</td>
<td>London</td>
<td>A320</td>
<td>MK III</td>
</tr>
<tr>
<td>Nov 87</td>
<td>Prince George</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>Dec 86</td>
<td>Spokane</td>
<td>B727</td>
<td>MK I</td>
</tr>
<tr>
<td>Dec 86</td>
<td>Tangiers</td>
<td>B737</td>
<td>MK I</td>
</tr>
<tr>
<td>May 86</td>
<td>Denver</td>
<td>B727</td>
<td>MK I</td>
</tr>
<tr>
<td>Mar 86</td>
<td>Fallon</td>
<td>C-9</td>
<td>MK II</td>
</tr>
<tr>
<td>Nov 85</td>
<td>Genoa</td>
<td>MD-80</td>
<td>MK II</td>
</tr>
<tr>
<td>Feb 83</td>
<td>La Guardia</td>
<td>B767</td>
<td>MK III</td>
</tr>
<tr>
<td>Aug 79</td>
<td>Chicago</td>
<td>B747</td>
<td>MK II</td>
</tr>
<tr>
<td>Oct 78</td>
<td>San Francisco</td>
<td>B747</td>
<td>MK I</td>
</tr>
<tr>
<td>Feb 76</td>
<td>Salt Lake City</td>
<td>B727</td>
<td>MK II</td>
</tr>
<tr>
<td>Oct 76</td>
<td>Mexico City</td>
<td>DC-9</td>
<td>MK I</td>
</tr>
</tbody>
</table>
CIRCUMSTANCES: During initial approach to ILS/NDB 34R, the aircraft was prematurely cleared to 2950 feet and struck a mountain. The controller (with no radar) believed the aircraft was established on "PRI Corridor 7" (STAR) but the aircraft had apparently deviated south to save fuel.

TIME: Day
WEATHER: OK at the airport.
CONFIGURATION: Clean
FATALITIES: 21 (7 passengers not registered)
OTHER: Aircraft was carrying 57 tonnes of beef, 17 tonnes in excess of payload limit. To help save fuel, the pilot had counted on an enroute tailwind component that did not happen.

Capt.: "--we are level at 900 meters (2960') and I see the coastline. --we are good!"

Probable Flight Path Profile
IL-76
PETROPAVLOYSK - KAMCHATSKY, RUSSIA
5 APRIL, 1996

Kamchatka Peninsula

DISTANCE TO RUNWAY 34R - NM

GPWS Warning (if installed)
Apparently not installed or operational.

TIME - SECONDS TO IMPACT
CIRCUMSTANCES: While on a NDB approach to runway 12, the aircraft impacted a 2300 foot mountain at the 2290 foot level, 2NM north of the runway. VIP USAF flight.

WEATHER: Below minimums, 400 broken, 2000 foot overcast, fog, rain, variable visibility 5 to 3 miles, wind 12 kts surface at 120 degrees to probable 25 kts/160 degrees at FAF.

TIME: 14:50 local time

CONFIGURATION: Landing, flaps 30

GPWS: Early primitive GPWS installed, but operating status not known. (No CVR). Probably no GPWS warning with landing configuration.

FATALITIES: 35 including U.S. Secretary of Commerce, 10 staff members, 12 U.S.A. corporate company officers, flight crew of 6 and others.

OTHER: Weather, ceiling and visibility below required instrument procedure minimums. Only one (single) ADF receiver. Pilots may have not been able to tune 'CV' NDB. (operating status of NDB not known).
Bodies recovered from crash

Brown's body identified; land mines on hillside, strong winds hamper removal of 33 victims

Secretary Ron Brown's plane: The final moments

President Clinton's Communications secretary and a group of��片ors traveling from Prague, Czechoslovakia, were aboard the Air Force plane that crashed on the Adriatic coast yesterday.

Plane had flight record for investigation

Sec. Brown's plane: The final moments

President Clinton's Communications secretary and a group of business leaders traveling from Prague, Czechoslovakia, were aboard the Air Force plane that crashed on the Adriatic coast yesterday.

The plane carried many industry leaders drawn by business of rebuilding Bosnia

Ron Brown: A Democrat in the Democratic Party and a champion of American business abroad A.R.

SMITH & Wesson.

The aftermaths of one event led to another. President Clinton and Secretary Brown were aboard the plane that crashed yesterday. The plane was carrying a group of business leaders to Meet the Press.

President Clinton's Communications secretary and a group of business leaders traveling from Prague, Czechoslovakia, were aboard the Air Force plane that crashed on the Adriatic coast yesterday.

President Clinton's Communications secretary and a group of business leaders traveling from Prague, Czechoslovakia, were aboard the Air Force plane that crashed on the Adriatic coast yesterday.
CIRCUMSTANCES: While on a VOR 'QIT' ILS 35 approach (radar vectored to localizer), the auto-flight inadvertently switched from "LOC" to "HDG" mode and the auto-throttles became uncoupled and not noticed by pilots. The aircraft deviated to the right, full scale of localizer of course into terrain well below glideslope. A Mk V GPWS alert warning "Glideslope!" "Glideslope!" followed by "Sinkrate!" -- Terrain! Terrain! and Pull Up! occurred. Pilots were late to respond, but a missed approach was finally made.

WEATHER: IMC until breaking out to visual condition during the missed approach.

TIME: Day

CONFIGURATION: Probable gear down, flaps in transition from 28 to 50°.

OTHER: Human factors and misleading procedure statements. Pilots flying DC-10 were procedurally told to ignore routine "W-W - Terrain!" because of the early model of GPWS used on DC-10s gave nuisance warnings. There are no nuisance GPWS warnings for Mk V equipment at Quito. (Envelope Modulation) In this occurrence, the Mk V Envelope Modulation performed exactly as designed, giving full warnings soon as the aircraft deviated outside the localizer and glideslope limits. Pilots did not couple to glideslope because of scallops and beam noise. Glideslope used for indication only with Vertical Speed or Flight Path Angle modes of the auto-flight used to track the smoothed glideslope indications.

See Accidents at Quito: 4 May 1995
22 Dec 1992
10 Dec 1992
Also incident: March 1992
QUITO, ECUADOR

MARISCAL SUCRE INTL

QUITO Approach (R) 119.7 121.2
QUITO Tower 118.1
Ground 121.9

VOR QIT ILS Rwy 35
LOC 110.5 IQO

CAT B, C & D

LOC 110.5 IQO

Apt. Elev 9223'
CIRCUMSTANCES: During a go around after becoming destabilized, the aircraft entered a visual circuit back to ILS runway 09R. While trying to maintain visual contact, the aircraft impacted a mountain while in a beginning turn to base for runway 09.

WEATHER: Broken 014, FCT 020, BKN 080, wind 120° 3 kts 21/21°C Q1018

CONFIGURATION: Believed to be clean

TIME: 02:16 UTC - Night

FATALITIES: 9

OTHER: The pilots tried to make visual downwind circuit to the north over unlite terrain, instead of to the south over the city. No GPWS was installed.

Probable Flight Path Profile
LJ-25D
SAO PAULO, BRAZIL
2 MARCH, 1996

GPWS Warning (none installed)
Crash kills Brazilian rockers

SAO PAULO, Brazil — Fans lined up 10-deep outside a morgue yesterday to mourn one of Brazil’s hottest rock bands, whose members were killed when their private plane crashed into a mountainside. All five members of the band, Mamonas Assassinas, two assistants, and the pilot and co-pilot were killed Saturday when a chartered Lear jet crashed outside Sao Paulo. There were no survivors.

So many fans gathered outside a roped-off morgue in downtown Sao Paulo, Brazil’s largest city, that troops were sent in to keep order. Other fans lined the streets and waved white handkerchiefs from apartment windows as ambulances carrying the bodies drove by. Some wore black armbands.

Appealing mainly to teenagers, Mamonas Assassinas used raunchy lyrics to promote a youthful image. Their first album, “Mamonas Assassinas,” sold 1.9 million copies since its release last year.
CIRCUMSTANCES: While on a non-precision VOR DME approach to runway 09, the aircraft impacted short by 3 NM.

WEATHER: Foggy, drizzle, limiting forward visibility.

TIME: 20:15 local

CONFIGURATION: Landing

FATALITIES: 123

OTHER: Mark I GPWS (Collins) installed. No apparent warning. The pilots may have seen the runway lights initially, but lost them as they descended into foggy conditions.

An Altimeter error or deliberate effort to get down early?

Flight Path Profile
B737-200
AREQUIPA, PERU
29 FEBRUARY, 1996

Enhanced GPWS Warning: 30 seconds (not installed)
"Too low! Terrain!"
Peruvian rescue workers hold a Mass at the site where Faucett Airlines flight 251 crashed Thursday night. All 123 passengers were killed when the Boeing 737 smashed into a hillside, 5 miles from its destination. See story on Page A5.
CIRCUMSTANCES: While on initial approach VOR DME to runway 19, the aircraft impacted into a mountain.

TIME: 21:41 EST (night)

WEATHER: Visibility greater than 30 NM, Wind calm, Altimeter 30.02 "Hg.

CONFIGURATIONS: Landing gear and flaps up but spoilers deployed.

FATALITIES: 160 of 164. Five rescuers also lost their lives.

Approach: "...cleared to Cali VOR, descend and maintain one five thousand, altimeter 3002, no delay expected for approach, report Tutua VOR.*

Captain: "... OK, understand cleared direct to Cali VOR, report Tutua and altitude 15, that's fifteen thousand 3002, is that correct sir?"

Approach: "Affirmative:"

Captain: "... OK sir, the wind is calm, are you able to approach runway 19?"

Approach: "Roger 965 is cleared to the VOR DME approach one-niner, ROZA Number One arrival, report Tutua VOR.*

Captain: "Cleared the VOR DME one niner ROZA one arrival, report the VOR, thank you sir."

Approach: "Report Tutua*"

Captain: "Report Tutua"

Captain: "Can 965 go direct to ROZO and then do the ROZA arrival sir?"

Approach: "Affirmative direct ROZO one and then runway one niner, the winds calm*"

Captain: "... all right, ROZO, then ROZO 1 to 19 thank you..."

Approach: "Affirmative, report Tutua and twenty one miles, 5000 feet."

Captain: "... OK report Tutua, twenty one miles at 5000 feet..."

Airframe put into descent towards 5000 feet from FL150.

"VLC" (Tutua) selected in the FMS and aircraft turns back into left turn for 90 seconds, then a right turn was made for a direct heading of 235 degrees to the ROZA radio beacon.

Next Page
BOGOTA, Colombia — An American Airlines plane from Miami carrying 159 people crashed last night as it was making its final descent toward the Cali airport in southwestern Colombia, radio reports said.

RCN Radio and Radio Caracol quoted witnesses as saying they saw the plane crash and a large explosion in the Andes mountains outside Cali.

American Airlines officials said 151 passengers and eight crew were aboard the Boeing 757 aircraft.

Flight 965 was flying over a town about 40 miles north of Cali, when it lost radio contact, officials said.

Police said they received telephone calls from people in the area reporting an explosion.

"We saw when the plane crashed against a mountain and then a huge fireball erupted," witness Carlos Buitrago told Radio Caracol. He said skies were clear with no rain.

More than three hours after the plane's scheduled 6:45 p.m. arrival, there was still no official word on the aircraft's fate.

Local authorities declared an emergency and launched a search in the area where the plane disappeared, about 185 miles southwest of the capital Bogota. But darkness and the mountainous terrain were likely to hinder rescue and recovery efforts until dawn.

Col. Jose Serrano, the national police chief, said he would dispatch helicopters at first light.

The Boeing 757-200 is a twin-engine, medium- to long-range jetliner that can carry up to 239 passengers. First flown in 1982, it has a range of 3,200 miles.

In Seattle, Boeing spokesman Bill Curry said this was the first accident involving a 757, which has had an "unblemished record."

Ed Martelle, a corporate communications representative at American Airlines headquarters in Fort Worth, Texas, said that if a crash were confirmed, a "care team" from the airlines would notify the passengers' families.
CIRCUMSTANCES: While on a non-precision VOR approach to runway 15, the aircraft inadvertently flew through trees at approximately 760 feet above sea level. (586 feet above the field) A go around was initiated but aborted when engine thrust rapidly diminished and runway lights became visible. The pilots managed to get within 50 feet of the runway threshold taking out the localizer antenna.

WEATHER: C23, visibility 3 miles, wind 192/25 kts & 40 kts, moderate rain, temp 61°F dew point 58°F. Special post accident ceiling 900 overcast.

TIME: 00:57 past midnight

INJURIES: one of 72 passengers

DAMAGE: Destruction of two engines, leading and trailing edge flaps, gear doors, loss of hydraulics, lower rear fuselage and antennas.

POSSIBLE CONTRIBUTING FACTORS:
- Control tower problems, delay in updating altimeter settings to aircraft with fast moving low pressure storm, giving at least 120 feet of error.
- Steep instrument approach procedure with significant terrain (819') on final approach in poor visibility and no approach lights
- Low ground speed because of significant head wind, giving steeper than normal descent angle for standard descent rate of 1000 fpm.

Flight Path Profile
MD-80
WINDSOR LOCKS, CONN.
12 NOVEMBER, 1995

Next Page

Don Bateman

MARK II GPWS installed and operational but 'Minimum/! not connected (19 seconds if radio altimeter set to 950 feet AGL).
High winds force jetliner's emergency landing

By The Associated Press

WINDSOR LOCKS, Conn.—An American Airlines jet carrying 78 people encountered dangerous winds and engine problems in stormy weather and clipped a row of trees and an airport antenna during an emergency landing early yesterday.

Some of the 72 passengers said they heard an explosion just before landing and the cabin started to fill with smoke. They shut down chutes to evacuate the plane and only one of the passengers suffered a minor injury.

Everyone remained calm, passengers said, and gave the pilot an ovation after the MD-80 jet's wheels hit the tarmac.

“The pilot did a magnificent job,” said passenger Richard Seymour. “We really thought we were going to die.”

The pilot of Flight 1572 from Chicago declared an emergency one mile before landing at Bradley International Airport at 12:57 a.m., said Mary Culver, a Federal Aviation Administration spokeswoman in New England.

Equipment on board indicated it may have been wind shear, a sudden, powerful gust of wind moving downward from a thunderstorm. “That's probably the most violent form of weather a pilot can encounter,” Culver said.

The pilot used two different maneuvers to counter the weather, but first the right engine, then the left engine failed to respond, said officials.

Robert Benson of the National Transportation Safety Board confirmed that the plane encountered engine problems but said it was unclear whether they occurred before or after the trees were hit.
CIRCUMSTANCES: During initial approach, the pilot deviated to the north to avoid heavy weather as indicated on Weather Radar, and tower reports. The aircraft deviated well north along the arc 15 DME, and while intending to proceed direct to the VOR, was cleared to establish an arc of 12 DME to radial 135 for runway 07, and down to 8000 feet and then 5000 feet – A GPWS MKII Warning occurred and the pilot initiated a climb but attained only 400 feet before impact on the north flank of San Vincent volcano.

WEATHER: 30° 37°, Altimeter 29.84, temperature 27°C, visibility 14 miles, wind 070, 5kts, gusting 16, light rain, later thunderstorm.

TIME: 19:50 local

CONFIGURATION: clean

FATALITIES: 65, including Brazilian and Dutch Ambassadors with staff, business men, two FAA inspectors and tourists.

WEATHER: 30° 37°, Altimeter 29.84, temperature 27°C, visibility 14 miles, wind 070, 5kts, gusting 16, light rain, later thunderstorm.

TIME: 19:50 local

CONFIGURATION: clean

FATALITIES: 65, including Brazilian and Dutch Ambassadors with staff, business men, two FAA inspectors and tourists.

C/P: "--- we are requesting deviations due to bad weather cells --- at pilot discretion please!"
TWP: "--- deviation is authorized (to the north),"
TWR: "descend and maintain 2000 --- 15 DME."

C/P: "--- request direct to VOR 'CAT'."
TWP: "--- Affirmative --- (but) we have thunderstorms over station."
TWR: "--- if possible establish on 15 DME Arc to 07 descend to 5000!"

C/P: "--- we're reaching 5000'"
TWR: "--- roger, notify crossing the radial 155 south of the station."
C/P: "--- well we will deviate to the left."
TWR: "--- if possible establish on 15 DME Arc to 07 descend to 5000!"

C/P: "We are abeam the station crossing the 030 radial."
TWR: "--- Cl?:" --- well we will deviate to the left.

Flight Path Profile
B737-200
SAN SALVADOR, E.S.
9 AUGUST, 1995

DEVIATION FROM APPROACH PROCEDURE BECAUSE OF HEAVY WEATHER

Next Page
Jet from Miami crashes in El Salvador, killing 60

Guatemalan plane hits volcano

A United Airlines Boeing 737-222 crashed in Colorado Springs, Colo., killing all 26 people on board. Last September, a US Air Boeing 737-300 plunged into a hillside outside Pittsburgh, Pa. All 132 people aboard were killed.

Jet from Miami crashes in El Salvador, killing 60

Guatemalan plane hits volcano

A United Airlines Boeing 737-222 crashed in Colorado Springs, Colo., killing all 26 people on board. Last September, a US Air Boeing 737-300 plunged into a hillside outside Pittsburgh, Pa. All 132 people aboard were killed.

Jet from Miami crashes in El Salvador, killing 60

Guatemalan plane hits volcano

A United Airlines Boeing 737-222 crashed in Colorado Springs, Colo., killing all 26 people on board. Last September, a US Air Boeing 737-300 plunged into a hillside outside Pittsburgh, Pa. All 132 people aboard were killed.

Jet from Miami crashes in El Salvador, killing 60

Guatemalan plane hits volcano

A United Airlines Boeing 737-222 crashed in Colorado Springs, Colo., killing all 26 people on board. Last September, a US Air Boeing 737-300 plunged into a hillside outside Pittsburgh, Pa. All 132 people aboard were killed.

Jet from Miami crashes in El Salvador, killing 60

Guatemalan plane hits volcano

A United Airlines Boeing 737-222 crashed in Colorado Springs, Colo., killing all 26 people on board. Last September, a US Air Boeing 737-300 plunged into a hillside outside Pittsburgh, Pa. All 132 people aboard were killed.

Jet from Miami crashes in El Salvador, killing 60

Guatemalan plane hits volcano

A United Airlines Boeing 737-222 crashed in Colorado Springs, Colo., killing all 26 people on board. Last September, a US Air Boeing 737-300 plunged into a hillside outside Pittsburgh, Pa. All 132 people aboard were killed.
While on a VOR/DME approach to runway 25, the right landing gear would not extend. Eventually the back up landing gear extension procedure being used by the co-pilot became a distraction to the Captain. The aircraft impacted some 7-1/4 NM short into a hillside.

WEATHER: Low cloud, limited visibility and rain.

CONFIGURATIONS: Landing gear and flaps up.

TIME: 09:25 local

FATALITIES: 5 of 21 on board

OTHER: MKII GPWS installed, but gave very short warning (4.5 seconds versus a calculated warning of 18 seconds). Possible loss of radio altimeter track.

Flight Path Profile
DHC-8
PALMERSTON NORTH, NEW ZEALAND
9 June, 1995

... and twelve DME, looking for 4000

Captain "... gear down please"
CIP "... gear down selected"
(right gear does not extend)

"10 DME... Ah, sorry, hang on... we're looking for 4000, so a fraction low."

"... use the back up gear extension procedure, I'll keep my eye on the airplane..."
(Co-pilot has difficulties, and Captain gradually becomes distracted trying to help the co-pilot).
Crew ‘trying to get wheels down’

By SIMON BIRKBECK

This crew on Ansett flight 703 was trying to get the plane’s landing gear down before it crashed into a hillside, killing three people, Transport Accident Investigation Commission chief investigator Ron Chippindale said yesterday.

Mr Chippindale said that soon after the aircraft was given clearance to land at Palmerston North airport, its right undercarriage failed to fully extend and the crew enacted alternative procedures.

What they actually did was one of the investigation’s key areas, he said.

Investigations were also centring on the reason why the undercarriage failed and whether the flight path into Palmerston North measured up to international standards.

In Palmerston North yesterday, Mr Chippindale said his main findings so far were that the aircraft was on the correct approach and the only technical hitch was the undercarriage failure.

Alternative procedures for lowering the undercarriage involved unlocking the wheels and allowing them to free fall or lowering them using a hydraulic hand-pump, he said.

In such situations the crew’s duties were split so the flying of the aircraft was maintained.

Mr Chippindale could not say if whether on this occasion the procedure had forced the crew to divert their attention away from the cockpit’s warning systems.

“We are still looking, at that question, it’s a critical area for the investigation.”

The aircraft’s ground proximity warning system sounded an alarm “pull up, pull up” in the cockpit moments before impact. Passengers were not warned.

Mr Chippindale said the undercarriage failure “should not in itself cause an off-field accident.”

Ansett New Zealand spokesperson John Cotsen said that in the past 18 months there had been three occasions when Dash-8 crew had to use the alternative method of lowering the undercarriage.

He said the aircraft had “well proven” backup systems.

Mr Chippindale said that while modification notices for the changing of the landing gear’s components were available, the recommended changes were “very minor” and not mandatory.

Flight attendant Karen Gallagher and passengers Jonathan Keal and David Wills were killed when the aircraft crashed 13km east of Palmerston North.

Captain Gary Satherley and co-pilot Barry Brown are still in Palmerston North Hospital’s intensive care unit.

They were reported to be in a serious but stable condition yesterday.

The plane crashed at a point about 300 metres lower than it should have been.

William McGroye, the passenger who used his cellphone to guide a rescue helicopter to the crash, was yesterday discharged from Palmerston North Hospital.

Mr Chippindale said that a final report on the accident could take up to six months.

The cockpit voice and inflight data recorders were both said to be of good quality.

Commission chief executive John Britton said it was not the role of the commission to fix blame, but to identify the causes and improve safety.

Flight attendant Karen Gallagher and passengers Jonathan Keal and David Wills were killed when the aircraft crashed 13km east of Palmerston North.

Captain Gary Satherley and co-pilot Barry Brown are still in Palmerston North Hospital’s intensive care unit.

They were reported to be in a serious but stable condition yesterday.

The plane crashed at a point about 300 metres lower than it should have been.

William McGroye, the passenger who used his cellphone to guide a rescue helicopter to the crash, was yesterday discharged from Palmerston North Hospital.

Mr Chippindale said that a final report on the accident could take up to six months.

The cockpit voice and inflight data recorders were both said to be of good quality.

Commission chief executive John Britton said it was not the role of the commission to fix blame, but to identify the causes and improve safety.

Mr Britton said the commission saw a public inquiry into the crash as unnecessary.
CIRCUMSTANCES: The aircraft cleared for the approach to ILS runway 01, was approximately 2NM west of the localizer and transferred to the tower who was very busy with other aircraft. The aircraft began a premature descent. Fortunately the approach controller continued to monitor the aircraft's altitude and track and noticed the serious deviation and finally advised the tower. The aircraft was instructed to climb to 4000 and for another approach from the north.

WEATHER: 500 foot ceiling. 3 to 4 KM visibility

OTHER: Tourist flight with 150 passengers on board

CFTT INCIDENT

Flight Path Profile
TU-204
OSLO, NORWAY
20 MAY, 1995
Balkan Air i SKAuen

Balkan Air holdt på å lande i Nannestad 20. maj – tre-fire kilometer vest for Gardermoen. Havarikommissjonen etterforsker dermed to alvorlige episoder med Balkan Air på Gardermoen.

3–4 kilometer ute av kurs før landing

Det bulgarske flyselskapet er i Norge, for ikke alt som er høyt talte ikke Balkan Air. Kartpraksis hvor ban er den kan få plukking for landet på Gardermoen for å lande 20. maj i år.

Elendig sikt

På flyplassen kan det være høyere signallamper, og landingsstasjonen kan være høyere signallamper.

Fely Følgende

To uke under flysett og tilflyting fra Balkan Air er ikke noen som har noen form for bevis. Flyet er blitt satt under flysett og tilflyting fra Balkan Air er ikke noen som har noen form for bevis.

Skreddersyde flysett og tilflyting fra Balkan Air er ikke noen som har noen form for bevis.
Circumstances: During an initial VOR ILS approach to Runway 35, the aircraft struck the shoulder of a mountain at the 12,350 foot level while turning inbound to the ILS.
Weather: Not a factor, Quito probably visible throughout approach.
Time: Midnight.
Configuration: Clean
Fatalities: 7
Other: No GPWS installed. This accident appears very similar to a DC-8 March 1992 incident where the wrong VOR was being used for the approach procedure, ("QMS" instead of "QIT"), but a timely GPWS warning allowed a successful escape. There are two VOR ILS runway 35 approach procedures based on different VOR's and with no reference to each (13 NM's apart).
Argentine Oil Chief Dies in Crash, Casting Shadow on YPF's Future

By Jonathan Fridelbau

The Argentinian oil company YPF SA Chairman Jose Eslenssoro was killed in a plane crash on Thursday morning. The aircraft was carrying six people, including Eslenssoro and two other Argentine oil executives, when it hit the Andean mountains near Quito, Ecuador. The crash occurred shortly after takeoff from the Mariscal Sucre International Airport.

Eslenssoro, 45, was considered one of the most promising candidates to succeed Economy Minister Domingo Cavallo. His death has cast a shadow over YPF's future, as the company faces challenges in the wake of the crash.

YPF, which is Argentina's largest oil company, has been involved in an ongoing dispute with the government over the terms of its concessions. The crash has led to speculation that YPF may be forced to reevaluate its strategy, particularly in light of the current economic recession.

In a statement, President Carlos Menem announced that he would name a successor to Eslenssoro. "I am going to name a management team that will carry on the work of the company," Menem said. "We will make every effort to continue the work of the company as it was until now."
CIRCUMSTANCES: During a locator/NDB approach to runway 12, this cargo jet clipped the top of a ridge, inbound from the north.

WEATHER: Clear, no moon

TIME: 8:10 PM local

CONFIGURATIONS: Landing gear down, flap position not known

FATALITIES: 3

OTHER: No apparent aircraft or fuel problem. Runway 12 equipped with G-Slope LOC - DME and NDB, T-VASI, RL, HIALS. Hazardous cargo on board.

No GPWS installed, nor required.

Estimated Flight Path Profile
IAI-1124
ALICE SPRINGS, AUSTRALIA
27 April, 1995

Terrain along center line of NDB approach

ALTITUDE MSL ~ FEET

DISTANCE TO RUNWAY 12 ~ NM

MK VI GPWS WARNINGS (NOT INSTALLED)
Darwin man dies in Alice jet crash

By ALASTAIR BIJLETT

A Darwin man was found dead on the banks of the Blackwater river earlier this week in Alice Springs.

The man was found by a council worker while cleaning up debris from a small plane crash.

The plane was a small single engine aircraft that had crashed into the river.

The cause of the crash is under investigation.

A spokesman for the Department of Civil Aviation said the plane had been flying from Alice Springs to Darwin.

The man was identified as 45-year-old John Smith, a local pilot who had been flying for ten years.

He was a married man with two children and had been flying regularly to visit family in Darwin.

Friends said Mr Smith was a popular and well-liked member of the community.

The plane crashed into the river while in flight, and the pilot was killed in the crash.

Emergency services were called to the scene, but the pilot was pronounced dead at the scene.

The plane was a small single engine aircraft and appeared to have been flying at a low altitude.

The cause of the crash is under investigation, but it is believed to have been caused by mechanical failure.

The Department of Civil Aviation has launched an investigation into the crash.

Local residents have paid tribute to Mr Smith, describing him as a dedicated pilot and a respected member of the community.

The accident is a reminder of the dangers of flying in the remote areas of the Northern Territory.

Local pilots have called for increased safety measures to be put in place, including improved weather forecasting and better communication systems.

The Department of Civil Aviation has also been urged to improve its oversight of the aviation industry in the Territory.

Local residents have expressed their shock and sadness at the loss of Mr Smith, a popular and well-respected member of the community.
CIRCUMSTANCES: During a radar approach to runway 13R, the airspeed on final increased to 40kts in windshear conditions. The approach profile became unstabilized and the captain decided to make a missed approach from 500 feet MSL. During the missed approach, the pilots began to receive radar vectors and altitudes inconsistent with the terrain. The pilots became uneasy with the vectors and asked for higher altitudes, that were either ignored or overridden with other radio transmissions, and were finally given a new altitude and heading that further aggravated the flight towards terrain. Finally there was a GPWS warning with the pilots taking immediate recovery action from the terrain.

WEATHER: Good visibility, but unsettled winds and night

TIME: 21:30 PST

INJURIES: None of 173 on board

ATC SYSTEM ERROR - Correct clearances to incorrect aircraft? Or loss of communication?

Next Page
Palm Springs, Calif.

Pilot Report

At 500' AGL on approach to RWY 13 R. We went around due to a windshear condition (increase of I.A.S. of 40 kts) at approximately 2000' MSL on a RWY HDG. Approach control cleared us to turn left to a HDG of 090° and maintain 5000' MSL. It was clear to us that we would need to turn much further left and/or climb to a higher altitude. We requested a climb and received a clearance to climb to 7000' and to turn to a HDG of 070° despite now having a higher altitude and a new HDG. It was still obvious that we would require another climb and/or HDG change due to the fact that the new HDG actually had us pointed to even higher terrain.

Repeated requests for a higher cleared altitude were ignored by ATC. We decided to climb without a clearance, as TOGA power was being applied we disconnected the A/P and applied full AFT sidestick just as this action was taking place. We got the GPWS terrain warning. Since the aircraft was very light only 45.6 tons without seconds we had an indicated V.S.I. of some 6000' F.P.M. and the GPWS warning stopped. As we were climbing we finally received a higher cleared altitude from A.T.C. upon reaching this altitude we asked and received a clearance to our alternate airport.

In summary, I discussed the missed approach guidance that we received with the Palm Springs A.T.C. Supervisor. He has assured me that at no time was the aircraft below the M.V.A. He also assured me that he would brief all his controllers on what had taken place.

What is of concern, is that regardless of how many times we asked for a higher altitude the controller either ignored us or just gave us a new HDG which turned us to even higher terrain.

I suggest that we review our operations into PSP specifically I suggest we create and publish a missed approach procedure for RWY 13R. Also consider to limit or cancel all night operations. Further more, I would like to remind everyone concerned that PSP compared to most all other airports we operate into offers many different challenges.
CIRCUMSTANCES: During a LOC-2 approach to runway 16R, this freight aircraft hit 110 feet below a mountain peak on the localizer center line.

WEATHER: 1900 broken, 3 mile visibility, snow, wind 180/27 gusting 32kts

TIME: 0812L

FATALITIES: 1

OTHER - The aircraft apparently was not fitted with a glideslope receiver, forcing the pilot to make a localizer approach instead of the ILS 16R.

Flight Path Profile
RENO, NEVADA
Ce 208B
22 March, 1995

Don Bateman
Use IRNO DME when on LOC course.

Missed Approach: Climb to 5900' then climbing LEFT turn to 11000' direct FMG VOR, then outbound via FMG VOR R-017 to NICER INT and hold.

Straight-in Landing RWY 16R

<table>
<thead>
<tr>
<th>Mode</th>
<th>Alt</th>
<th>AFE</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3/4</td>
<td>1</td>
<td>90</td>
<td>5700/12887-3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1/2</td>
<td>120</td>
<td>5700/12887-1/2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>140</td>
<td>5700/12887</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3</td>
<td>160</td>
<td>5700/12887</td>
</tr>
</tbody>
</table>

Map at D5.8 IRNO LOC or DICEY to Map 33 5:32 18:11 7:29 2:16 11:59
CIRCUMSTANCES: During an ILS approach to runway 26L, the aircraft descended prematurely well below the glideslope before passing the FAF. A late but important GPWS "Pull Up" allowed a successful recovery from a possible disaster at some 6-1/2 NM short of the runway threshold.

TIME: Morning
WEATHER: Instrument Meteorological Condition
CONFIGURATION: Landing
GPWS: Early obsolete Mark I GPWS

For other similar incidents see:
28 June 1988, Portland, OR DC-10

Flight Path Profile
B727-200
ATLANTA, GEORGIA
January, 1995

Don Bateman
The approach controller gave radar vectors to ILS 26L outside "KINKY," but leaving the aircraft well above the glideslope. The first officer was flying and recognizing that the aircraft was high was attempting at the same time to align with the localizer and descend down to the glideslope. The Captain handled the radios and kept his VOR tuned to "PDK" so that the "KINKY" could be determined by passing the 155° radial. After passing "KINKY," the Captain momentarily re-tuned the VOR to the LOC to assess and confirm the aircraft's position on the localizer which it was, but found the aircraft still above the glideslope but correcting. The Captain then re-tuned back to the VOR to help determine "PANOL." The First Officer's RM needle (slaved to Capt's VOR) swung aft catching the First Officer's eye, convincing him that the aircraft was pass the FAF but still high on the glideslope. He further reduced thrust, called for landing gear down and landing flap to increase the descent rate. The Captain believed the First Officer was merely correcting the aircraft's high position. The Captain and the Second Officer began to complete the approach-landing check list and did not realize the aircraft was slipping well below the glideslope. The check list had become a distraction for the First Officer who reduced the descent rate by adding some thrust but insufficient to prevent the aircraft from descending well below the glideslope.

The MK I GPWS monitors glideslope deviation, but as in most installations, from only the Captain's side. In this incident, the Captain was using the VOR, with no glideslope deviation to the GPWS, and hence there is no below "Glideslope" alerting function. As the aircraft had been established in landing configuration, there were no GPWS warnings of insufficient terrain clearance. In this early primitive GPWS there are no aural automated "smart" altitude callouts or procedures to help alert the crew of the lost altitude awareness. If this aircraft had been descending at 1200 fpm there would be nothing unusual in the descent rate and no GPWS warning. Fortunately, the descent rate initially 2600 fpm or so had been reduced to about 1600 fpm, and a late but important GPWS "Pull Up" started at about 300 feet AGL. This allowed the pilots to make a successful recovery and avert what would have been a disaster. (The radio altimeter dipped to about 200 feet AGL). As the aircraft was climbing through 600 feet AGL, the Controller advised the aircraft of a rather late low altitude (MSAW) alert.

Synopsis:

This early morning flight into Atlanta had been preceded the night before by an evening fight from the west coast to the east coast. Overnight crew rest had been minimum. The approach controller gave radar vectors to ILS 26L outside "KINKY," but leaving the aircraft well above the glideslope. The first officer was flying and recognizing that the aircraft was high was attempting at the same time to align with the localizer and descend down to the glideslope. The Captain handled the radios and kept his VOR tuned to "PDK" so that the "KINKY" could be determined by passing the 155° radial. After passing "KINKY," the Captain momentarily re-tuned the VOR to the LOC to assess and confirm the aircraft's position on the localizer which it was, but found the aircraft still above the glideslope but correcting. The Captain then re-tuned back to the VOR to help determine "PANOL." The First Officer's RM needle (slaved to Capt's VOR) swung aft catching the First Officer's eye, convincing him that the aircraft was pass the FAF but still high on the glideslope. He further reduced thrust, called for landing gear down and landing flap to increase the descent rate. The Captain believed the First Officer was merely correcting the aircraft's high position. The Captain and the Second Officer began to complete the approach-landing check list and did not realize the aircraft was slipping well below the glideslope. The check list had become a distraction for the First Officer who reduced the descent rate by adding some thrust but insufficient to prevent the aircraft from descending well below the glideslope.

The MK I GPWS monitors glideslope deviation, but as in most installations, from only the Captain's side. In this incident, the Captain was using the VOR, with no glideslope deviation to the GPWS, and hence there is no below "Glideslope" alerting function. As the aircraft had been established in landing configuration, there were no GPWS warnings of insufficient terrain clearance. In this early primitive GPWS there are no aural automated "smart" altitude callouts or procedures to help alert the crew of the lost altitude awareness. If this aircraft had been descending at 1200 fpm there would be nothing unusual in the descent rate and no GPWS warning. Fortunately, the descent rate initially 2600 fpm or so had been reduced to about 1600 fpm, and a late but important GPWS "Pull Up!" started at about 300 feet AGL. This allowed the pilots to make a successful recovery and avert what would have been a disaster. (The radio altimeter dipped to about 200 feet AGL). As the aircraft was climbing through 600 feet AGL, the Controller advised the aircraft of a rather late low altitude (MSAW) alert.
CIRCUMSTANCES: While positioning back from the Pescadores Island to Taipei, the aircraft was cleared for a visual approach to runway 10 (Sung shau). The aircraft was slightly right of a gap in shallow terrain and impacted at 750 feet MSL of a 1230 foot hill.

TIME: Night 19:43 L
WEATHER: Light rain. Visibility at airfield was 9KM
CONFIGURATION: Gear up, flaps maneuvering
FATALITIES: 4
OTHER: MKII GPWS installed, but no warning given. GPWS 'Off' switch used or GPWS failure.

Note: Of the 10,000 aircraft fitted with MKII GPWS, this is the first reported failure of the system to warn of impending impact. A cockpit panel GPWS Three Position guarded switch is used, but with no lock wire. ('Normal', 'Flap Ovrd' and 'Off' positions) There appeared to be no reason for the pilot to disable the GPWS.

Pilots may have been misled, by false on course glideslope and localizer indications, with no flags, similar to 23 December, 1992 F-28 accident in Oslo, Norway.

Estimated Flight Path Profile
ATR-72
TAIPEI, TAIWAN
30 January, 1995

ATC: "Cleared to 'Linkou' (LK) "...descend to 3000"
ATC: "...cleared for a visual approach"
Pilot: "...airport in sight"...

240kts -800 fpm.
Fly up Glideslope indication, no flags

On course glideslope fly left indications, no flag

Increasing fly down indication, no flag.
Pilot increases descent rate.

Localizer alive, pilot turns right to 80° to hold localizer

225kts -1800 fpm

3° Approach Slope Plane

Terrain along track
(south of ILS)

Terrain along ILS

Estimated Flight Path Profile
ATR-72
TAIPEI, TAIWAN
30 January, 1995

ATC: "Cleared to 'Linkou' (LK) "...descend to 3000"
ATC: "...cleared for a visual approach"
Pilot: "...airport in sight"...

240kts -800 fpm.
Fly up Glideslope indication, no flags

On course glideslope fly left indications, no flag

Increasing fly down indication, no flag.
Pilot increases descent rate.

Localizer alive, pilot turns right to 80° to hold localizer

225kts -1800 fpm

3° Approach Slope Plane

Terrain along track
(south of ILS)

Terrain along ILS

Estimated Flight Path Profile
ATR-72
TAIPEI, TAIWAN
30 January, 1995

ATC: "Cleared to 'Linkou' (LK) "...descend to 3000"
ATC: "...cleared for a visual approach"
Pilot: "...airport in sight"...

240kts -800 fpm.
Fly up Glideslope indication, no flags

On course glideslope fly left indications, no flag

Increasing fly down indication, no flag.
Pilot increases descent rate.

Localizer alive, pilot turns right to 80° to hold localizer

225kts -1800 fpm

3° Approach Slope Plane

Terrain along track
(south of ILS)

Terrain along ILS

Estimated Flight Path Profile
ATR-72
TAIPEI, TAIWAN
30 January, 1995

ATC: "Cleared to 'Linkou' (LK) "...descend to 3000"
ATC: "...cleared for a visual approach"
Pilot: "...airport in sight"...

240kts -800 fpm.
Fly up Glideslope indication, no flags

On course glideslope fly left indications, no flag

Increasing fly down indication, no flag.
Pilot increases descent rate.

Localizer alive, pilot turns right to 80° to hold localizer

225kts -1800 fpm

3° Approach Slope Plane

Terrain along track
(south of ILS)

Terrain along ILS
TAIPEI, TAIWAN

SUNGSHEAN
ILS Rwy 10
LOC 108.9 ILS

Aircrafts on approach from ANPU VOR/ NDB are required to cross ANPU VOR/ NDB or at or above 7000'.

MISSED APPROACH. Direct O Lctr then via 067° bearing to LU Lctr maintain 4000' and hold.
Requires 200'/min climb rate.

STRAIGHT-IN-LANDING Rwy 10
LOC (GS west) 263° (250°)
CIRCLE-TO-LAND

<table>
<thead>
<tr>
<th>ICAO</th>
<th>MHW</th>
<th>MHW</th>
<th>IAS</th>
<th>IAS</th>
<th>IAS</th>
<th>IAS</th>
<th>NET</th>
<th>NET</th>
<th>NET</th>
<th>NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>800m</td>
<td>1400m</td>
<td>1460m</td>
<td>2200m</td>
<td>NOT AUTH</td>
<td></td>
<td></td>
<td>1300 (1293')-4000m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>800m</td>
<td>1300m</td>
<td>1460m</td>
<td>2200m</td>
<td>NOT AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>800m</td>
<td>1300m</td>
<td>1460m</td>
<td>2200m</td>
<td>NOT AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>800m</td>
<td>1300m</td>
<td>1460m</td>
<td>2200m</td>
<td>NOT AUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GAOR at LMK
CIRCUMSTANCES: During the final of ILS 10 approach, the aircraft clipped trees approximately 1NM short of the runway but was able to make a successful go-around. The aircraft held for 20 minutes until the heavy rain had passed, and then made an unusual approach and landing.

TIME: Daylight 15:11 local
WEATHER: IMC, heavy rain
CONFIGURATION: Landing
DAMAGE: #4 engine cowl ring lost and foliage/tree ingestion
OTHER: Aircraft fitted with MK II GPWS. A timely "Minimums! Minimums!" without the field in sight, prompted the flight crew to initiate a pull up, and a missed approach. There was a possible altimeter error, a possible downdraft and perhaps an ILS glideslope irregularity caused by another aircraft parked in the ground plane of the glideslope antenna in a taxi way. This is a second incident at Manaus. (B727 in March 1991).

Flight Path Profile
DC-8-62
MANAUS, BRAZIL
29, January, 1995

Don Bathman
CIRCUMSTANCES: On a back course localizer approach to runway 01, the aircraft descended, aligned on the localizer, past the airport into trees and terrain.

WEATHER: IMC, 700°, visibility 1-3/4 to 3 miles, light to moderate rain and fog.

CONFIGURATION: Gear down, flaps up.

DAMAGE: Aircraft destroyed in fire. Serious injuries to two crew members.

OTHER: Probable error in setting up RNAV radial, shifting the approach 7.2 NM to the north.
Since recorded radar data showed that the aircraft did not proceed to the IF for a straight-in approach, but rather proceeded toward the CALHY FAF with no navigational warnings, the 298-degree radial at 23 nm from the Watertown VORTAC was likely not properly selected as the waypoint for the IF on the aircraft's area navigation (RNAV) computer system. When the aircraft altered course to the left to intercept the on-course centre line it was in a vicinity abeam and west of the CALHY FAF, outside the localizer coverage limits. This indicates that the 313-degree radial, instead of the 298-degree radial at 23 nm, could have been entered in the RNAV as the IF waypoint data, shifting the approach 7.2 nm to the north.
CIRCUMSTANCES: During an ILS approach to runway 30, the MK VI GPWS gave a continuous below 'Glideslope' aural alert even when the Captain's glideslope deviation indicator showed the aircraft 1/2 dot high. On attempting to zero the deviation, the GPWS glideslope indicator remained high until the Captain realized the aircraft was truly low.

TIME: Night
WEATHER: IMC
OTHER: NASA ASRS pilot reports show that this type of glideslope indicator failure has happened on other same type BAe JS 31/32 aircraft as well. See: NASA ASRS AN 295131, AN 291011 and AN 276236.

GPWS installed 10 months earlier to comply with FAR 135

Next Page
NARRATIVE: WHILE BEING VECTORED FOR THE ILS TO RWY 30 AT HTS, I NOTICED THAT THE GS INDICATOR SHOWED THAT WE WERE ABOVE THE GS, WHICH CORRESPONDED WITH OUR VECTORING ALT OF 3000 FT MSL. APCH CLRED US FOR THE APCH AND WE DSND TO 2600 FT MSL AS INSTRUCTED AND IT STILL INDICATED THAT WE WERE ABOVE THE GS. ONCE ESTABLISHED WE COULD DSND TO 2100 FT MSL. ONCE WE BECAME ESTABLISHED ON THE LOC, WE WERE STILL SHOWING 1/2 DOT ABOVE THE GS. I ASSUMED THAT WE HAD RECEIVED A BAD VECTOR FROM ATC, AND BEGAN TO DSND TO CATCH THE GS, BUT WAS NOT AWARE OF THE ALT/RATE OF DSCNT. THE GND PROX WARNING STARTED GOING OFF AND I COULDN'T FIGURE OUT WHY, BECAUSE I WAS STILL INDICATING ABOVE THE GS. WE GET A LOT OF FALSE WARNINGS, SO I ASSUMED THIS WAS ANOTHER ONE, UNTIL I LOOKED AT THE RATE OF DSCNT, AND REALIZED THAT THE GS INDICATOR NEEDLE HAD STUCK IN POS SHOWING US 1/2 DOT HIGH AND I WAS BELOW THE GS. I IMMEDIATELY INITIATED A GAR AND CLBED.

MEANWHILE ATC HAD NOTICED THE DSND FROM THE GS AND WAS RECEIVING A LOW ALT ALERT AND CALLED FOR US TO CLB IMMEDIATELY. WHAT THE FO WAS DOING, I DO NOT KNOW. I KNOW THAT HE WAS EXTREMELY TIRED FROM BEING ON DUTY 6 STRAIGHT DAYS (RESERVE FO). HE SAID THAT HE HAD RECEIVED THE SAME INDICATION ON HIS GS INDICATOR, BUT IT WORKED PERFECTLY ON THE NEXT ILS APCH. IF IT HAD NOT BEEN FOR THE GPWS AND ATC, WE WOULD HAVE HAD A CFIT INSTEAD OF A CFT.
CIRCUMSTANCES: During initial descent for a VOR DME approach to runway 36, the aircraft impacted 27 NM short of the runway.

TIME: 19:36 local (night)

CONFIGURATION: Clean

WEATHER: Clear

FATALITIES: 52 (1 survivor)

OTHER: 3 pointer altimeter on c/p's side. It is speculated that the Captain may have been in the right seat, instructing the co-pilot on partial panel flight. CVR inoperative GPWS placarded inoperative GPWS not on MEL, engines idle.

Previous CFIT Accident (same airline):
26 March, 1982, Viscount, Bogota, 22 F, hit mountain

Flight Path Profile
DC-9-15
CARTAGENA, COLOMBIA
11 January, 1995

Next Page

Don Bateman
All but one are killed in Colombian jet crash

BY ANDREW SELSKY
Associated Press

BOGOTA, Colombia — All around the wreckage of a DC-9 were mutilated bodies — and a 9-year-old girl with just a broken arm. She was the only survivor of a crash that killed 52 people, including her parents and younger brother.

Authorities are hoping Erika Delgado can help them find out what happened in last night’s crash of the Intercontinental Aviation plane as it approached the Caribbean resort city of Cartagena.

Although an initial report said the plane exploded in the air — raising memories of the 107 deaths that occurred when drug traffickers blew up a plane five years ago — the report later was in doubt.

Civil Aviation Director Alvaro Mad Gomez said it would be “premature and irresponsible” to speculate on the cause of the crash.

Police, soldiers, civil defense crews and local farmers recovered all 52 bodies by this morning.

A witness said the plane hit the ground with an explosion. The pilot appeared to be attempting a crash landing, Argemiro Vergara told RCN radio.

The young survivor was reported in good condition today. Her parents and younger brother apparently died in the crash.

Flight 2056 originated in Bogota, 380 miles south of Cartagena. All 52 people aboard were Colombian, authorities said.

The plane had been cleared to descend to 8,000 feet to prepare for landing yesterday when air-traffic controllers lost contact, said Alfonso Ramirez, the airline’s president.

In a conversation with the tower minutes before the crash, the pilot gave no indication of an emergency, Ramirez said.
CIRCUMSTANCES: During final approach (NDB) to runway 12, the aircraft hit short and broke up.
WEATHER: Obscured, 1000 feet overcast, fog. 4-5 miles visibility
TIME: 01:49 local night
CONFIGURATION: Believed to be landing
FATALITIES: 5
OTHER: Medevac Flight: No approach lighting to runway. Probable altimeter setting error of 1000 feet (30.17" was set instead of 29.17" Hg)

CFIT risks for Medevac aircraft are very high. See other Medevac CFIT accidents:
* 31 May, 1994 - Thompson, Manitoba (Merlin III)
* 22 August, 1993 - Gold Beach, Oregon (Be-90)
* 22 October, 1985 - Juneau, Alaska (LJ-24D)
* 1985 - Medford, Oregon

Procedure for Altitudes: "When using sandspit altimeter setting add 240 feet to all altitudes."

GPWS had been installed, but had been removed by operator.

Probable Flight Path Profile
LJ-25
MASSET, B.C.
11, January, 1995
Body may be linked to missing B.C. jet

VICTORIA, British Columbia (AP) — A body was found Friday near where a Learjet with five people aboard disappeared in the remote Queen Charlotte Islands, Canadian searchers said.

Lt. Cmdr. Louis Garneau of the Rescue Coordination Center here said the body was spotted by the crew of a Canadian Forces aircraft along the shore of Graham Island west of Masset, about 500 miles northwest of Vancouver.

Garneau said the Royal Canadian Mounted Police detachment in Masset was investigating the discovery.

He said the body was not far from the last known position of the jet, which vanished early Wednesday on a medical flight to Masset to help an expectant mother experiencing labor problems. Garneau said he did not know the sex of the body.

On Thursday, debris from the jet was found near Masset, a remote town of 1,500 at the northern end of the Queen Charlotte chain.

Lt. Denise Laviolette of the Rescue Coordination Center said the debris made it unlikely there were any survivors.

A first aid kit found near Langara Island, 37 miles west of the Masset airstrip. Part of a seat cushion and surgical gloves were found on the island.

The jet is believed to have broken up when it crashed into the sea on its final approach to the Masset runway.

The jet was carrying Dr. Jeffrey Dobson, 27, of Richmond, and paramedics Andreas Goedicke, 40, of Vancouver, and Wendy Thompson, 33, of Whistler. The Vancouver-area flight crew was pilot Dan Jorgenson, 30, and co-pilot Geir Zinke, 29.

The aircraft, owned by Canada Jet Charters, was under charter to the provincial Health Ministry.

The pregnant woman the crew was sent to aid was flown by helicopter to Prince Rupert, where she gave birth to a healthy baby boy.
CIRCUMSTANCES: Controller prematurely cleared aircraft for descent into terrain. A timely MK VI GPWS Warning prompted the pilots to inquire about terrain clearance and then climb to a safe altitude.

WEATHER: VMC
TIME: night
OTHER: Aircraft fitted with GPWS 10 months earlier to comply with Part 135.153.

Flight Path Profile
BAe JS-31
CHARLOTTESVILLE, VA.
JANUARY, 1995

ATC SYSTEM FAILURE

Other ATC Systems Failure Examples:
13 April '95: Palm Springs A320
Jan. '95: LAX Merlin III AN 233593
Jan. '95: ROA 3707 AN 264040
25 June '94: LAX Merlin III AN 274918
25 Jan. '94: PHX A320

Next Page
NARRATIVE: ACR X TRAVELING FROM PIT TO CHO FOR ACR X, I WAS THE PNF OPERATING THE RADIOS. WE WERE WITH ZDC WHO WAS STARTING OUR DSCNT. HE FIRST TOOK US FROM OUR CRUISING ALT TO 8000 FT OR 9000 FT MSL. WE WERE THEN TOLD TO RPT THE ARPT IN SIGHT AND DSND TO 5000 FT MSL. ABOUT 3 OR 4 MINS, I ASKED ZDC IF THE ARPT WAS AT OUR 12 O'CLOCK AND 12 MI. HE TOLD US THAT IT WAS THE ARPT, SO WE CALLED IT IN SIGHT. HE THEN INSTRUCTED US TO DSND AND MAINTAIN 3100 FT MSL, BUT NOT TO GO BELOW THAT ALT UNTIL WE CONTACTED TWR. WE SWITCHED FREQS TO TWR AND STARTED OUR DSCNT TO 3100 FT MSL. WE CALLED TWR AND RPTED OUR POS AT ABOUT 4500 FT MSL. GPWS WENT OFF SAYING 'TOO LOW, PULL UP.' WE STOPPED OUR DSCNT AND LOOKED AT THE RADAR ALT WHICH READ 1200 FT. WE CALLED TWR AND ASKED THE ALT OF THE HIGHEST OBSTACLE. HE TOLD US THE HIGHEST POINT WAS 3600 FT MSL. WE REMAINED AT 4500 FT MSL UNTIL WE GOT CLOSER TO THE ARPT AND THEN LANDED USING THE VISUAL STOP INDICATORS.

MAKE-MODEL NAME: COMMERCIAL FIXED WING
SYNOPSIS: ACR X GPWS DSCNT BELOW MVA. SYS ERROR.
REFERENCE FACILITY ID: CHO
FACILITY STATE: VA
DISTANCE & BEARING FROM REF.: 12, NW
MSL ALTITUDE: 4500, 4500
CIRCUMSTANCES: It was not until final approach VOR-B to runway 10 (L,R) that an altimeter setting of 1000 foot error was discovered by a GPWS alert and visual contact with terrain. (30.22 instead of 29.22)

WEATHER:
27°C, 12 miles visibility, wind 020° 18 kts
(local coastal clouds at low altitudes)

CFTT INCIDENT
Flight Path Profile
B737-300
SAN FRANCISCO, CA.
JANUARY, 1995
WRONG ALTIMETER SETTING

Tower: "--- have you turned off your transponder?"
(GPWS: '500' (not used by airline))

GPWS: "Terrain! Terrain! Pull Up! Pull Up!"

"WESLA"
1700'

"SQUIG"
D 3.0

1080'

1020'

11'

DISTANCE TO RUNWAY
THRESHOLDS 10L and 10R

ALTITUDE
MSL
~ FEET
3,000
2,000
1,000

Don Batman

--- GPWS Warnings
AWED A?PKOACH:
climb to 200' outbound via SFO VOR R. 10'I' to BRIJJ INT/SF 10M and hold.

NARRATIVE: THIS WAS THE LAST LEG OF A LONG 3 DAY TRIP WITH ALL NIGHT FLT ON FIRST DAY. I HAD FLOWN WITH THE CAPT BEFORE AND KNEW HIM TO BE HIGHLY COMPETENT. ON THIS TRIP HE WAS A LITTLE OUT OF SORTS AND 'SHORT' WITH THE CREW. WE WERE INBOUND TO SFO FROM PIT, I WAS FLYING THE ACFT. AS IS PROC, CAPT WENT OFF FREQ AT ABOUT 22000 FT TO GET ATIS AND I FLEW AND MONITORED THE OTHER RADIO WITH ATC. CAPT CAME BACK ON FREQ AND WE RAN 'PRELIMINARY CHKLIST,' CHECKING ALTIMETERS AT 30.22. THIS SEEMED A LITTLE ODD TO ME AT THE TIME AS SFO HAD A LOW FRONT MOVING THROUGH, BUT WE WERE BUSY AND I DID NOT PRESS THE ISSUE. WE WERE HANDED OVER TO BAY APCH (I DO NOT REMEMBER HEARING AN ALTIMETER SETTING FROM CTR OR BAY, ALTHOUGH I TRY TO XCHK ALTIMETER WITH THEIR CALL). SFO WAS 2700 FT BROKEN, 12 MI VISIBILITY AND ALTHOUGH THE WIND WAS 020 DEGS, 18 KTS, THEY WERE LNDG ON RWY 10L&R. THE ONLY APCH FOR THESE RWYS IS A VOR-B WITH MINIMUMS OF 1020 FT FOR OUR ACFT. WE WERE GIVEN EXTENSIVE VECTORS AND SLOW-DOWNS. ONCE ON APCH EVERYTHING WAS NORMAL UNTIL JUST BEFORE PAF WHEN WE BROKE OUT OF THE CLOUDS AND A RIDGE WAS LOOKING VERY CLOSE. AT SAME TIME APCH OR TWR ASKED IF WE HAD TURNED OFF OUR XPONDER. ALSO GPWS WENT OFF AS WE PASSED OVER RIDGE. I CHKED OUR ALT AND WE WERE RIGHT ON PROFILE. ADDED PWR AND CLBED 200-300 FT TO ELIMINATE GPWS. RWY WAS IN SIGHT THE WHOLE TIME. I HAD CAPT CHK ALT WITH TWR. ALTIMETER ACTUALLY 29.22 NOT 30.22. PUTTING US APPROX 1000 FT TOO LOW ON APCH. WE RESET ALTIMETER, HELD ALT UNTIL NORMAL DSCNT PATH AND LANDED. CAPT APOLOGIZED FOR GETTING WRONG ALTIMETER SETTING. KNOW OF NO WAY TO PREVENT THIS EXCEPT LISTEN UP WHEN ALTIMETER GIVEN BY ATC OR HAVE BOTH CREWMEMBERS GET ATIS. WHAT SURPRISES ME IS THAT WE WERE LEVEL AT 8000 FT AND 10000 FT FOR LONG PERIODS OF TIME AND APCH DID NOT QUESTION OUR BEING OFF ALT BY ABOUT 1000 FT. I WOULD SUGGEST STRESSING TO FAA THE IMPORTANCE OF SAYING THE ATIS SLOWLY AND DISTINCTLY. I HAVE HEARD MANY ATIS GIVEN IN RAPID FIRE FASHION. ALSO, CREW CONCERNS ABOUT REDUCED FUEL AND FATIGUE COULD HAVE CONTRIBUTED TO THIS.

MAKE-MODEL NAME : B737-300
CIRCUMSTANCES: Because of blocked communications, the aircraft was inadvertently left on an initial altitude of 7000 and not on a climb to 17,000 feet. At some 15 DME from 'LAS', a MK VI GPWS Warning, occurred and the pilot begin an immediate pull up - climb. The controller also received a MSAW Warning and the error was finally detected.

TIME: Evening
WEATHER: IMC
OTHER: GPWS had been installed earlier in the year (FAR 135.153)

GPWS Warning “Terrain! Terrain! Pull Up!”

CFTT INCIDENT
Flight Path Profile
EMB 110
LAS VEGAS, NEV.
DECEMBER, 1994
BLOCKED COMMUNICATION
OASIS SEVEN DEPARTURE (OASIS7.OASIS) (PILOT NAV)
(MWYS 11/R, 19/L, 25/L)
(DME Required)

(Daggett and Hector Transitions are for Non-Turbojet Aircraft. Turbojet Aircraft are to file the Goffs Transition)

After D2 LAS, this SID requires minimum climb gradient of:
- Beatty Transition: 500' per NM to 9500'
- Daggett Transition: 350' per NM to 9500'
- Hector Transition: 350' per NM to 9500'

Shado Transition: 500' per NM to 9500'

Goa speed-kts: 70 100 150 200 250 300
330' per NM 415 550 625 700 800
500' per NM 625 825 1000 1225 1500

TAKING-OFF
- Beatty: Climb on runway heading until reaching LAS D3, then turn LEFT to a 180° heading to intercept and proceed via LAS R-211. Thence
- Hector: Climb on runway heading until reaching LAS D3, then turn RIGHT to intercept and proceed via LAS R-211. Thence
- Daggett: Fly a 255° heading until reaching LAS D3, then turn LEFT to intercept and proceed via LAS R-211. Thence

DEPARTURE
- Cross LAS R-211/D7 fix at or below 7000', then climb via LAS R-211 to OasIs Int, then via Shado Transition (as assigned route).
- Aircraft filing 18000' or above, expect filled altitude/flight level ten minutes after departure.

TRANSITIONS
- Beatty (OASIS7.BTY): From OasIs Int to BYT VOR: Via a 200° heading to intercept and proceed via BYT R-128
- Shado (OASIS7.BYHAD}: From OasIs Int to BYHAD Int: Via a 200° heading to intercept and proceed via BYT R-128
- Hector (OASIS7.HEC): From OasIs Int to LAS Int and LAS R-211. Thence
- Hector (OASIS7.HEC): From OasIs Int to LAS Int and LAS R-211 and HEC R-010.
- Hector (OASIS7.HEC): From OasIs Int to LAS Int and LAS R-211 and HEC R-010.

NARRATIVE
- Dep Instructions were amended to fly RWY HDG to 7000 FT (original clearance was the OASIS dep). Upon climbout, I asked for a VFR CLB on course. The CLR said he was unable due to TFC and assigned a 240 DEG HDG to intercept the LAS 210 DEG radiod and continue the OASIS dep. Maintain 7000 FT. Freq got extremely busy and calls to other ACFT were being blocked. A call to us was blocked completely and upon inquiry, the CLR failed to read any instructions that were missed. Approx 1 min later, the GND PROX went off calling Terrain -- 'Pull-up.' At the same time the CLR asked our alt. The reply was 7000 FT and CLB for Terrain -- he replied we were instructed to CLB to 17000 FT. At a safe alt, I informed him that his instructions were blocked earlier and we received no confirmation after I informed him of the blocked instructions. Factors leading to this sit were CLR overload. The Dep/Arr CLR at LAS CLASS B AIRSPACE should be divided into smaller sectors at busy times.

MAKE-MODEL NAME: COMMERCIAL FIXED WING
PAR PART NUMBER: 135
SYNOPSIS: PLC MISTOOK 7000 FT FOR 17000 FT ON CLB

REFERENCE FACILITY ID: LAS
FACILITY STATE: NV
DISTANCE & BEARING FROM REF: 15, SW
MSL ALTITUDE: 7000, 7000
CIRCUMSTANCES: During a second approach, the aircraft impacted terrain 4 NM short of the runway while turning base to runway 03.

TIME: Late Afternoon

WEATHER: Visibility 300 to 900 meters, blowing snow.

CONFIGURATION: Landing

FATALITIES: 58 of 76 on board

OTHER: Adequate fuel on board, no compelling reason to land or make a second approach. Aircraft flown by selected altitude, airspeed and heading inputs to autopilot and autothrottle. Captain probably using map display, as he improvised a procedure to land on runway 03.

After First Approach:
C/P (to controller): "...on missed approach, returning to Ankara. We could not see anything"
Capt to C/P: "No!... we will try again!"
C/P: "...one more time?"
Capt: "...We are going to try again! Please tell the controller our intentions!"
C/P (to controller): "...we intend to make one more approach"
Controller: "...Are you sure?" "...visibility is low... I could not see you, but I heard you on first approach"
C/P: "...we will make one more"
Cabin attendant: "... shall I tell the passengers we are returning to Ankara?"
Capt: "No! We will try again!"
Turkish Airlines jet crashes

Boeing 737 hits peak in Turkey; at least 53 killed

ANKARA, Turkey — A Turkish Airlines jet with 76 people aboard crashed into a mountain in eastern Turkey in heavy snow today. At least 53 people were killed, an official said.

The plane was carrying 69 passengers and seven crew members, Transportation Minister Mehmet Kostepen said.

Most of the passengers were military personnel.

The Boeing 737-400 took off from the capital, Ankara, and crashed about five miles from its destination, the city of Van. The plane was making its third attempt to land after two previous tries were aborted because of harsh weather, reported Anatolia, the Turkish news agency.

The last major Turkish Airlines crash was near Ankara in 1983; 46 people died.

The 737-400 in today's crash was delivered in April 1993, said Craig Martin, Boeing Commercial Airplane Group spokesman. But he said he had no details about the crash.

A Boeing team was on standby today waiting a request from Turkish officials to assist in the accident investigation.
CIRCUMSTANCES: During a Surveillance Radar approach to runway 23, the aircraft hit a 85' electrical power tower at 65' AGL 1.2 NM short of the runway.

WEATHER: Visibility RVR 1100 meters, freezing fog scattered 700 feet, overcast 1200 feet wind 020°/6kts

TIME: 09:52

CONFIGURATIONS: Full landing

FATALITIES: 5

OTHER: 1. Pilots probably very tired (9 hours of night duty)
2. Old ILS receiver could not receive ILS frequencies with .05 Mz spacing and hence could not receive Coventry ILS 109.75 MHz. Surveillance radar approach accepted.
3. Controller gave continuous headings and altitude, but pilots may have had difficulty comprehending and reacting in time.
4. 85 foot tower and power lines not shown on approach procedure, but on radar vectoring chart
Cargo jet crashes in Britain

LONDON — A Boeing 737 cargo jet on approach to Coventry airport hit power lines and crashed Wednesday, killing all five people aboard.

The pilot of the Air Algerie plane veered away from a cluster of houses at the last moment and crashed into a wooded area, witnesses said. No one on the ground was injured, said Phil Spinks of the West Midlands Ambulance Service.

"It is a highly populated area and if it had come down just a bit closer, it would have caused a lot more damage," said witness Stephen Wilson.

Air Algerie said the plane was leased to Phoenix Aviation, based at Coventry airport, 94 miles northwest of London.

The plane, returning empty after delivering 190 calves to Amsterdam earlier in the day, was carrying three Algerian crew members and two British animal handlers, Phoenix Aviation said.

The crash occurred between 1220 and 1240 GMT.

The plane was carrying cargo and crew from Orlando to Paris, Air Algerie said.

The plane was leased to Phoenix Aviation, based at Coventry airport, 94 miles northwest of London.

The plane, returning empty after delivering 190 calves to Amsterdam earlier in the day, was carrying three Algerian crew members and two British animal handlers, Phoenix Aviation said.

The crash occurred between 1220 and 1240 GMT.

The plane was carrying cargo and crew from Orlando to Paris, Air Algerie said.
CIRCUMSTANCES: Charter flight carrying Nigerian Football Team, from Tunis to Lagos was to refuel at Tamanrasset. Because of poor visibility, the aircraft held for two hours at the VOR. The aircraft was beginning to run low on fuel and it was decided to make an approach and land. While conducting a VOR DME runway 03 approach, the aircraft hit short by about 1 1/4 NM.

WEATHER: 800 to 1000 meter visibility

CONFIGURATION: Landing

FATALITIES: 4 of 39 on board

GPWS status unknown

Flight Path Profile
BAC 1-11-500
TAMANRASSET, ALGERIA
18 September, 1994
CIRCUMSTANCES: During a Localizer and VOR/DME approach to runway 22, the aircraft impacted 50 feet below 2700 foot hill seven miles from the runway.

TIME: 12:05 local

WEATHER: Scattered 500 feet, overcast at 800 feet, rain, wind 190° at 20kts

FATALITIES: 3 of 5 on board charter flight

OTHER: ILS glideslope inoperative. Pilot may have inadvertently used VOR/DME instead of LOC/DME and hence descended too soon.

NOTE: Procedure does not offer much terrain clearance at 7-1/2 DME (500 feet)
CIRCUMSTANCES: During a night visual approach to runway 09, the aircraft impacted a mountain. The pilot may have lost visual contact in clouds shrouding the mountain. In addition, the pilot may have been handicapped by possible failure of onboard DME readout.

TIME: 21:42 local
WEATHER: 10 plus miles visibility, scattered clouds, wind 090 10-20 kts.
FATALITIES: 6
OTHER: Aircraft was scheduled inbound flight from Bridgetown (SE 127 NM of Ft. De France)

Probable Flight Path Profile
BN2B-21
FORT DE-FRANCE, MARTINIQUE
17 July, 1994

NO GPWS INSTALLED
Climb outbound on FOF VOR R 102 to 2500', turn RIGHT to enter holding pattern at FOF VOR climbing to 5000'. Do not turn before FOF VOR. Climb to 2500' prior to level acceleration.
CIRCUMSTANCES: Aircraft left 'W36' airway to fly VFR Contact with valley with scattered clouds and fog. Final turn to runway overshot into east side of valley.

TIME: 09:00L

FATALITIES: 13

NO GPWS INSTALLED

Probable Flight Path Profile
Be-200
BHUNTAH, INDIA
9 July 1994

Possible MK VI GPWS Warning (not Installed)
"Terrainl" "Terrainl" "Pull Upl"
Punjab's Governor Dies in Plane Crash

CHANDIGARH, India, July 9 (AP) — The Governor of Punjab state and 12 other people were killed in a plane crash today near the Himalayan resort town of Kulu, the United News of India news agency reported.

The state government aircraft carrying Gov. Surendra Nath, 64 years old, his wife, Gargi Devi, eight other family members and a crew of three took off from Punjab's capital, Chandigarh, for a 40-minute flight to Bhuntar. Air force helicopters located the wreckage about seven miles from Bhuntar airport. The cause of the crash was not known.

Mr. Nath, a former police officer, was appointed Governor in 1991. He supervised elections and the installation of a popular government a year later.
CIRCUMSTANCES: During a visual approach to runway 28 left into the setting sun, the aircraft prematurely descended into terrain. The first indication of a possible problem to the pilots were GPWS alerts, at first ignored, because they could see the airport. Visual approaches, even in daylight, can be full of hazards. For other examples, see:

- San Jose, California B737 May 1994
- Memphis, Tennessee DC-10 April 1994
- Portland, Oregon B727 April, 1992
- Kelso, Washington AC690 30 Nov. 1990
NARRATIVE:

DSNDING INTO LOW SUN SETTING DIRECTLY IN OUR FACE. COULD SEE PDX ALONG SIDE COLUMBIA RIVER ABOUT 30 MI OUT AT 8000 FT. STARTED DSCNT SOON AFTER VISUAL APCH CLRCNT ISSUED. APCH CTL STATED, 'CLRED FOR VISUAL APCH TO RWY 28L, MAINTAIN 2000 FT UNTIL 7 NM FROM PDX' WITH THE SUN MAKING IT HARD TO SEE THE RWY AND DISTORTING DISTANCES. I WAS VFR BUT USING MOVING MAP DISPLAY (ND) FOR RWY REF. THE AIRBUS 320, BEING A VERY CLEAN ACFT, IS HARD TO SLOW AND DSND AT THE SAME TIME. ABOUT 22 MI OUT I DECIDED TO 'SCOOT' ON DOWN TO 2000 FT AND 'MOTOR' INTO THE RWY FROM THERE. I WAS DSNDING AT ABOUT 2800 FPM AT AROUND 4000 FT WE START GETTING TOO LOW TERRAIN, GPWS AND 'SINK RATE.' I SLOWED THE DSCNT SLIGHTLY, BUT SINCE THE RWY WAS IN SIGHT AND NO OBVIOUS REAL ESTATE OBSTRUCTION BTWN US AND THE ARPT, WE CONTINUSD ON DOWN. THINKING THE WARNING WAS SPURIOUS. THE GPWS STAYED ACTIVE. AT ABOUT 3500 FT, I LOOKED AT THE P.3D ALTIMETER AND IT SHOWED 1800 FT AGL. I DISCONNECTED THE AUTOPLT AND RETURNED TO 4000 FT WHILE THE APCH CTL INQUIRED ABOUT OUR ALT. HE ASSUMED SINCE WE SAW THE RWY THAT WE WOULD CLR ALL TERRAIN, BUT WITH THE SUN REDUCING VISUAL ACUITY, AND NOT LOOKING AT MINIMUM SAFE ALT CHART, WE COULD HAVE DSNDED VERY VERY CLOSE BEFORE WE BECAME AWARE OF THE TERRAIN.

SYNOPSIS:

CTLD FLT TOWARD TERRAIN IN A A-320. ALTDEV ALT OVERSHOT IN DSCNT. GPWS WARNING IGNORED. PO, PF, ATTEMPTED TO DSND LOWER THAN CLRED BECAUSE OF 'CLEAN PERFORMANCE' OF ACFT.
CIRCUMSTANCES: During heavy traffic ATC communications, aircraft under radar control did not leave initial climb clearance of 2000 feet for an eventual climb to 9000 feet. Aircraft came within 450 feet of San Pedro Hill on the Palos Verdes peninsula at some 12 nm DME from the Los Angeles VOR.

WEATHER: IMC

OTHER: Apparently a timely GPWS Warning to the pilot and a MSAW ATC radar alert for the controller made both aware of an ATC system failure. A MK VI GPWS had been installed the month before in the aircraft to comply with the FAR 135.153 GPWS deadline of 31 May.

See also another ATC System failure at LAX concerning another Merlin III where the aircraft was inadvertently left on a radar vector into the San Gabriel Wilderness Mountains at 5000 feet 27 DME from 'LAX' VOR and 045° radial. (NASA ASRS AN 293593)
Narrative: ACR X, SW 3, departed Los Angeles going to San Diego. He was visual on a preceding BA32. X given CLB to 9000 FT. BA32 CLBing to 13000 FT. Sector was very busy. X given a turn to 130 DEGs, BA32 turn to 110 DEGs. Numerous xmissions to other ACFT given. Data blocks were overlapped, by the time they split up X was very near Palos Verdes at 2000 FT (MOA 2600). I told X to maintain 9000 FT and turn right HDG 180 DEGs. PLT answered with he had a terrain warning and asked me to repeat. I repeated and he followed instructions. I told supvr on duty about sit.

Make-Model Name: Merlin III
Far Part Number: 121
Synopsis: ACR X radar vectored below MVA. Sys error.
Reference Facility ID: LAX
Facility State: CA
Distance & Bearing from Ref.: 5, E
MSL Altitude: 2000, 2000
CIRCUMSTANCES: During a visual turn to base at night to final approach to runway 21, the aircraft overbanked and rapidly descended impacting some 3NM short of the threshold.

TIME: 19:35L Night

CONFIGURATION: Flaps up, landing gear up.

WEATHER: Scattered cloud, visibility 10 km wind 200 deg/7kt

FATALITIES: 17

Probable distraction, looking outside for visual references to runway or loss of attitude reference leading to overbanked condition.

Other examples:
HS748 Dayton, Ohio 12 Jan '89
Metro III Raleigh, Durham 19 Feb '88
C-141 Cairo, Egypt 12 Nov '80
B-747 Bombay, India 1 Jan '78

NO GPWS INSTALLED

Flight Path Profile
F-27
ABIDJAN, IVORY COAST
26 June, 1994

Next Page
CIRCUMSTANCES: Aircraft clipped trees 1-1/2 NM short of runway 1R and rolled inverted on second approach. The first approach was missed and the aircraft went to a Hold. Meantime, some aircraft had landed and pilot decided to make a second approach. Fuel was not a problem.

WEATHER: Early morning fog RVR 600 meters.

TIME: 06:25 L

FATALITIES: 12

OTHER: Charter flight from Mexico with fueling stop at New Orleans.

Note:
Previous LJ-23 landing short (1/2 NM) CFIT accident on runway 1L on 6 October 1968.

NO GPWS INSTALLED

Flight Path Profile
LJ-25D
WASHINGTON, DULLES (VA)
18 June 1994

Next Page
WASHINGTON, DC (VA)
WASHINGTON DULLES INTL
ILS Rwy 1R
LOC 110.1 IIA
Apt. Flap 313'

MISSED APPROACH: Climb to 800' then climbing RIGHT turn to 3000' outbound via AML VOR R-040 to ASPER INT/AML D14.7 and hold.

<table>
<thead>
<tr>
<th>STRAIGHT-IN LANDING Rwy 1R</th>
<th>LOC 105 knob</th>
<th>CIRCLE-TO-LAND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100' x 500'</td>
<td>600' (500')</td>
</tr>
<tr>
<td></td>
<td>840' (527')</td>
<td>880' (567')</td>
</tr>
</tbody>
</table>

Don Bateman
CIRCUMSTANCES: To save time and fuel during arrival from the west (Balikpapan), it was usual practice to depart the inbound course (W36) and descend visually up a valley that would take the aircraft to the Teluk Palu Inlet north of the airport. Unfortunately on this particular day, some low cloud shrouded some of the terrain in the valley. The aircraft impacted at approximately 2300 feet MSL, some 100 feet or so from clearing the high ground at the top of the valley pass.

WEATHER: Good visibility at airport but high terrain hidden in haze and some cloud.

TIME: 12:20L (daytime)

FATALITIES: 12

Note: Most Indonesia's regional jet and turbo prop fleet do not have GPWS equipment or even radio altimeters. Consequently with the large CFIT risks, at least one F-28, DC-9 or F-27 has been lost every other year for 30 years.

NO GPWS INSTALLED
CIRCUMSTANCES: During a second missed approach, the aircraft impacted terrain west of the airport while climbing to the holding altitude of 9000 feet.

WEATHER: Overcast, IMC, limited visibility in rain.

FATALITIES: 9

Probable Flight Path Profile
Metro II
URUAPAN, MEXICO
13 June, 1994

No GPWS installed

Possible MK VI GPWS Alert Warning (no GPWS installed)

'Terrain' 'Terrain' 'Pull Up!' 'Pull Up!' 'Too Low!' 'Terrain' 'Too Low!' 'Terrain' etc.
CAUTION: Do not use radio altimeter due to orographic conditions.

MISSED APPROACH: Cat A & B Aircraft: Turn RIGHT over UPN VOR to intercept and climb outbound on UPN VOR R-202 to the minimum holding altitude. Cat C Aircraft: Climb direct to UPN VOR, then turn RIGHT to intercept and climb outbound on UPN VOR R-202 and proceed in climb to the minimum holding altitude.

STRAIGHT-IN LANDING RWY 02
CIRCLE-TO-LAND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>17°</td>
<td>17°</td>
<td>3°</td>
<td>NOT APPLICABLE</td>
</tr>
<tr>
<td>6300' (1914') - 3</td>
<td>6500' (1968') - 3</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
</tr>
</tbody>
</table>
CIRCUMSTANCES: Enroute from Belfast to Inverness Scotland, the helicopter flew into mountain.
WEATHER: Fog, terrain shrouded in clouds.
TIME: 18:17 local
FATALITIES: 29

The Mk VI 'H' GPWS is designed for Transport Helicopters. The possible warning time shown is based on the terrain-flight path-speed profile. There was no GPWS installed.
CRASH RANKS AMONG WORST EVER

THE Mull of Kintyre crash could rank with the worst helicopter disasters in British history. The week ever crash claimed 48 lives in November 1992. Sixteen of its crew died when it dived into a sea cliff near Campbeltown.

Bomber

Three young air cadets drowned as their helicopter plunged into the sea 135 miles east of Lewis during a two-minute journey from Shetland's Camran Bay to the accommodation platform.

Last week, two children from Sutton Coldfield in the West Midlands were killed when their helicopter crashed into a mountain in North Wales.

Royal Air Force rescue

Security chiefs among 29 dead in Chinook fireball

Security chiefs among 29 dead in Chinook fireball
CIRCUMSTANCES: During a night approach LOC (Back Course) to runway 23, this Medevac aircraft impacted 3-1/2 NM short of the runway at the 'Hotel' NDB beacon. Possible altimeter error or visual illusion.

TIME: 24:00 local night
WEATHER: VMC
CONFIGURATION: Landing gear down, approach flaps
FATALITIES: 3 of 5 on board

Note:
1. Low approach procedure slope of 2.17 degrees
2. CFIT risk with Medevac aircraft very high

Other examples:
- 22 August 1989 - Gold Beach, Oregon (Be-90)
- 22 August 1985 - Juneau, Alaska (LJ-24D)
- October 1985 - Medford, Oregon

Probable Flight Path Profile
Merlin II
THOMPSON, MANITOBA
31 May, 1994

No GPWS installed

[Diagram showing flight path profile with relevant data and markings]
THOMPSON, MAN
THOMPSON
LOC (BACK CRS) RWY 23
LOC 110.3 ITH
NDB RWY 23
(GPS) IHT 276 H
C1TH Apr, Elev. 720'

LOCALIZER RELIABLE ONLY WITHIN 23'
EITHER SIDE OF EXTENDED RUNWAY
CENTERLINE.
BACK COURSE NO GLIDE SLOPE,
IGNORE GLIDE PATH INDICATIONS.

MISSED APPROACH: Climb to 2400' on track of 234°. Return to H NDB.

SPECIAL CIRCUIT:

<table>
<thead>
<tr>
<th>LOC</th>
<th>NDB</th>
<th>CIRCLE-TO-LAND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN 1240°(524')</td>
</tr>
<tr>
<td>A</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>1240°(524)-2</td>
</tr>
<tr>
<td>C</td>
<td>90</td>
<td>1240°(524)-2</td>
</tr>
<tr>
<td>D</td>
<td>90</td>
<td>1340°(524)-2</td>
</tr>
</tbody>
</table>

SAFE ALTITUDE 100 NM 2600

NOTE 716'
APR. 720'

THOMPSON Center 134.5
THOMPSON Tower 118.8
Ground 121.9
THOMPSON NDB 118.8 when Temp Near.

Alt Set: INCHES
CIRCUMSTANCES: During a radar vector for Fairgrounds Visual Runway 30L, the pilots and controller became distracted with radio traffic, and the aircraft was inadvertently delayed in turning, essentially extended the base leg while descending into terrain. Visibility was insidiously degrading, and the terrain shrouded. The pilots received a GPWS Warning and the pilots successfully recovered.

WEATHER AT THE AIRFIELD: 6 mile visibility, 1000 scattered, 3000 overcast

CONFIGURATION: Landing gear down, flaps 20 degrees
Turbo-Jet aircraft from the west-northwest may be vectored in the vicinity of the Cement Plant for a Fairgrounds Visual Approach.

Aircraft should turn final no closer than 6.6 DME SJC at or above 2000' for noise abatement.

WEATHER MINIMUMS

Ceiling 2500' - VIS 5
CIRCUMSTANCES: During an initial descent and an approach to Grand Junction, the controller apparently believed the aircraft to be arriving from Denver westbound on V134. Aircraft was actually arriving from Farmington on V187. Premature descent clearances were given in error.

WEATHER: IMC

OTHER: Radio altimeter indication helped pilots realize that terrain was close. There was no GPWS installed, but three months later in May, MK VI GPWS was installed.

CONTROLLER - SYSTEM ERROR

Flight Path Profile
BAE JS-31
GRAND JUNCTION, COLORADO
February, 1994

CFIT INCIDENT

Don Batenier
NARRATIVE - CAPTAIN

FILED RTE. FROM V187 JNC. THE FLT WAS G OF JNC VOR ON V187. ZDV CLEARED US DOWN TO 13000 FT MSL AND CONTACT GJT APCH. GJT APCH WAS CONTACTED AND THEN GAVE A CLRNC TO DSEND TO 10100 FT AFTER 25 DME FROM JNC. A COMMENT WAS MADE BY THE CTLR THAT COMPANY HAD BROKEN OUT PRIOR TO REACHING 10100 FT WITH THE ARPT IN SIGHT AND TO EXPECT THE SAME. AS I LEVELLED AT 10100 FT MSL, I CAUGHT A GLIMPSE OF THE GND AND SEEMED CLOSER THAN NORMAL. AT APPROX 15 DME FROM JNC, MY RADAR ALTIMETER SIGNalled 920 FT AGL. I ASKED MY FO FOR THE MEA WHICH WAS 12000 FT MSL. I THEN STARTED A CLB FROM 10100 FT TO A HIGHER ALT OF 10500 FT. THE CAPT THEN GAVE A CLRNC, 'IF FIELD NOT IN SIGHT AT 14 DME, TURN DIRECT TO THE FRUITA VOR (RHU) DSND AND MAINTAIN 9500 FT.' I MAINTAINED MY ALT OF 10400-10500 FT. THE CAPT THEN MADE THE COMMENT THAT AT TRACI INTXN, WHICH IS 14 DME, THAT WE WERE GIVEN DOWN TO 9000 FT. THIS DID NOT MAKE SENSE TO MYSELF OR MY FO.

CORRECTIVE ACTIONS TO PREVENT THIS FROM HAPPENING AGAIN WOULD BE: 1) STATE WHICH AIRWAY OR DIRECTION ARRIVING FROM. 2) INSTALL A RADAR SVC. 3) GPWS INSTALLED IN ACFT.

CO-PILOT NARRATIVE

SUPPLEMENTAL INFO FROM ACN 26359:

WE WERE HANDED OFF TO GJT APCH AND WE WERE TOLD TO RPT 25 DME FROM JNC VOR. WE WERE ALSO INFORMED BY OUR APCH THAT THERE WAS A 'BIG HOLE' OVER THE ARPT AND WE SHOULD 'BREAK OUT' AND SEE THE ARPT. AT 25 DME JNC WE WERE CLEARED DOWN TO 10100 FT MSL. THE CAPT QUESTIONED THIS CLRNC AND ASKED ME TO CHK MSA FOR THE AREA WE WERE IN. THE NNW WAS 10400 FT AND FROM NE/SW WAS 11700 FT. THE CAPT STARTED A CLB BACK TO 10500 FT. I QUESTIONED GJT APCH ABOUT THE CLRNC AND REP'D THE MSA. I ALSO ASKED FOR DIRECT FRUITA VOR (RHU) FOR THE VOR APCH. GJT APCH SAID THAT IF FIELD NOT IN SIGHT BY 14 DME (JNC) THAT WE WERE CLEARED DIRECT RHU VOR AND CLEARED TO DSND TO 9000 FT MSL. THE CAPT SAID HE WAS STAYING AT 10500 FT MSL. DURING THE INITIAL DSNT I COMMENTED ON THE RADAR ALTIMETER BEING ALIVE AND NOTICED IT WAS AT LOW AS 1300 FT AGL. I BELIEVE THE CTLR AT GJT THOUGHT WE WERE INBOUND FROM DEN AND NOT INBOUND FROM THE S.
CIRCUMSTANCES: Switching from radar vectors for LOC B/C runway 4L, to a NDB approach to runway 13, the aircraft descended prematurely to the MDA before the Final Approach Fix. The pilots lost situational awareness. A contributing factor was misinterpretation of the Flight Management System.

WEATHER: 1000 overcast, 5 mile visibility.

MISINTERPRETATION OF FLIGHT MANAGEMENT SYSTEM NAV FIX

Flight Path Profile
B737 - 400
BATON ROUGE, LOUISIANA
February, 1994

Controlled Flight Towards Terrain Incident

Aircraft fully configured for landing

GPWS Mode 4 Terrain Clearance Floors

Enhanced GPWS Terrain Clearance Floor

NDB

1400'

MDA 560'

500' MK V / VI / VII 'SMART' ALTITUDE CALLOUT
(not normally heard on ILS approach

MK V GPWS Installed
No Warnings / or alerts
('Smart' callouts not pinned up)

Don Batsman
NARRATIVE:

While on vectors for LOC back course to Rwy 4L, CTOL asked if we would like vectors for NDB 13 instead. Thinking we had time to prepare for the approach properly, we accepted. In reality, we were not able to review and prepare for the approach. The CTOL rapped he had a low alt alert and asked our alt. This caught us off guard. So he asked again and asked if we knew where we were. We thought we were inside the final fix, when, in reality, we were just outside and were at MDA. He then asked if we saw the field. We did, so he cleared us for the visual approach. By that time the copilot had started a climb to 1700 ft MSL. The NDB 13 was not in the FMS database but the Rwy was. When putting the Rwy as the active waypoint, you also get 'FF13.' This we both mistook as the final approach fix, when it is really outside the fix. In the future, I will not accept vectors for another approach unless there is time to fully review the new approach or ask for a radar fix.

Source: ASRS # Z63826
SIGNIFICANT INCIDENT

CIRCUMSTANCES: In a one hour period (11:30 local), while trying to fit traffic for flow and spacing, a controller vectored 14 jet aircraft (including the State governor's aircraft) over and into terrain below MSA and below MRVA.

ALTITUDES: Two aircraft pulled up on receiving GPWS warnings taking evasive action from terrain.

WEATHER: Strong winds, mountains shrouded in clouds.

TRAFFIC: High peak flow Controller was under stress. Later the controller was relieved of duty and given "remedial training."

MAJOR QUESTIONS: Where was the MSAW? Where were the backup and supervisory controllers?

Flight Path Profile
A-320
PHOENIX, ARIZONA
25 January, 1994

ATC: -- descend to 6000 and heading 080
ATC: "-- turn left to heading 350°
ATC: "-- turn left to 300 degrees to intercept the localizer"

Heading 080 degrees 220 Kts 6000'

MK III Warning Starts...
"Terrain! Terrain! Pull Up!"

Projected Impact

Superstition Mountain - Wilderness Area

Distance along track to airfield ~ NM

Time to Impact ~ Seconds

GPWS Warning MK III
Fourteen planes, a dozen more than initially reported, were assigned unsafe altitudes near the Superstition Mountains during bad weather Jan. 25, the Federal Aviation Administration has concluded.

The agency also acknowledged that Phoenix air-traffic managers failed to thoroughly investigate the incident.Officials had said that only two America West airlines were guided below minimum safe altitudes by a single controller during an hourlong period.

Several air-traffic controllers complained that a dozen more planes were involved, but those incidents were not immediately investigated.

After one controller contacted an FAA hotline and inquiries were made by The Arizona Republic, the FAA investigated and found that 14 planes had been guided below minimum safe altitudes.

The FAA said that the errors were procedural and that no planes were in danger. The planes had additional protection from a safe-altitude warning system on the ground, the FAA said.

One of the America West jets took corrective action after a ground-proximity alert signaled that the plane was too close to the ground.

The controller involved was given remedial training after the incident, officials said.

John D. Canoles, FAA director of air-traffic-system effectiveness, said in a memo on the incident that Phoenix FAA officials had misinterpreted guidelines and failed to determine whether a number of flights were guided below minimum altitudes.

He added, "There was no evidence that facility management intended to cover up any part of the incident."

The mistakes occurred between 11:30 a.m. and 12:30 p.m. Jan. 25. The Valley was shrouded by clouds, and winds made the approach to Sky Harbor difficult.

Because of bad weather and heavy traffic, the landing pattern had been extended about 30 miles from the airport, over the Superstitions, where 6,100 feet is the minimum safe altitude.

The highest elevation in the Superstitions is 5,507 feet.

In the memo, Canoles said the FAA has made several revisions to the Phoenix facility's operating practices.
CIRCUMSTANCES: While on a VOR DME approach to runway 15L, the aircraft impacted a 150 kv transmission line some 7.3 DME from the runway. The aircraft sustained considerable damage, but fortunately, was able to land on one engine.

WEATHER: IMC, wind 160/14 kts, light rain...

CONFIGURATION: Clean

TIME: 09:22 local

OTHER: No GPWS installed. Autopilot in use but inadvertently not in Altitude-Hold.

Co-pilot flying with Autopilot on but not in Altitude-Hold
Captain notices altitude is low, and adjusts Vertical Pitch Trim of Autopilot to correct altitude.

Flight Path Profile
Do-228
ATHENS, GREECE
9, January, 1994

Don Bateman

Next Page
ATHENS, GREECE

ATHENS Approach [V] 121.4 119.1
ATHENS Tower Ctrl 118.1 118.1
Ground 122.1

VORDME Rwy 15L

STARTING VOR [H] 121.4

ATHENS VOR 118.4

ATHENS

MESSED APPROACH: Turn RIGHT (MAX 1AS 185 KT) to intercept 244° climbing to 4000'/3957') to NDB and hold. Climb to 1500'/1477') prior to level acceleration.

STRAIGHT-IN LANDING Rwy 18L
Mean 640'/195'

CIRCLE-TO-LAND

Not authorized East of runway

D 3800m
C 2400m
B 1500m
A 1000m

Alt. field - 500m 1000 1500 2000 2500 3000 3500 4000
Max wind - 390°/50kts 250°/50kts 180°/50kts 120°/50kts 90°/50kts 60°/50kts

Return to TOC
CIRCUMSTANCES: During a VOR/DME approach to runway 11, the aircraft prematurely descended towards the MDA, before reaching the VOR (FAF). A mis-set VOR radial apparently was part of the decision to descend. A MK II GPWS warning alerted the crew in time to climb, just missing a short tower and the ground.

TIME: Dark.
WEATHER: 1000 feet, scattered clouds, 2.5 miles visibility.
CONFIGURATION: Landing gear down, flaps 15.
OTHER: No injury to 23 people on-board, MK II GPWS installed and working.

MDA altitude (2720') entered into Altitude Selector premature descent initiated with reduced power as crew believes they have passed the VOR.

Aircraft begins to level at 2720 feet
GPWS Warning: 'Terrain! Terrain! Too Low! Too Low!'
Co-Pilot pulls up
Captain then sees red lights of short tower go by above their level

3800'

MAP

DHC-8
JOHN B.C., CANADA
January, 1994

FT. ST. JOHN B.C., CANADA

Doré Bateman
CIRCUMSTANCES: During an ILS approach to runway 4, the airspeed had bled off by about 50 kts without the knowledge of the pilots and entered stall to impact some 1 1/4 NM short.

TIME: 23:25 EDT

WEATHER: 800 foot ceiling, 2 1/2 mile visibility, fog, light snow, temperature 23, dew point 22, reported light rime ice.

FATALITIES: 5 with 3 survivors.

OTHER: Glass cockpit with vertical airspeed tape. Captain had 3500 hrs. total time, 150 hrs. in type, F/O had 35 hrs. in type. This accident illustrates stick shaker inhibit of GPWS on some U.K. installations.

Non-CFIT Accident Flight Path Profile
BAe-JS-41
COLUMBUS, OHIO
7 January, 1994
Preliminary - unofficial data

STICK SHAKER ACTIVATES DISCONNECTS AUTOPILOT AND DEACTIVATES GPWS
Capt: "...What did you do?"
F/O: "Nothing!"
Capt: Flaps Up! (applies thrust)
(Flaps move!)
Capt: Stop! Not (aircraft enters stall)

Below Glideslope Alerting

Distance to Runway Threshold ~ NM

Distance to Impact ~ Seconds

0 1 2 3 4 5 6 7 8 9 10

0 100 200 300 400 500 600 700 800 900 1000

ALTITUDE MSL ~ FEET

1000 2000 3000

3000

0

40 30 20 10 0

80 70 60 50 40 30 20 10 0

Time to Impact ~ Seconds

Stick Shaker

Don Betancourt

MK VI GPWS (Inhibited by stick shaker)
CRASH INVESTIGATION: Federal safety investigators were examining flight data and cockpit voice tapes from United Express Flight 6291, which crashed Friday, killing two passengers and three crew members. The British Aerospace Jetstream 41 commuter plane was preparing to land at Columbus, Ohio, en route from Washington's Dulles Airport. Three members of one family survived.
CIRCUMSTANCES: During a VOR approach to Naga, the aircraft prematurely descended to 2000 feet AGL, and impacted into Mount Manase some 100 feet below the ridge line.

TIME: 14:00 local time.

WEATHER: IMC, heavy rain, fog.

CONFIGURATION: Clean.

FATALITIES: 27

OTHER: Another aircraft a DC-3, impacted within one mile of this accident, inbound to Naga in March 1965 with 10 fatalities.
All 27 aboard mercy flight killed in crash

LIBMANAN, Philippines. — All 27 people aboard a Philippine transport plane carrying relief supplies were killed when it hit a hill and exploded in flames south of Manila, the head of the air force said yesterday.

"None of the 27 people on board survived, they all died," Brigadier-General Nicasio Rodriguez told reporters after inspecting the site of Wednesday's crash.

Another five people feared to have been on board the air force C-130 Hercules did not take the flight from Manila after it was delayed by bad weather, he said.

Air force officials revised the number of people aboard the plane to 27 from 29 after early confusion on how many people really took the flight.

Rescuers battled in driving rain and bad visibility to sift through the wreckage of the aircraft, which exploded and burned when it plunged into remote Mount Manase about 250 km south-east of Manila.

Witnesses said they found charred bodies scattered through the smoking wreckage of the plane, which just failed to get over the 600m hill as it descended towards Naga Airport in bad weather.

"When asked about the cause of the crash, Gen Rodriguez told reporters: "The primary reason was the bad weather although error of judgment on the part of the pilot was part of the crash."

The bodies were airlifted to a temporary heli-pad about 3 km from the crash site, which is in a forested area known as a stronghold of Communist guerrillas.

The rebels issued a statement saying they would not interfere in the rescue operation.

The aircraft was delivering supplies to the Bicol region, where over 300 people were killed by two typhoons last week.

The flight had been organised by a relief group led by the wives of Cabinet Ministers, but none of them appear to have been on the plane that carried 19 passengers and eight crew. — Sapa-Reuters.
CIRCUMSTANCES: While on final approach to ILS-2 runway 18L, the aircraft impacted 1800 feet short of the threshold into approach lights. The approach had been accelerated because of reduced visibility which resulted in an unstabilized approach.

WEATHER: RVR 6000 deteriorating.

CONFIGURATION: Landing configuration. Flaps 40.

TIME: 04:50 Early morning.

DAMAGE: No one hurt of 69 people on board. Aircraft took out 4 sets of approach lights, damaging the engine nacelles, flaps, and the rear fuselage.

OTHER: Aircraft equipped with MK V GPWS which provided a timely alert, allowing the captain, with assistance from the first officer, to recover.

F/O FMS inoperative. F/O tried to re-enter the approach parameters from runway 17R to runway 18L and the Captain's FMS. This kept the F/O's head down and when alerted by GPWS his attention and eyes went to the EADI to help in the recovery.
DALLAS, TEXAS
DALLAS/Ft WORTH INTL

General
During taxi, change Ground Control frequency when crossing the bridges dividing east and west airport sectors.

Additional Runway Information

<table>
<thead>
<tr>
<th>Runway</th>
<th>Minimum Usable Length</th>
<th>Landing Beyond</th>
<th>Glide Slope</th>
<th>Take-Off Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>10/302'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/17</td>
<td>10/365'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36L</td>
<td>11/513'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Takes-Off

<table>
<thead>
<tr>
<th>Runway</th>
<th>1/16</th>
<th>1/17</th>
<th>36L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/513'</td>
<td>10/365'</td>
<td>11/513'</td>
</tr>
<tr>
<td></td>
<td>10/302'</td>
<td>10/365'</td>
<td>10/302'</td>
</tr>
<tr>
<td></td>
<td>10/365'</td>
<td>10/365'</td>
<td>10/365'</td>
</tr>
</tbody>
</table>

Straight-in Landing RWY 16L

<table>
<thead>
<tr>
<th>ILS</th>
<th>LHS (845' (200'))</th>
<th>LOC (105' out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADF/LOC

<table>
<thead>
<tr>
<th>Runway</th>
<th>16/16</th>
<th>17/17</th>
<th>36R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pilot Filing As Alternate

<table>
<thead>
<tr>
<th>Runway</th>
<th>16/16</th>
<th>17/17</th>
<th>36R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On final approach to LOC-B/C Runway 13, the aircraft impacted 3.2 NM short of the runway at 19:58 CST. Both captain and co-pilot very experienced in type. (6500/2000 hrs respectively)

WEATHER: Fog, 1 mile visibility, freezing drizzle, wind 180/10 kts

CONFIGURATION: Landing gear down, flaps 20.

FATALITIES: 18 including two crew.

OTHER: No GPWS installed, but GPWS was recently being added to sister ships.
No signs of apparent icing. Aircraft kept deliberately high at 8000 feet to minimize risk of icing.
Late completion of landing check list.
Captain's experience was 7800 hrs., 2260 hrs. in type.

Estimated Flight Path Profile
JS-31
HIBBING, MINN.
1 December, 1993
18 killed in Minnesota plane crash

The Associated Press

HIBBING, Minn. — A Northwest Airlink commuter plane crashed last night in foggy, rainy weather near downtown Hibbing, killing all 18 people aboard, authorities said.

The plane, a twin-engine turboprop, crashed into a huge mound of iron-ore waste in a park east of Hibbing, about 200 miles north of Minneapolis, police said.

There were no survivors among the 16 passengers and two crew members, said Mort Edelson, a spokesman for the Federal Aviation Administration. Airline spokesman Jon Austin confirmed a total of 18 dead.

Austin said the plane, Flight 5719 from Minneapolis to Hibbing, was a Northwest Airlink commuter plane operated by Express Airlines II, Inc.

Express Airlines spokesman Jeff Wobber said 11 of the passengers had been expected to get off the plane in Hibbing and five were scheduled to continue on a flight to International Falls on the Canadian border.

Edelson said the plane was two to three miles from the airport at an altitude of 2,000 feet when it disappeared from radar.

"The last thing the controller saw was a plane dropping off the scope," Edelson said.

Austin said the plane apparently was on its approach to the airport.

The plane was found upside down, broken in three pieces, and resting on a bank of dirt, authorities said.

Bill Hagenon, a sheriff's deputy who was the first rescue worker on the scene, said the plane appeared to have skidded across a road and into the side of the hill. There was no sign of an explosion, but debris was scattered over about 50 yards.

The surrounding area was covered with as much as two feet of snow and initially was reachable only on foot or by snowmobile.

The weather at the time of the crash was foggy with freezing drizzle, but it was not immediately known whether those conditions contributed to the crash.

Hibbing is in the heart of the Iron Range, an area in northeastern Minnesota where taconite — used in steel making — is produced.

Brent Bahler, a spokesman for the National Transportation Safety Board in Washington, said an NTSB investigative team was flying from Washington to Hibbing.

FAA officials in Chicago said the British Aerospace Jetstream 31 twin-engine jet prop made no distress call before the crash.

Federal investigators seek reason for airliner crash

HIBBING, Minn. — Federal investigators yesterday began searching for a way to explain why an Express Airlines II turboprop crashed into a pile of mining waste Wednesday night, leaving at least 18 people dead. It was Minnesota's worst aviation disaster.

The twin-City-to-Hibbing flight was carrying business travelers, including several prominent northern Minnesota residents.

Original reports said the plane carried 16 passengers and two crew members, but there was subsequent uncertainty about possible last-minute boardings at Minneapolis-St. Paul International Airport. The aircraft involved was a British Aerospace Jetstream 31, owned and operated by Atlanta-based Express Airlines II as part of the Northwest Airlink system.
CIRCUMSTANCES: During a probable visual let down in bound from the IZD NDB, after seeing the runway and the town of Ohrid, the aircraft clipped a hill slightly left of course.

WEATHER: Visibility 9 miles, some clouds shrouding mountain.

TIME: Approximately midnight

CONFIGURATION: Approach landing gear down.

FATALITIES: 115 out of 116 on board (8 crew).

A primitive GPWS may have been installed (generates a tone). Status not known.

Next Page

Probable Flight Path Profile
YAK-42
OHRID, MACEDONIA
20 November, 1993

Mt. Trojani Left of course

Track 190°

Time to Impact ~ Seconds

Distance to Runway ~ NM

Mk VII GPWS Warning
(If Installed)

'Don Bate'nen

5000
4000
3000
2000
ALTITUDE
MSL ~ FEET

2000
0
Distance to Runway 20
~ NM
High death toll is feared in Macedonia plane crash

SKOPJE, Macedonia — A jetliner diverted because of a blizzard crashed in snow-covered mountains in southwest Macedonia with 116 people aboard, state-run radio reported today.

- Three people were rescued. The rest were feared dead in last night's crash near Ohrid, 65 miles south of the Macedonian capital of Skopje.
- The Soviet-made Yak-42 belonging to the Macedonian carrier Aviopolis was approaching Ohrid for landing when it crashed into a mountain and burst into flames, Macedonia radio said.
- The flight originated in Geneva and was headed to Skopje, but was diverted because of the blizzard.
- Most of the 108 passengers and eight crew members were thought to be Macedonians and ethnic Albanians, radio said.
- The front section of the medium-range 120-passenger jet burned for at least five hours. Heavy snow and rugged terrain hampered rescue attempts.

Plane slams into snowy hill in Macedonia; rescue stalled

SKOPJE, Macedonia — An aircraft with 116 people aboard crashed into a snow-covered hillside in southern Macedonia late yesterday, and police feared many casualties.

The snow, fire and mud hampered rescue attempts, and it was not immediately known how many people had escaped, interior ministry official Ljube Lezkov said. Macedonia radio said the aircraft had come from Geneva before crashing around midnight (6 p.m. EST) at Ohrid airport, 105 miles south of the Macedonian capital of Skopje.

The Soviet-made passenger plane, operated by the Macedonian airline Aviopolis, had been rerouted because of winter weather, the radio said.
CIRCUMSTANCES: The aircraft was on final approach from 18 NM on long final and configured with 25 degrees flap and landing gear up. The final check list was not completed because of TCAS Traffic alerts and other communications. A Mark I continuous GPWS "Pull up!" began at 500 feet AGL. After reviewing their descent rate, glideslope, and flap position, the F/E silenced the warning by pulling the circuit breaker. The landing gear configuration warning system was not triggered as power had not been reduced. A last moment call from the control tower resulted in a missed approach.

TIME: Daylight

DAMAGE: Belly and rear of aircraft damaged. Antennas sheared off.

INJURIES: None of 88 on board.

NTSB Safety Recommendations AC-92-39 "...require that each warning provided by the GPWS to the flight crew be enhanced with an aural message that identifies the reason for the warning."

This has proved to be a factor in many CFIT situations as pilots attempt to verify need and reason for a "Pull up!"
Jet down safely, without landing gear

CHICAGO (AP) — An airplane carrying 166 people spiraled out of control on the runway after its landing gear failed, killing four people and injuring seven others.

The Federal Aviation Administration said the plane was a Boeing 727 owned by Continental Airlines. The flight was scheduled to land at O'Hare International Airport.

Pilots forgot landing gear

CHICAGO — Warning alarms for nearby aircraft to adjust their approach were heard by the crew of the plane, but they failed to take action. The plane then spiraled out of control.

The Continental Airlines plane was carrying 166 people, including crew members and passengers.

NTSB SAFETY RECOMMENDATION AC-92-39: "...REQUPIED THAT EACH WARNING PROVIDED BY THE GPWS TO THE FLIGHT CREW BE ENHANCED WITH AN AURAL MESSAGE THAT IDENTIFIES THE REASON FOR THE WARNING."

Some historical incidents and accident that illustrate the need:

<table>
<thead>
<tr>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>USA PART</th>
<th>REASON FOR THE WARNING</th>
<th>CONSIDERED REQUIRED BY PILOT TO BE</th>
<th>DAMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 93</td>
<td>CHICAGO</td>
<td>B-727</td>
<td>YES</td>
<td>PULL UP</td>
<td>FALSE</td>
<td>FUSELAGE/ANTENNA DAMAGE</td>
</tr>
<tr>
<td>13 June 91</td>
<td>TAIPEI, TAIWAN</td>
<td>B-727</td>
<td>NO</td>
<td>GEAR UP</td>
<td>CAPT: FALSE, F/E: FLAPS</td>
<td>AIRCRAFT WRITTEN OFF</td>
</tr>
<tr>
<td>13 June 90</td>
<td>DALLAS, TX</td>
<td>DC-10</td>
<td>YES</td>
<td>GEAR UP</td>
<td>TOWER ALERTED CREW</td>
<td>DESTROYED - (7) FATALITIES</td>
</tr>
<tr>
<td>07 Feb 89</td>
<td>MILBURN, FLA</td>
<td>C-141</td>
<td>HIGH DESCENT RATE</td>
<td>GEAR UP</td>
<td>TOWER ALERTED CREW - GO AROUND</td>
<td>DESTROYED - (14) FATALITIES</td>
</tr>
<tr>
<td>08 Feb 89</td>
<td>SANTA MARIA</td>
<td>B-707</td>
<td>YES</td>
<td>TERRAIN</td>
<td>TRYING TO DETERMINE REASON</td>
<td>DESTROYED - (8) FATALITIES</td>
</tr>
<tr>
<td>July 87</td>
<td>LONDON, UK</td>
<td>B-747</td>
<td>YES</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW - GO AROUND</td>
</tr>
<tr>
<td>03 July 86</td>
<td>CINCINNATI</td>
<td>B-747</td>
<td>YES</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW</td>
</tr>
<tr>
<td>04 Feb 86</td>
<td>ISLAMABAD</td>
<td>B-747</td>
<td>NO</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW</td>
</tr>
<tr>
<td>07 Nov 85</td>
<td>DHC-5</td>
<td>YES</td>
<td>40</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW</td>
</tr>
<tr>
<td>07 Feb 85</td>
<td>CALCUTTA</td>
<td>B-737</td>
<td>NO</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW</td>
</tr>
<tr>
<td>03 Nov 83</td>
<td>CASPER, WYOMING</td>
<td>B-737</td>
<td>YES</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW - GO AROUND</td>
</tr>
<tr>
<td>03 Jan 83</td>
<td>BERLIN, GERMANY</td>
<td>B-737</td>
<td>YES</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW - GO AROUND</td>
</tr>
<tr>
<td>09 Aug 82</td>
<td>MEXICO</td>
<td>B-727</td>
<td>NO</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>TOWER ALERTED CREW - GO AROUND</td>
</tr>
<tr>
<td>24 Aug 78</td>
<td>BUENOS AIRES</td>
<td>B-737</td>
<td>NO</td>
<td>GEAR UP**</td>
<td>FALSE</td>
<td>DESTROYED BY FIRE - $7M</td>
</tr>
<tr>
<td>08 May 78</td>
<td>MARACAIBA</td>
<td>B-727</td>
<td>HIGH DESCENT RATE</td>
<td>CAPT, F/O: FLAPS</td>
<td>IMPACTED INTO SALT WATER (5) FATALITIES</td>
<td>OUT OF 55</td>
</tr>
<tr>
<td>04 Apr 78</td>
<td>ENGLAND</td>
<td>BAC 1-11</td>
<td>NO</td>
<td>GEAR UP**</td>
<td>F/E: FALSE</td>
<td>HEAVY DAMAGE TO FUSELAGE - $3.27M</td>
</tr>
</tbody>
</table>

* Configuration warning system apparently disabled.
** Training, with configuration system disabled.
CIRCUMSTANCES: While on an ILS approach to runway 25, the aircraft hit short of the runway after hitting high voltage cables.

TIME: 14:56 local time

WEATHER: Fog, 1000 meter visibility

CONFIGURATIONS: Landing

FATALITIES: 12 with 30 injuries out of 92 passengers and 10 crew.

OTHER: Aircraft equipped with MK II GPWS

Two altimetry settings procedures used - QNH on captain's altimeter

QFE on co-pilot altimeter

Apparently crew did not understand English GPWS warnings, nor understood GPWS functions. No training?

Autopilot coupled to glideslope disconnected (reason not known) then re-engaged by the pilot. The autopilot reverted into Vertical Speed mode with approximately 800 fpm descent.

3770'
22 passengers still missing after Urumqi disaster

Eleven people died and 60 injured when an airliner crashed on its landing approach to an airport in western China, a Chinese news agency reported yesterday.

The China News Service in Hong Kong said another 24 people were reported missing after the MD-82 aircraft crashed and burned on Saturday in a rice paddy about one kilometre from the airport in Urumqi, capital of Xinjiang province.

It said the China Northern Airlines plane crashed at 3.05 pm as it was arriving from Shenyang in the east via Beijing.

It did not mention weather conditions, but the pro-China Daily News in Hong Kong said 12 people were killed and more than 30 injured.

The newspaper said 112 people, all Chinese, were killed. The plane was badly burnt and only the cockpit was intact, the agency said.

It said the plane was carrying 82 passengers, the crew of 10 and an aviation official.

The survivors included two Italians, while two Italians and a Japanese were among the injured, the newspaper added but did not give their names.

The crash was China's third aviation accident this year.

In July, a BAe 146 with 18 passengers and five crew crashed on takeoff, killing 24 Chinese and one Briton. In October, an MD-82 overshot a runway, killing two people.

Last year, there were 15 plane crashes in China, making it the worst year ever in Chinese aviation.

Official Chinese news reports have blamed lack of safety procedures and violations of operating regulations.

12 feared dead in mainland air crash

Up to 12 people were feared dead and more than 30 injured when a China Northern Airlines plane crashed near the northern city of Urumqi, it was reported yesterday.

Two or three passengers died on impact when flight 1180 crashed near a small village at 9.26 am on Saturday as it approached Urumqi airport, an aviation official said in the capital of Xinjiang province.

But he said many more may have died of their injuries.

The crash occurred in poor visibility and the plane was heading for the capital city of Urumqi, he said.

The plane was carrying 82 passengers, the crew of 10 and an aviation official.

The survivors included two Italians, while two Italians and a Japanese were among the injured, the newspaper added but did not give their names.

The crash was China's third aviation accident this year.

In July, a BAe 146 with 18 passengers and five crew crashed on takeoff, killing 24 Chinese and one Briton. In October, an MD-82 overshot a runway, killing two people.

Last year, there were 15 plane crashes in China, making it the worst year ever in Chinese aviation.

Official Chinese news reports have blamed lack of safety procedures and violations of operating regulations.

--- Agencies

Wen Wei Po said the crash occurred in poor visibility and the plane crashed on takeoff, killing two people and wiping out the crew.

It said the crash occurred near a small village about two kilometres from the airport.

A survivor said as they entered Urumqi the plane had suddenly plunged towards the ground.

An Italian passenger on the flight said the plane had been forced to land in extremely foggy conditions and that the plane was reving towards the floor.

Stefano Orlandini said the plane later caught fire as passengers were being evacuated.

"I saw some people wounded, one maybe with a broken leg," he said.

Mr Orlandini got out safely with his Italian travelling companion.

Agencies
CIRCUMSTANCES: During initial climb, the aircraft began a right turn at about 150 feet after retracting gear and flaps. The aircraft turned about 110 degrees without gaining any height and impacted trees in a 50 degree bank about 1.2 NM from the airfield.

WEATHER: Light snow. Cloud base 700-1200 feet. Visibility 3-5 miles

TIME: 17:30 L Night

FATALITIES: 7

OTHER: This is a Classic Excessive Bank Angle Accident
Other examples are:
12 Jan '89 HS-748 (also a Canadian operated Aircraft)
19 Feb '88 Metro III
12 Nov '80 C-141
1 Jan '78 B-747

Aircraft begins right turn
Turning 060 degrees
Liftoff
Bank Angle Reaches 50 degrees
18 0 kts Impact

1000
500
0
ALTITUDE QFE ~ FEET

0
2
DISTANCE FROM LIFT OFF ~ NM

60 55 50 45 40 35 30 25 20 15 10 5 0
TIME TO IMPACT ~ Seconds

GPWS Warning if MKVII Installed
No GPWS installed.

"Pullup!" "Pullup!"
"Sink Rate!" "Sink Rate!"
"Don't Sink! Don't Sink! etc."
"Bank Angle! (repeated until impact)"

Don Bateman
SANDY LAKE, ONT.

CZSJ

937°. Var 02°E. N53 03.9 W093 20.8.
Lights: Activate LIRL-1228.
Rwy subject to seasonal/climatic variances.
Sandy Lake Traffic ATF 122.8.

NDB RWY 29

SANDY LAKE

CZSJ

NO CTL-CTR INTENTIONS ON 122.8 WITHIN 15 MIN OF ETA AND PRIOR TO DESCENT, THEN ON ATV 5 MIN PRIOR TO COMMENCING APCH.

COMPANY USE ONLY

SAFE ALT 100 NM 3000

CIRCLING

1740

(803)

2 1/2

NDB

1740

(803)

2 1/2

TAKE-OFF

SPEC VIS: CLIMB VISUAL TO 1200 BPOG

ALTERNATE

† 1800 - 3

NDB RWY 29

ELEV 937

TOZE 29 937

ELEV 122.8 (ATF SHM)

ELEV 122.8 (SHM)

SANDY LAKE

SANDY LAKE "CZSJ"

CZSJ

SANDY LAKE

NDB 29

ELEV 937

TOZE 29 937

ELEV 122.8 (ATF SHM)

SANDY LAKE

NDB 29

ELEV 937

TOZE 29 937

ELEV 122.8 (ATF SHM)

SANDY LAKE
CIRCUMSTANCES: There have been at least three incidents at Anchorage, where 28.xx inches have been interpreted as 29.xx inches for the Barometric Altimeter setting. This has placed the aircraft 1000 feet below the procedure altitude on approach.

MIS-SET BAROMETRIC ALTIMETER - 1000 FOOT ERROR

Three incidents Nov. - Dec. 1993, March 1994

Other similar Incidents:
Nov. 1991, Jet Stream 31, Kodiak, Alaska
17 Feb 1990 - B737-200, Boise, Idaho
NARRATIVE: DURING VECTORS FOR APCH TO ANC ILS RWY 6R, ATC GAVE ALTIMETER SETTING 29.87 (SOUNDED LIKE AND WAS READ BACK). WE HAD 28.97 SET BUT, THINKING WE HAD COPIED WRONG DATA IN ATIS RPT, WE CHANGED TO 29.87. APCH CTLR ASKED OUR ALT AND WE VERIFIED IT WAS 2000 FT (CLRED TO 1600 FT). HE STATED HIS READOUT WAS MORE THAN 300 FT DIFFERENT THAN OUR RPTED ALT AND ADVISED ALT 'LOW 28.87' AND TO TURN OFF OUR ALT ENCODER AS IT WAS IN ERROR. WE CHECKED THE RADAR ALT AND RESET THE ALTIMETERS TO THIS SETTING AND ADJUSTED OUR ALT REST OF FLT WAS NORMAL.

NARRATIVE: WHILE DESCENDING THROUGH 18000 FT, MISSET ALTIMETERS TO 29.86 INSTEAD OF 28.86, AFTER READING BACK INCORRECT SETTING TO CTR (WITH NO CORRECTION FROM THEM), WE WERE PROGRESSIVELY GIVEN LOWER ALTS (10000 FT, 5000 FT, 3500 FT, 1600 FT) BEFORE LEVELING OFF AT LAST ALT, SO STAN MISSING THE WRONG SETTINGs ON ALL 3 FRONT INSTL, COMBINED WITH THE SO NOT CATCHING THE MISTAKE AND CTR/APCH NOT HEARING ME CALL BACK 29.86 NO PROB BECAME APPARENT UNTIL TURNING FINAL. WE WERE VECTORED ON BASE INSIDE THE MARKER AND AS WE PICKED UP THE GS WE REALIZED SOMETHING WAS WRONG WITH OUR ALT, SO WE LEVELLED OFF AND I TOLD THE FO TO FOLLOW THE VASI. THE LAND WAS NORMAL. I FIGURE WE WERE DOWN TO 700-800 FT OVER THE COOK INLET WHEN WE INTERCEPTED THE GS. I WAS UNDER THE IMPRESSION THAT ATC WAS SUPPOSED TO ANNOUNCE A LOW 28XXX WHEN ALTIMETER SETTING IS BELOW 29.00 INCHES.

NARRATIVE: DESCENT CLARY GIVEN BY ATC WITH ALTIMETER SETTING 28.86. PNF READ BACK 29.86. ATC DID NOT CATCH MISTAKE. ON IN- RANGE CHKLIST, ALL 3 CREW CALLED 29.86 AND SET ALTMSRS.

DURING DESCNT, ATC CLRED US TO 5000 FT, 3000 FT, AND 1600 FT. ACFT WAS ALWAYS WELL ABOVE ALT CLRED TO WHEN NEXT LOWER ALT CLRY WAS ISSUED. WE WERE CLRED FOR A VISUAL ON DOMINATING AT 3000 FT INDICATED AND TURNED BASE TO 1000 FT INDICATED (FAF ALT). INITIALLY CAPT DID NOT ACCEPT VISUAL, TILL APCH GAVE US A TURN ONTO BASE LEG. THIS WAS INSIDE ON TO INTERCEPT FINAL. APCHING FINAL, WE HAD A GS GPWS WARNING. PO REALIZED ALTIMITER SETTING WAS WROG AND MAINTAINED 1600 FT INDICATED TILL GS INTERCEPT. PO NOTED RADAR ALTIMETER WAS AT 700 FT AT GS MARKING POINT. NOTE: THIS APCH IS OVER WATER (SEA LEVEL). ON ROLLOUT, PO NOTED ALTIMETER WAS SET 29.86 AND SHOULD BE 28.86 SO WE WERE 1000 FT LOWER THAN INDICATED DURING DESCNT AND APCH. SO HAD 28.86 ON THE BDG CARD. CREW MISSED THIS ON 'IN RANGE' AND 'APCH' CHKLIST. ALSO, ATC SHOULD ALWAYS CALL 'LOW' WHEN SETTING IS BELOW 29.00 INCHES. NOW THEY DO SO SOMETIMES.
CIRCUMSTANCES: During a VOR approach to runway 25, the aircraft descended to within 400 feet of the water. An incorrect altimeter setting of 29.82 instead of 28.82 inches of Hg, gave altimeter readings of 1000 ft error.

WEATHER: Overcast 3000 feet, scattered, fog, visibility 5 miles, winds 010 at 20 kts.

MIS-SET BAROMETRIC ALTIMETER ERROR OF 1000 FEET ERROR

Note: Abnormal low approach slope of 1.55 degrees further aggravating altimeter error.
KODIAK, ALASKA

NARRATIVE:
ENROUTE TO AOQ, THE FO GOT WX FROM ENA RADIO AND Copied an Altimeter setting of 29.82. JUST PRIOR TO DESCENT, HE PICKED UP THE AOQ ATIS. I WAS MONITORING THE #1 RADIO AND DID NOT HEAR THE #2, ON WHICH THE FO GOT THE ATIS. PASSING FL180, THE FO CALLED THE TRANSITION, ALTIMETERS 28.82. I QUESTIONED THAT SETTING, AND HE RECOUNTED, STATING THE SETTING OF 29.82. WE EXECUTED THE VOR RWY 25 VIA THE ARC. TURNING INTO THE INBOUND COURSE, THE MINIMUM ALT IS 800 FT, TO WHICH I STARTED TO DESCEND. WE HAD BEEN IN AND OUT OF CLOUDS WITH A RAGGED CEILING AND LOW LIGHT CONDITIONS. MY FOCUS WAS INSIDE THE COCKPIT. AT ABOUT 1400 FT, OUT OF THE SIDE OF MY EYE, I NOTICED THAT THE WAVES ON THE WATER LOOKED AWFULLY CLOSE. I LOOKED OUT THE WINDOW AND NOT THE IMMEDIATE FEELING SOMETHING WAS HORRIBLY WRONG. I TOLD THE FO TO VERIFY ALTIMETER SETTING, AND TWR CAME BACK WITH 28.84. WE WERE ACTUALLY AT 600 FT, NOT 1400 FT! I ADDED MAX PWR AND CLIMBED UP TO 800 FT AND WE CONTINUED TO A LEG ON RWY 36 WITHOUT FURTHER INCIDENT. I THINK GOD THAT CONDITIONS WERE NOT JUST A LITTLE WORSE, OR THERE HAD BEEN LESS LIGHT, BECAUSE WE WOULD HAVE DROWNED INTO THE WATER AT 180 KTS. TO HELP WITH THIS PROB, ONLY ALTIMETER SETTING GIVEN WHICH IS LESS THAN 29.00 INCHES, SHOULD BE READ 'SHORT ALTIMETER, 28.82.'

SOURCE: ASRS #257041
CIRCUMSTANCES: While on an ILS approach to runway 17, the aircraft descended to 500 AGL at the FAF. The Captain's glideslope receiver failed to zero deviation but with no flags. A MSAW Low Altitude Alert saved the day. There was no GPWS warning or below 'Glideslope' alert. Only the Captain's glideslope receiver is utilized with GPWS in typical installations.

WEATHER: IMC

FAULTY GLIDESLOPE RECEIVER (NO GPWS ALERTS)

Past Accident examples of suspected glideslope receiver failures are:
- 14 November 1990 DC-9/30 Zurich 46 Fatalities
- 13 April 1987 B707 Kansas City 4 Fatalities

Flight Path Profile
DC-8-72 F
PENSACOLA, FLORIDA
November, 1993

INCIDENT

Don Bateman
NARRATIVE: WHILE BEING VECTORED FOR THE ILS RWY 17 APCH AT PNS, BOTH NAV RECEIVERS WERE TIMED AND IDENTED BY MYSELF. LOC INTERCEPT OCCURRED NORMALLY WITH A FULL 'FLY UP' GS INDICATION ON BOTH GS INDICATORS. ESTABLISHED ON THE LOC, BOTH GS INDICATORS CAME 'ALIVE' AND THE ACFT WAS SUBSEQUENTLY CONFIGURED AS PER NORMAL PROC. THE GLIDEPATH WAS INTERCEPTED AND FOLLOWED NORMALLY. AT APPROX 500 FT AGL, THE APCH CTLR ANNOUNCED A 'LOW ALT ALERT' AND A MISSED APCH WAS INITIATED IMMEDIATELY. THE CTLR STATED OUR POS AS APPROX 'BRENT' ON THE FINAL APCH COURSE. WE SUBSEQUENTLY CLOSED BACK UP TO OUR VECTORED ALT. I ASKED THEM TO CHECK THEIR EQUIP AND, AT THE SAME TIME, CYCLED MY NAV RECEIVER AND RETURNED AND IDENTED MY ILS FREQ. MY INDICATOR #2 SUBSEQUENTLY APPEARED NORMAL AND THE #1 GS INDICATED ERRONEOUSLY (I.E., ON GS WITH NON FLAGS) FOR OUR POS (HIGH IN THE RADAR PATTERN). THE FOLLOWING APCH WAS FLOWN AFTER ASSESSING MY INDICATORS AS FUNCTIONAL, WITHOUT INCIDENT. THE #1 NAV REMAINED INCORRECT (ON GS/NO FLAGS) THROUGHOUT THE APCH. AS FOR CONTRIBUTING FACTORS, I CITE MAINLY EQUIP FAILURE, I.E., INCORRECT GS INDICATIONS AND #1 AND #2 NAV INDICATORS.

REF: ASRS #257066
CIRCUMSTANCES: While waiting for IFR clearance for Patrick Henry Airport (Norfolk) in local VMC to IMC weather, the aircraft struck a Blue Ridge mountain. The aircraft had just completed flight inspection of the LOC navigation aids at Winchester airport.

WEATHER: 2200' broken, cloud and fog in the area.

TIME: Approximately 16:00 EDT

CONFIGURATION: Clear

FATALITIES: 3

OTHER: No GPWS, CVR or FDR installed. None required on FAA aircraft.

There are at least two other recent CFIT accidents that illustrate the dangers of awaiting an IFR clearance while trying to maintain VFR, or below the TCA.
11 Dec. '91 - Rome, Ga., BE-400. (Day)
15 March '91 - Brown Field Ca., HS-125 (Night)
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
Circumstances: On a third VOR DME approach to Runway 06, the aircraft impacted a ridge of terrain.

Time: 15:40 Local
Weather: Overcast, low clouds, wind 1107KTS, rain shower had just passed air field, visibility 1 mile.
Fatalities: 66 out of 110 on board.
Configuration: Gear down, Flaps 30 (landing).
Other: MK V GPWS installed, no warning situation. Aural altitude callouts not used, they could have provided timely alert.

Flight Path Profile
B737-500
MOKOP, KOREA
26 July, 1993

Capt: (reading chart) "...sixteen hundred... seven hundred... four DME"
C/P: "...OK"
C/P: "Winds?...wind vector?"
Capt: Tower... Request winds"
Tower: "one one oh at seven... rain showers just passed field"
C/P: "Landing check list... flaps thirty"
Capt: "Three green... trim...lights...flaps...maximum braking"

Capt: "...passed it...down more, more down..."
C/P: "...because I just joined..."

Capt: "...OK...eight hundred"

Thrust advanced five seconds prior to impact.
Aircraft pitches up to 30 degrees just before impact.
HAENAM TOWNSHIP, South Korea (AP) — A domestic jet carrying vacationing families crashed into a hill Monday on its third attempt to land in stormy weather, killing 68 of the 110 people aboard, the airline said.

Rescuers searched through the night on a rocky, muddy hillside for bodies and for more possible survivors. They said they refused to give up hope because not all the bodies of those reported dead had been found.

The Asiana Airlines Boeing 737-500 was bound from Seoul to Mokpo, nearly 200 miles southwest of Seoul on the Yellow Sea, when it crashed near Haenam in heavy wind and rain at 3:50 p.m., 20 miles from Mokpo airport, officials said.

The plane was reported missing for almost two hours before two survivors walked out of the remote, rugged crash region and into Haenam Township to seek help.

About 100 villagers rushed to the site — a two-hour walk along 2.5 miles of muddy paths — with farm implements to help pull survivors from the plane's fuselage, which they said was broken in three pieces. They were rushed to the area by 400 police and rescue workers.

Flight attendant-survivor Park Ji-han, 23, said the plane hit on its third attempt to land.
Incident:
Circumstances: Aircraft was prematurely cleared down to 3500 feet under radar vectors to ILS/VOR/DME 01, 4500 feet below MSA. (Minimum should have been 6500 feet) Aircraft was descending, when a MKI GPWS issued a Pullup warning. The pilots immediately climbed towards 3000 feet.

Time: Night
Weather: IMC
Other: Aircraft equipped with operational MKI GPWS

There has been at least one other incident in Capetown this year - rumored to involve a vector towards Table Top Mountain.

Approach: "radar identified...cleared for vectors to ILS 01 and down to thirty five hundred..."

Minimum Radar Vectoring Altitude 6500 feet

C/P: "...(to captain)...that seems abit low..."
Capt: ... on radar, it's OK!"

First MKI GPWS "Pullup" warning
second MKI GPWS Pullup Warning
Pilots immediately climb on second warning

Incident
Flight Path Profile
B737-200
CAPE TOWN, S. AFRICA
July 1993
1. Initial approach altitude 6500 or higher MSA.
2. Descend in the hold to 3900.
3. Procedure turn approach applicable only within 30° of the outbound heading. Use phraseology: 'Request procedure turn approach'.
4. Circling approaches between 010°M & 160°M are not authorized for Cat C & D aircraft.
5. Cat 2 operation and minima must be approved by DCA.

LOM CT 1189
LOM CT 2129 LMM

G/S

160 1049 790 850 910 970 1030 1090 1150 1210
950 790 950 1010 1070 1130 1190 1250 1310 1370
800 640 700 760 820 880 940 1000 1060 1120
640 480 540 600 660 720 780 840 900 960
480 320 380 440 500 560 620 680 740 800
320 160 220 280 340 400 460 520 580 640
160 0 60 120 180 240 300 360 420 480

LOM ATC 1157
LOM ATC 2197

G/S

160 1049 790 850 910 970 1030 1090 1150 1210
950 790 950 1010 1070 1130 1190 1250 1310 1370
800 640 700 760 820 880 940 1000 1060 1120
640 480 540 600 660 720 780 840 900 960
480 320 380 440 500 560 620 680 740 800
320 160 220 280 340 400 460 520 580 640
160 0 60 120 180 240 300 360 420 480
CIRCUMSTANCES: On a final NDB approach to runway 26 the aircraft struck a spit of rocks some 3000 feet short of the threshold and crashed into the water. The pilot had reported the runway in sight. Heavy rain, and poor visibility.

Fatalities: 41 out of 43 on board.

Weather: Heavy rain, and poor visibility.

Other: No GPWS installed.

PARTIAL LIST OF INDONESIA CFI T ACCIDENTS - NO GPWS INSTALLED

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>25 Apr 04</td>
<td>Nanggelnah</td>
<td>SN-2A</td>
<td>Hit min at 6400' level initial descent</td>
<td>10</td>
</tr>
<tr>
<td>Scheduled</td>
<td>18 June 04</td>
<td>Palu</td>
<td>F-27</td>
<td>Hit min 3-1/2 NM short B/C LOC Run 33</td>
<td>12</td>
</tr>
<tr>
<td>Scheduled</td>
<td>1 July 03</td>
<td>Sorong</td>
<td>F-28</td>
<td>Hit 1-1/2 NM short</td>
<td>44 of 45</td>
</tr>
<tr>
<td>Scheduled</td>
<td>18 Oct 92</td>
<td>Bandung, Mt. Papandayan, Garut, Java</td>
<td>CN 235</td>
<td>Hit min Initial approach to Bandung (from Germany)</td>
<td>33</td>
</tr>
<tr>
<td>Scheduled</td>
<td>24 July 92</td>
<td>Ambon</td>
<td>Vickers-Vickers</td>
<td>Hit min during initial approach ILS 04</td>
<td>71</td>
</tr>
<tr>
<td>Scheduled</td>
<td>4 April 07</td>
<td>Medan, Sumatra</td>
<td>D-28</td>
<td>Hit TV tower on approach</td>
<td>48</td>
</tr>
<tr>
<td>Scheduled</td>
<td>11 July 92</td>
<td>Mt. Bima, Sumatra</td>
<td>F-23</td>
<td>Undershoot</td>
<td>23 of 45</td>
</tr>
<tr>
<td>Positioning</td>
<td>6 Mar 79</td>
<td>Mt. Bromo, Java</td>
<td>F-28</td>
<td>Hit min during initial approach</td>
<td>61</td>
</tr>
<tr>
<td>Scheduled</td>
<td>29 Mar 77</td>
<td>Bima, Bima</td>
<td>DHC-6</td>
<td>Hit min</td>
<td>15 of 23</td>
</tr>
<tr>
<td>Scheduled</td>
<td>4 Nov 76</td>
<td>Banjarmasin, Kalimantan</td>
<td>F-27</td>
<td>Hit Short</td>
<td>29 of 38</td>
</tr>
<tr>
<td>Scheduled</td>
<td>24 Sept 75</td>
<td>Palembang</td>
<td>F-28</td>
<td>Hit short of Run 29</td>
<td>28 of 38</td>
</tr>
<tr>
<td>Scheduled</td>
<td>7 Sept 74</td>
<td>Banjarmasin, Sumatra</td>
<td>F-27</td>
<td>Hit short</td>
<td>33 of 38</td>
</tr>
<tr>
<td>Scheduled</td>
<td>22 April 74</td>
<td>Bali</td>
<td>B727-320</td>
<td>Hit min on initial approach</td>
<td>107</td>
</tr>
<tr>
<td>Scheduled</td>
<td>10 Nov 71</td>
<td>Sumatra</td>
<td>Vickers-Vickers</td>
<td>Hit short by 3 NM</td>
<td>59</td>
</tr>
</tbody>
</table>
At least 40 people killed in Indonesian plane crash

JAKARTA, Indonesia — An Indonesian airliner crashed today in a remote eastern province, killing at least 40 people, an airline spokesman said.

The Fokker-28, which was carrying 43 people, crashed as it was about to land at Jefman Airport in Sorong, about 1,700 miles northeast of Jakarta, said spokesman Agus Sudjono of the private Merpati Nusantara Airlines.

The survivors were unconscious and treated at a hospital, Sudjono said by telephone. The cause of the crash was not immediately known, he added.

Sudjono said it also was not known whether there were any foreigners aboard the flight, which began in Jakarta.

The official Antara news agency said the plane crashed near a beach close to the airport.
CIRCUMSTANCES: During a circle to land circuit after completing an NDB approach, this aircraft struck high ground on the base leg. The aircraft was on a scheduled public flight.

WEATHER: 310/11 kt wind gusting 19 kt. 4/8 cloud 800' 6/8 at 1200' 6/8 1500'. Visibility 10 km reduced to 5 km in light rain. Temperature +9° C 1004 hPa.

TIME: 19:20 EST Night

CONFIGURATION: Landing gear down, partial flaps

FATALITIES: 7

OTHER: Autopilot, Captain's HSI, ADI inoperative, No GPWS, Radio Altimeter, FDR, CVR

Flight Path Profile
PA-31-350
YOUNG, AUSTRALIA
11 June, 1993

Start of GPWS Warning if GPWS Installed (No GPWS installed)

Recovery climb potential (Pilot delay 5 seconds)

Impact into trees

ALTITUDE
MSL ~ Feet

DISTANCE ~ NM

TIME ~ SECONDS at 133 kts ground speed

MK VI GPWS Warning
(No GPWS Installed)

17 seconds "Too Low!"
"Too Low! - Flaps!"
Final Approach of VH-NDU
Last 2.5 minutes

Return to TOC
Circumstances

On a flight from Panama and the First Officer flying, the aircraft flew into an electrical storm area, and turned to approach Rio Negra after false NDB 'AJL' station passage (approx 60 NM away). A key VOR-DME (Rio Negro) used for the transition, was inoperative. While cleared for the approach by ATC (no radar), the aircraft could not secure ILS or NDB navigation for the approach. The electrical storm subsided, the crew realized their situation, but failed to climb, and struck a mountain 9 NM NE of the 'Kolin' intersection (also determined by another NDB ('UIB')).

Weather: IMC. Calm wind at the airport. Heavy rain.

Fatalities: 132 including 7 crew.

This accident is an example of where the availability of a simple, low cost GPS Receiver (indication only), would have been very useful to the pilots by averting the navigation uncertainties.

Don Balleson
Bogota, Colombia — The wreckage of a Colombian airliner was found today on a remote Andes mountainside. All 132 people aboard were killed, including seven North Americans, airline officials said.

The SAM airline Boeing 727 was found 50 miles northwest of Medellin on the slope of a 12,300-foot peak, a search-plane pilot said. The jetliner, bound from Panama, went down yesterday as it prepared for landing in Medellin.

The plane was carrying 125 passengers and seven crew members, the airline said.

It hit the side of a heavily forested mountain in an area of deep canyons. Pilots said the rough terrain created problems for air-rescue crews.

Two pilots speculated in radio interviews that the crash resulted from the loss of radio-navigation beacons blown up by leftist guerrillas last year.
Circumstances:
During radar vectors at night for left downwind to ILS runway 28R, radio communication was lost unknown to the flight crew. The aircraft continued its descent and heading clearance. The approach controller became frantic after unsuccessfully re-establishing communication and the MSAWS alert started and continued for some 2½ minutes. Apparently an aircraft microphone switch was stuck on. Then the controller "figurably died" when suddenly on the VHF channel was heard a GPWS "Whoop-whoop! Pull Up!"—continuing for some seconds and then stopped. Secondary radar contact remained as the altitude readout rapidly increased. A pilot passenger recalls the Portland city lights disappearing behind the aircraft some minutes before the aircraft suddenly pitched up in a ratcheting fashion to ever higher climb attitudes. Eventually, communication was re-established and an uneventful landing was made.

Time: Late evening (a quiet night with little ATC traffic)
Weather: 5000 scattered

Profile and dialog based on unofficial reports.
Loss communication procedures apparently not followed?
CIRCUMSTANCES: During a back course localizer approach to runway 20, the aircraft descended to within 600 feet AGL at 10-1/2 NM from the runway. The co-pilot finally recognized the problem and called for a climb. Auto Thrust System (ATS) on throughout the incident - FCU and Flight Directors disengaged as Captain flew manually. No barometric altitude alert as landing gear was down.

CONFIGURATION: Landing

WEATHER: 600+, 5 mile visibility, fog, 2°C / 1º dew point, wind 150/3 kts

OTHER: 49 on board / Time 13:20 local

Note:
MK III GPWS installed but NO alert or warning as aircraft in landing configuration, no glideslope, stable descent and no altitude alerts pinned up.
Aviation Occurrence Report

Altitude Related Event

Air Canada
Airbus Industrie A320-211 C-FKAJ
Edmonton International Airport,
Alberta 10 mi N
02 April 1993

Report Number A93W0039

Synopsis

Air Canada Flight 183, an Airbus A320, was on radar vectors for a straight-in back course approach to runway 20 at the Edmonton International Airport, Alberta. Approximately six miles north of the final approach fix (FAF), the pilot unintentionally descended to approximately 2,900 feet above sea level (asl). The minimum authorized crossing altitude over the FAF is 3,600 feet asl. The altitude deviation was recognized, a climb established back to 3,600 feet, and the landing was carried out without further incident.

The Board determined that the crew did not properly monitor the altitude during the approach and allowed the aircraft to descend to a non-safe altitude before initiating a recovery.

Ce rapport est également disponible en français.
CIRCUMSTANCES: During a LOC DME approach to runway 26 this airtaxi aircraft impacted 3 NM short of the runway threshold. The pilots apparently began to see ground lights, perhaps an electrical power station and prematurely departed the instrument procedure for visual flight. The airfield was probably never ever seen.

TIME: 20:02 Local night
WEATHER: Visibility 4 KM, snow, ceiling 1200 feet -2° C
CONFIGURATION: Gear down, flaps approach
FATALITIES: 3 of 10 on board

Radio Altimeter installed. No GPWS. Runway 26 had HiRL/HIALS/PLASI set to 3.6°
Aussm APPROACH; Climb on 259° to Lctr, then climbing turn RIGHT and continue climbing to 6000' (3393') in holding.
Incident:
Circumstances: Aircraft was prematurely cleared down to 10,000' in holding pattern. (Minimum descent altitude in hold is 13,200') A MKII GPWS "Terrain/Pullup" warning was given because of 11,000 terrain S.W. of the Bogota VOR as the aircraft passed through 11,700'. An immediate pullup by the pilot (2 seconds response) towards 13,200 feet, maximum thrust was made, but later arrested at 12,600' as the aircraft intercepted the localizer, and the radio altimeter showed the aircraft clear of terrain.

Time: Night
Weather: IMC
Other: MK II installed and working.

Flight Path Profile
MD-80
BOGOTA, COLUMBIA
10 March, 1993

Minimum Holding Altitude of 13,200 feet

"Cleared for the approach ... and down to ten thousand"

230 kts, clean configuration
standard rate right hand turn
800 fpm descent

"Terrain! Terrain! Pullup!
Terrain! Terrain!"

Pilot pulls up to 14 degrees
goes to go-around thrust.

Projected Impact

11,200'

Maximum Terrain

Terrain derived by
barometric altitude
and radio altitude

ALTITUDE
MSL
~ FEET

DISTANCE TO RUNWAY
ALONG TRACK TO GO ~ NM

RELATIVE TIME IN SECONDS
Approach: "...cleared for approach and down to 12,500'"
(Aircraft descends to 12,500')

Pilot pulls up, within 2 seconds to 14 degrees nose up, adds thrust, climbs to 12,500' until on localizer and glideslope

"Terrain Turlraln" CPWS warning at 11,700' (Terrain at 11,200')

Approach: "...because of traffic you will have to hold at Bogota (NDB)"

Approach: "...cleared for approach and down to ten thousand" (Aircraft begins descent from 12,500' at 800 fpm)
While on a VOR instrument approach to runway 5, the flight crew received a GPWS warning and pulled up. The flight crew were following their procedures. The next approach was kept high at 4000 feet until the VOR and an uneventful landing was made with no GPWS warning.

This incident illustrates that low approach slope procedures (in this case 1.5°) can cause nuisance GPWS warning and especially make the aircraft vulnerable to altimetry errors, to visual illusions and greater exposure to a possible landing short into terrain or water. Raising this approach 2.5° would eliminate all GPWS warnings and improve terrain clearance on the approach.

THE LOW APPROACH SLOPE INSTRUMENT PROCEDURE ‘TRAP’

INSTRUMENT PROCEDURE WITH LOW APPROACH SLOPE OF 1-1/2°
MISSING APPROACH: Climbing LEFT turn to 4000' direct to PUW VOR and hold.

<table>
<thead>
<tr>
<th>STATION</th>
<th>3140' (467')</th>
<th>3420' (467')</th>
<th>5140' (947')</th>
<th>5420' (947')</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1 1/4</td>
<td>3140 (947) - 1</td>
<td>3420 (947) - 1 1/4</td>
</tr>
<tr>
<td>B</td>
<td>1 1/4</td>
<td>2 3/4</td>
<td>3140 (947) - 1 1/4</td>
<td>3420 (947) - 2 3/4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>3</td>
<td>3180 (829) - 2</td>
<td>3480 (829) - 3</td>
</tr>
</tbody>
</table>

If not received, use Walla Walla.
Circumstances: During early morning ILS approach to runway 21, aircraft slipped under the glideslope and hit short of threshold by 10 feet, breaking off main landing gear, skidding to a stop on engine nacelles and nose gear.

Time: 04:18 local time

Weather: Fog, visibility 900 meters

Injuries: None for six on board. Aircraft written off.

Other: Aircraft equipped with GPWS, and crew apparently corrected for each 'glideslope' alert. PAPI-L set for 2.75°

FLIGHT PATH PROFILE
B707-321
Abidjan, Ivory Coast
15 January, 1993
Return to TOC
Circumstances: During a VOR DME final approach to runway 23 the aircraft hit short into a hill at 6-1/2 NM from the runway.
Weather: 500 foot overcast, rain, poor visibility
Time: 08:10 local
Configuration: Gear down, approach flaps
Fatalities: 9 (Air Taxi)

Flight Path Profile
L-35A
HERMOSILLO, MEXICO
8 January, 1993

"Too Low...Flaps!" etc.
Hermosillo, Mexico

Gen Ignacio Pesqueira Garcia Intl

VOR DME-1 RwY 23

VOR 112.8 HMO

Descent outbound on HMO VOR R-243. Make a teardrop turn to the LEFT within 10 NM to HMO VOR to the minimum holding altitude.

VOR

D4.0

2000' (6104')

D6.0

2800' (8534')

D15.0

4000' (12192')

CIRCLE-TO-LAND

<table>
<thead>
<tr>
<th>HEIGHT</th>
<th>MIN/MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>350</td>
</tr>
<tr>
<td>B</td>
<td>1150</td>
</tr>
<tr>
<td>C</td>
<td>175</td>
</tr>
<tr>
<td>D</td>
<td>1640</td>
</tr>
</tbody>
</table>

MISSED APPROACH: Climb outbound on HMO VOR R-243. Make a teardrop turn to the LEFT within 10 NM to HMO VOR to the minimum holding altitude.
Circumstances: While repositioning from ILS runway 27 to ILS runway 28, aircraft impacted short by 0.4 NM and 0.26 NM to the right of localizer 28. Insufficient time to reposition, re-stabilize, and change NAV and COM frequencies. Co-pilot flying.

Time: 16:19 UTC Night
Weather: Wind 100-200°/10 to 14 kts
Visibility 1500M - 800M RVR 700 to 1400M
B8 stratus, base 200 to 600 feet QNN 1029 hPa
Temperature 8.1°C

Configuration: Landing gear down, flaps retracted 0°

Fatalities: 4 including one child, 9 seriously hurt, 11 injured

FLIGHT PATH PROFILE
DHC-8/300
Charles De Gaulle, Paris
6 January, 1993

3 Minutes Before Impact:
Controller: "... Can you make a sidestep to the left to take ILS runway 28?"
Capt: "... Yes of course"
Controller: "... Ok, make a sidestep to the left to take ILS two eight, and contact one two zero six five, report established on this frequency"

Controller: (B747 had just landed runway 27 and had struck a left engine on the runway, leaving debris)
Circumstances: While on initial approach (VOR-DME) to runway 36, the aircraft was cleared to descend prematurely to 8,500 feet. The aircraft impacted approximately 65 feet below the last ridge between the aircraft and the airport. Non-standard phraseology led to a misunderstanding between the pilots and controller of the aircraft's position (non-radar environment).

Time: Night

Fatalities: 37

Other: No GPWS installed

Flight Path Profile
F-27
GOMA, ZAIRE
13 December, 1992

Don Bateman

Minimum Altitude FL 150

170 Kts
-1100 fpm

16,000
15,000
14,000
13,000
12,000
11,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000

DISTANCE TO IMPACT ~ NM

TIME TO IMPACT ~ SECONDS

GPWS WARNING (NOT INSTALLED)
Circumstances: Both aircraft on approach hit 3.0NM short into two building 300 meters apart. Both aircraft had accepted radar vectors to 'QMS' VOR/ILS 35.

10 Dec '92 Sabreliner: Impacted Ist floor of building
Time: 19:40 local Night
Weather: 6 KM visibility at airport, but fog low clouds at building #1.
Fatalities: 12 including Ecuadorian Chief of Army, his son, 1 Major, 2 Captains (pilots), 4 Lieutenants, 3 Seargents. Pilot in command had less than 50 hours time in type.

22 Dec '92 Twin Piper: Impacted 3rd floor of building #2.
Time: 11:20 local morning
Weather: 4 KM visibility at airport, but fog, low clouds near building.
Fatalities: 5 including Government Minister of Tourism and Information.

It has been reported that the localizer can suddenly 'scallop' between the OM and LMM to runway 35, and pilots tend to overconcentrate on maintaining localizer track and slip through the glideslope.

Many airlines refuse radar vectoring because of radar siting problems - (terrain masking) and also refuse 'QMS' VOR/ILS 35 approaches, preferring 'QIT' VOR/ILS 35.
Ecuador general killed

QUITO, Ecuador — The army’s top general, his son and eight military officers were killed Thursday when their private jet clipped a 10-story building under construction and crashed in a residential area, officials said.

There were no survivors aboard plane and at least one worker in the building was killed, officials said. Radio reports, which could not be immediately confirmed, said there were at least three dead on the ground.

Gen. Carlomagno Andrade and the others were returning from a military ceremony in Machala, about 220 miles southeast of Quito, when the wing of the 16-seat Saberline executive jet hit the fifth floor of the building.

Journal American 11 Dec '92
Conditions: While on VOR approach to runway 06, aircraft hit 9 NM short of runway threshold. Unofficial report is that crew prematurely descended after seeing red lights which turned out to be an army barracks.

Time: (night) 01:43

Weather: At 01:00 --- Wind 070/12, visibility 4000M, slight dust haze, cloud 5 CS 5000M, Altimeter 1018, temperature 20°C

Configuration: Landing

Damage: After clipping trees, aircraft destroyed in fire. 4 on board walked away with no injuries.

Other: Example of Procedural 'Trap' ---

Very shallow approach slope procedure 1.6°. 3000' intercept altitude needs to be raised to 4000' (2.6°)

No GPWS installed. See DC-8 accident 15 Feb '92 where aircraft impacted within 100 yards of same impact point.

FLIGHT PATH PROFILE
B707-320C
Kano, Nigeria
25 November, 1992

Pilot: "What's your visibility like on the ground?"
Tower: "It looks ok on the ground"
Pilot: "It is different in the air"
Tower: "We just had a Jumbo land"
Pilot: "Overhead KA going outbound"
Tower: "Cleared for VOR approach -- report procedure turn complete inbound not below 3000 feet QNH"
Pilot: "We call you"

Pilot: "--- 402 procedures turn complete inbound"
Tower: "Report again field in sight, the OCL is 1953 feet on QNH"
Pilot: "Roger, 1953 feet"

"KA" VOR

D 75

3000'

1.6° Approach slope

Army barracks row of lights

MDA 1960°
(395°)

1565'
KANO, NIGERIA
MALLAM AMINU KANO
VOR DME Rwy 06
VOR RWY 06
VOR 112.5 KA

CAUTION:
DO NOT OVERSHOOT R-244
ON FINAL TURN FOR LANDING.

MISSSED APPROACH: Climb on 064° to 4000' (2435') or as directed.

STRAIGHT-IN LANDING RWY 06
MDA 1960' (395')
Circumstances: During a localizer instrument approach (LDA-1) to runway 8, the aircraft impacted a ridge on Mt. Chilkat.

Weather: Probably IMC. At the airport weather reported as low clouds, rain mixed with snow, winds gusting 35 mph.

Time: 09:02 local

Fatalities: Included 3 Generals, 2 Colonels, 1 Warrant Officer and 2 Sergeants

Other: Aircraft reportedly fitted with "Talking Altimeter", Global Positions Receiver and MOCA/MSA database.

No GPWS installed. Army had previously rejected GPWS (TSO-C92b) two years prior to accident. Juneau accident of 2 Sept 1971 had been used as example to Army of GPWS safety merits.

Note: Three aircraft have impacted Mt. Chilkat. All were prematurely low in altitude. Sisters VOR has been held with suspicion by some investigators but errors not proven.

- 2 September 1971 B727 111 Fatalities No GPWS
- 22 October 1985 L24D 4 Fatalities No GPWS
- 12 November 1992 C-12F 8 Fatalities No GPWS

Both L24-D and C-12F had DME "Hold" feature, and both found in "Hold" switch position.

FLIGHT PATH PROFILE

U.S. Army C-12F

Juneau, Alaska

12 November, 1992
Weather at crash site prevents recovery of 8 dead Guardsmen

by Brian S. Akre

JUNEAU, Alaska — Snow and low clouds grounded initial efforts yesterday to retrieve the bodies of eight men from the wreckage of an Alaska National Guard plane that crashed on a remote mountainside.

The Coast Guard was trying to get a helicopter to the site about 30 miles west of Juneau. "They're signing out there waiting for the weather to change," Lt. Roy Messer Jr. said.

Among those killed was the commander of the Alaska Army National Guard, Brig. Gen. Thomas C. Carroll, 44, also serving as deputy commissioner of the state Department of Military and Veterans Affairs.

Alaska flags were being flown at half-staff yesterday in Carroll's honor.

Maj. Gen. Kenneth W. Hinset, an Indiana national guardsman on a brief assignment in Alaska, also was killed in the crash. Hinset was deputy commanding general for reserve components for the Forces Command at Fort McPherson in Atlanta.

Hinset, 55, was planning to retire in February after 33 years of combined active duty and National Guard service.

Maj. Gen. Hugh L. Cox III, adjutant general of the Alaska National Guard, said the men will be sorely missed.

An Army investigation team from Fort Rucker in Alabama was scheduled to arrive in Juneau late yesterday or today, Messer said.

The plane crashed while on an instrument-aided approach to the Juneau airport. It was en route from Elmendorf Air Force Base in Anchorage. The pilot gave no indication that the plane was in trouble, officials said.
Circumstances: Aircraft, while tracking NDB-VOR-DME runway 02, hit last ridge between aircraft and airport, 260 feet below top at 9NM. Captain may have misread the approach plate on altitude versus DME. This accident very similar to B737 Unalakleet 2 June 1990, where the error was not detected by the co-pilot.

Time: 14:00 local
Weather: VMC at airport, but clouds covering mountain tops.
Configuration: Landing, 25 flaps
Fatalities: 167
Other: Very steep approach, approximately 6½ degrees, requires landing configuration. Autopilot #2 and autothrottle engaged. MK II GPWS installed, but operation not known. CVR area microphone inoperative. No GPWS warning discrete recorded on FDR. Professional Senior Training Check Captain 13,000 hrs. MKII GPWS "Minimums"! and procedures not enabled which would have given pilots a cue to go-around.

FLIGHT PATH PROFILE
A300-B4
Kathmandu, Nepal
28 September, 1992
Mountains should be abolished. At least that'd stop all these aeroplanes bumping into every other peak...

It's just happened... in Nepal... Kathmandu...

I was reading the story in the paper. Here... look."

"The Adventures of Tin Tin in Tibet"
by Hergé, 1960

167 die as Pakistani plane rams hill near Katmandu

KATMANDU, Nepal (AP) — A Pakistani jet filled with Europeans — including mountain climbers and missionaries — plowed into a pine-covered hillside Monday, and rescuers searching the burning wreckage reported no survivors among the 167 aboard.

Officials said one American also was on board the Pakistan International Airlines Airbus A300 when it crashed on a landing approach, the second air disaster near the capital in as many months.

The pilot had given no indication anything was wrong before contact was lost with the plane, and the weather was normal, officials said.

Airline sources in Pakistan said the plane may have been flying too low as it approached this city ringed by Himalayan mountains thousands of feet high. The sources, speaking on condition of anonymity, said the plane was flying at 7,500 feet when it should have been at 9,000.

The airline has had a safety and service record in recent years. A Thai Airbus crashed into a snowy peak near the capital in July, killing all 113 people aboard.

The Pakistani jet, on a flight from Karachi, Pakistan, crashed 14 miles south of Kathmandu's airport, said Nagendra Prasad Ghimire, deputy chief of Kathmandu airport.

Except for a few chunks of scattered wreckage, the fuselage was mainly in one piece, according to Associated Press reporter Bindu Joshi, who drove to the site.

The plane's tail was in the air and its nose buried in the ground.

Rescue crews that reached the site earlier by helicopter said the plane was on fire.

Kedar Prasad Bagai, a villager whose home is a 30-minute walk from the site, said he heard a loud noise followed by explosions that lasted 15 minutes. He and other villagers said they later saw "many bodies" at the crash site.

They said there were scattered clouds but no rain at the time of the crash.

The state-owned Nepal Radio announced that bodies of victims would be handed over to relatives at Kathmandu airport today.

The accident occurred at the start of Nepal's tourist season.
Circumstances: During an expedited approach to ILS runway 29, aircraft became unstabilized, with 'S' turns through the localizer at 60 Kts excess speed, overbanked, out of trim and in limited visibility. Aircraft's right wing clipped trees and tore off, aircraft hit inverted.

Time: Night
Weather: Ceiling 360 feet, visibility 4,000 feet
Fatalities: 84 (21 children) 7 crew

FLIGHT PATH PROFILE
TU-134
IVANOVO, RUSSIA
27 August, 1992

CAPTAIN CALLS FOR GEAR DOWN
AND FLAPS 30

FLAPS REMAIN AT 20°
BECAUSE OF EXCESS SPEED
210 KTS (350 KM/H)

RUSSIAN 'GPWS' INSTALLED
PERFORMANCE EQUIVALENT TO
PRE TSO/CAA SPEC 14 STANDARDS
TONE WARNING ONLY

RUSSIAN GPWS
TONE WARNINGS
(Excessive descent rate to terrain)
On Board: (7) Crew
Captain, Co-pilot, Navigator,
Flight Engineer, Engineering Instructor
(2) Hostesses
(77) Passengers of which (21) were
children, many in parent's arms,
returning from vacations.

Other Factors: Reserve crew up for 20 hrs.
8 hr rest. 4h 53' in aircraft
Captain 53 yrs old, 14,500 hrs
2-1/2 years in type.
Co-pilot 5,000 hrs, 100 hrs
in type; F/N-E/E 8000 hrs,
5-1/2 yrs in type. All familiar
with route and professional.

At First Impact: aircraft clipped trees 3-4 meters
below tops, loosing skin from right
wing. Bank angle increased to 55,
right wing broke off, aircraft inverted
with Pilot pulling back at 360 km/hr.

Flaps, although set for 30, remained
to 20 because of excessive speed.
(100 km/hr above normal final approach speed.

Preliminary Information -
Expedited, unsteady approach
by Captain probably very tired,
fatigued, frustrated and
determined to complete
approach.

Doc. Zaitsev
8th October 1992
Circumstances: The aircraft impacted terrain during a missed approach. The flight crew, while at an initial approach altitude of 11,500 feet, had difficulty selecting and obtaining a landing flap position. This delayed the initiation of the descent for NDB-VOR/DME approach to runway 02. The crew then decided to request a clearance back for a second attempt at the same altitude. ATC granted this clearance back to "Sierra." However, both crew members left the flying to the auto pilot and became fatally distracted in locating the paper area navigation chart, determining coordinates for "Romeo" and other Initial Approach Fix (IAF) missing from the FMS data base. These coordinates were then entered by hand into both FMS using the keyboards. Valuable time was then lost trying to show these IAF's on the Navigation Display in Map mode (behind the aircraft). A critical 3-plus minutes were lost in this process. Instead of an immediate pull-up recovery, after a GPWS (MK III) warning occurred some 17 seconds before impact, the crew delayed, waiting for ATC permission to turn back.

Time: 13:00 Local approximately.
Weather: IMC, rain, heavy at times.
Configuration: Clean

Fatalities: 113

Capt. to Co-pilot: "...Level change! (power increased)
ATC: "...Visibility toward south 3500 meters now"
C/P: "...Turn back?...Back!"
Capt: "...It's false...false!"
C/P: "...Oh my God!"

GPWS: "...Pull Up! Pull Up!" (until impact)

Capt: "...request right turn back to the airport"
ATC: "...Stand by for visibility"
C/P: "...Did we turn right?"
Capt: "...We'll turn back soon"

11,500 feet 230 kts indicated, 024° Heading

Autopilot engaged in Altitude Hold and Heading

Gradual turn to 006°

FLIGHT PATH PROFILE
A310-300
KATHMANDU, NEPAL
31 JULY 1992
1) This accident highlights how the FMS and Map displays found in the modern glass cockpit can be addictive and compelling, can contribute to a lack of terrain awareness, and in this accident...a fatal distraction.

2) There is need in CRM training to illustrate why immediate terrain recoveries are necessary, and how to recognize "traps" in the ATC radar/non-radar environment.

3) There is a need for "hands on" terrain recovery training in the simulator. The pilot should be able to practice responsive sustained smooth pitch ups to nominal recovery attitudes.

4) In most glass cockpits there is typically only a simple digital readout of radio altitude immersed in the clutter of the ADF. The lack of a prominent radio altitude indicator that gives terrain "unwinding" trend handicaps the pilot in recognizing any possible terrain problem in the first place, and then later as a tool for terrain recovery. This is a step backwards in terrain situational awareness when compared to present radio altimeter indicators (tape and dial) available in the older non-glass cockpits.

The A310 has a "deClutter" function on the Primary Flight Display of Attitude Data for unusual pitch or roll attitudes. For abnormal attitudes, attitude, speed/mach and heading are retained, all other indications are erased to help declutter the display. Why not devise a similar scheme for an emergency "Terrain! Pull-up!" GPWS warning...highlighting attitude, radio altitude and trend to help the pilot expedite a safe terrain recovery?

5) Other factors illustrate the use of non-standard phraseology, misunderstandings, lack of aircraft positional awareness for both crew and controller, and other traffic.
Circumstances: On initial approach ILS Runway 04 to Ambon, aircraft struck a mountain 9 NM from the runway. Aircraft had descended prematurely for an unknown reason, such as misunderstanding of clearance transition altitude.

Weather: IMC

Fatalities: 71 (7 crew)

Preliminary Data

FLIGHT PATH PROFILE
Vickers Viscount
AMBON, INDONESIA
24 July, 1992

FLIGHT PATH PROFILE
Vickers Viscount
AMBON, INDONESIA
24 July, 1992
Plane carrying 71 people is missing in Indonesia

JAKARTA, Indonesia — A plane with 71 people on board was missing today, a day after it failed to make a landing due to bad weather in Indonesia’s eastern province of Ambon, officials said.

The domestic Mandalia Airlines flight lost contact with the ground after failing to make a landing in the fog on the island of Ambon, 1,500 miles east of Jakarta.
Circumstances: The aircraft clipped the top of a TV tower located on the top of a 3000 foot mountain during a night time departure. A misunderstood clearance with non-standard phraseology and improper read back led to a flight into terrain situation. "Perry" intersection, located 032 degrees and 150 nm from the airport, had been entered into the FMS as a waypoint direct from liftoff. The aircraft tuned at 750 feet after liftoff to follow the magenta line to "Perry" on the Navigation Display in MAP mode.

A MK V GPWS issued a "Terrain! Terrain! Pull Up!" some six seconds from impact. The F/O immediately responded with a gentle Pull Up that was not sustained, but which saved the aircraft, crew and passengers from certain destruction and loss of life.

Time: 22:05 local
Injury: No injury to 287 passengers.
Damage: Wing clipped the top 20 feet of a 300 foot TV tower, damaging left outboard leading edge (6 feet wide by 2 foot deep), rupturing fuel tank, damaging L.E. flap drive, anti-ice duct, stringers and the front spar, and leaving red paint across top of wing.

Time: Night.

FLIGHT PATH PROFILE
B767-300 ER
MARGARITA, VENEZUELA
23 June, 1992

F/O lowers nose to 11.2° just before clipping tower
F/O Raises nose to 16.9° Full thrust applied by auto throttle
Flaps selected up
GPWS Warning "Terrain! Terrain! Pull up! Pull up! F/O Pulls up from 39 to 12.5° attitude at 1°/Second 247 kts
200 feet of altitude gained before clipping tower
F/O lowers nose to 11.2° just before clipping tower

Don Beltman
Lessons:

1) This incident highlights how the FMS and Map displays found in the modern glass cockpit can be addictive and compelling, and can contribute to a lack of terrain awareness.

2) There is a need for "hands on" terrain recovery training in the simulator. The pilot would be able to practice responsive sustained smooth pitch ups to nominal recovery attitudes.

3) In most glass cockpits there is typically only a simple digital readout of radio altitude immersed in the clutter of the ADI. The lack of a prominent radio altitude indicator that gives terrain "unwinding" trend handicaps the pilot in recognizing any possible terrain problem in the first place, and then as a tool for possible terrain recovery. This is a step backwards in terrain situational awareness when compared to present radio altimeter indicators (tape and dial) available in the older non-glass cockpits.

4) Significant terrain or man made obstacles may not be shown on instrument procedure charts. There appears to be no legal responsibility for completeness or accuracy of depicting significant terrain, terrain contours or obstacles. Potential legal and liability concerns may delete or deny this valuable information for the pilot. (Margarita has two major towers located on the same 3000 foot mountain, but neither are shown), and the mountain itself is shown only on one of the charts, and not on the others.

Don Bateeman
Feb 8, 1998
FLIGHT PATH PROFILE
B737-200C
CRUZEIRO DO SUL, BRAZIL
22 June, 1992

Circumstances: Aircraft freighter while on approach to VOR runway 10, hit short of the runway by 7½ NM. Co-pilot flying. Captain distracted by intermittent aft cargo smoke alarm and light during approach.

Time: 01:05 local
Weather: Clear, unlimited visibility
Fatalities: 3
Other: General freight, food, chickens etc. Autopilot on heading hold.

Aircraft wired for GPWS, but no GPWS computer installed.
CRUZEIRO DO SUL, BRAZIL
CRUZEIRO DO SUL INTL
DESCENT DELTA 1
VOR Rwy 10
VOR 112.0 CZS

MISSED APPROACH: Climb to 3000' outbound on CZS VOR R-109.

STRAIGHT-IN LANDING Rwy 10

<table>
<thead>
<tr>
<th>PANS/OPR.</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>600'</td>
<td>2000m</td>
</tr>
<tr>
<td>B</td>
<td>600'</td>
<td>2400m</td>
</tr>
<tr>
<td>C</td>
<td>600'</td>
<td>2800m</td>
</tr>
<tr>
<td>D</td>
<td>600'</td>
<td>3200m</td>
</tr>
</tbody>
</table>

Rate of descent final (feet/min) 600
MIN IAP at VOR
Circumstances: While conducting a ILS localizer approach to runway 5, the aircraft impacted a hillside. The pilot had inadvertently turned the aircraft right directly onto the localizer out bound and in a descent. The aircraft over flew the airport, while centered on the the localizer, by some 6.8 NM before impact.

Weather: 700 foot scattered, 600 foot broken, 4000 foot overcast, 3 miles visibility, foggy, rainy

Time: 09:00 AM local

Fatalities: 3 out of the 6 onboard.

Other: Captain flying his first and last revenue flight, had extensive helicopter experience, but handicapped by minimum instrument flight hours. Company provided only one set of approach plates per crew, co-pilot monitoring approach. No GPWS installed. FAR 135.153 published 20 March, 1992 requires GPWS installation by 20 April, 1994.

Flight Path Profile
Be-C99
Anniston, Ala.
8 June, 1992
3 die in plane crash

ANNISTON, Ala. — A commuter plane crashed in a remote area of Fort McClellan army base Monday, killing three of the six people aboard, officials said. A survivor who walked out helped rescuers find the wreckage more than five hours later.

GP Express Flight 861 originated in Atlanta and had been cleared to land at Anniston Airport at about 8:50 a.m. There were reports of fog and rain in the area when the plane crashed at the base about 10 miles to the northeast, said Arlene Salac, a Federal Aviation Administration spokeswoman in Atlanta. She wouldn't speculate whether those conditions were to blame.

Passenger Dennis Lachut, 29, of Fort Lewis, walked away from the crash and was in good condition at Northeast Alabama Regional Medical Center.
CIRCUMSTANCES: Aircraft was inadvertently vectored by controller towards mountainous terrain. Controller was overloaded by vectoring heavy traffic around numerous thunderstorms through other ATC sectors resulting in excessive coordination and heavy communications.

WEATHER: IMC, Thunderstorms

THE ATC RADAR VECTOR 'TRAP'

See other similar incidents / accidents:

<table>
<thead>
<tr>
<th>Date</th>
<th>Aircraft</th>
<th>Location</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1992</td>
<td>DC-10</td>
<td>Portland</td>
<td></td>
</tr>
<tr>
<td>April 1992</td>
<td>DHC-7</td>
<td>Denver</td>
<td></td>
</tr>
<tr>
<td>March 1992</td>
<td>B707</td>
<td>Athens</td>
<td>7 Fatalities</td>
</tr>
<tr>
<td>May 1990</td>
<td>MD-80</td>
<td>Ontario</td>
<td></td>
</tr>
<tr>
<td>May 16, 1986</td>
<td>B727</td>
<td>Denver</td>
<td></td>
</tr>
<tr>
<td>Aug 1, 1979</td>
<td>B747</td>
<td>Chitose</td>
<td></td>
</tr>
<tr>
<td>July 26, 1979</td>
<td>B707</td>
<td>Rio de Janeiro</td>
<td>3 Fatalities</td>
</tr>
</tbody>
</table>

With enhanced GPWS, the high ground of the Shenandoah Mountains would go solid yellow, with an aural 'Caution Terrain' at 5NM, 60 seconds from projected impact.

With enhanced GPWS, the high ground would go solid red, with an aural 'Terrain Ahead! Pull up!' at 2-1/2NM 60 seconds from projected impact.

With enhanced GPWS, the Shenandoah Mountains would have been seen on a map display at a range of 10NM as a series of dots with varying density; high ground would have been shown in highest density dots.

DISTANCE - NM TO PROJECTED IMPACT

TIME TO PROJECTED IMPACT - SECONDS

MK I Warning if projected flight path flown

Enhanced GPWS Warnings (not installed)
NARRATIVE: ACR X was conducting a scheduled ACR FLT from RICHMOND, VA (RIC) to WASHINGTON DULLES (IAD). A front was passing through the area, causing numerous rain storms and small TStMs. We were proceeding N from RIC to the BROOKE VOR, which is the S ARN FIX to IAD. A TSTM developed directly over BROOKE, which caused all the inbound ACFT to deviate from the NORMAL ARR CORRIDOR. The CLTR issued numerous vectors, many of which were refused by the ACFT receiving them, due to the many small TSTMs in the area. The FREQ was extremely busy. It was often literally impossible to get a word in. ACR X was told to descend to 3000 ft MSL and begin deviating around TSTMs just S of the BROOKE VOR. We were then given a heading of 270 at a SPD of 250 KTS for about 10 mins. IAD ACHP was still extremely busy with other ACFT. The CAPT began to express concern about the height of the terrain we were approaching. (We were IMC at the time.) We attempted to contact IAD ACHP, but could not get through the other traffic on the radio. By this time, I fixed our POS as 40 MI E of MONTEBELLO on the 60 deg radial. The MSL on the airway at this point is 6000 ft. We were at 3000. The CAPT slowed the ACFT to 200 KTS, while I again attempted to contact IAD ACHP. The radio altimeter began to indicate that the terrain was rising, and we could see the hills through the fog ahead. I finally got through to IAD ACHP. They advised that they had lost radar contact with us and asked our POS. I gave it as 40 MI E of MONTEBELLO. They then asked us to confirm we were at 7000 FT. When told that no, we were at 3000 FT, they issued instructions for an immediate R turn to 030 deg and a CLB to 5000 FT. As we started the turn, we could see terrain out the CAPT’S windscreen that was above the level of the ACFT. The terrain was directly on our previous course. ATC asked us to switch to another frequency and soon reacquired radar contact. A normal ACHP and IAD were then made at IAD. Significant factors were: 1) the total saturation of the ATC SYS caused by the TSTMs. The CLTR casually "lost it" when the storm moved over his initial fix, thus destroying his plans. As ACFT deviated, they wandered into other sectors and our CLTR had to coordinate with those CLTRs. It was beyond his ability, and he completely forgot about our flight. As a result, the total lack of terrain info in our cockpit. Once we got off the airways, we had to depend on the ACFT’s of other CLTRs and pilots. We had no other info, except to note the MSL’s of airways in our approx area.
CIRCUMSTANCES: During a night time departure over water, pilots became distracted by large lighted outside object, reduced their rate of climb and inadvertently descended towards ocean until GPWS Warning occurred.

WEATHER: 5 mile visibility, haze

CONFIGURATION: Landing Gear up, 15 flaps

OTHER: Pilot(s) became slightly disoriented

Flight Path Profile
B737-200
FT. LAUDERDALE, FLA.
MAY 1992
INCIDENT

Approx. Distance from Liftoff ~ NM

- GPWS MKII WARNING
- MKVII WARNING (not installed)

Don Bateman
ANOMALY DESCRIPTIONS: CONFLICT/GROUND LESS SEVERE; OTHER;
CONTROLLED FLT TOWARD TERRAIN; ALT DEV/UNDERSHOOT ON CLB OR DES;
NON ADHERENCE LEGAL RQMT/CLNC;
ANOMALY DETECTOR: COCKPIT/PLC; COCKPIT/EQUIPMENT;
ATC/CTRL;
ANOMALY RESOLUTION: FLC BECAME REORIENTED; FLC RETURNED
ACFT TO ORIGINAL CLNC OR INTENDED COURSE;
ANOMALY CONSEQUENCES: NONE;
NARRATIVE:
SITUATION OCCURRED AFTER TKOF FROM FLL
AT NIGHT. DEP WAS TO THE E OVER WATER AND NO HORIZON WAS VISIBLE.
FLT VISIBILITY WAS LIMITED IN THAT DIRECTION DUE TO HAZE. AFTER
TKOF THERE WERE NUMEROUS LIGHTS AHEAD INCLUDING 1 LARGE OBJECT
WITH MANY LIGHTS, DEFINITION WAS VAGUE AND NO SHADE WAS
DISCERNABLE. FLT PROFILE WAS NORMAL THROUGH 1000 FT AND FLAP
RETRACTION WAS INITIATED. I BECAME INCREASINGLY CONCERNED ABOUT
THE LARGE LIGHTED OBJECT AND REDUCED RATE OF CLB, IT APPEARED TO
BE ABOVE US. AT THIS POINT I WAS CONVINCED IT WAS AN INFLT HAZARD
BUT HAD NO IDEA WHAT IT WAS. I ALLOWED MYSELF TO BECOME
TEMPORARILY DISORIENTED WHILE OVER-CENTRATING ON THE
VISUAL CONTACT. A BETTER AVOIDANCE TECHNIQUE WOULD HAVE BEEN TO
TURF RATHER THAN CHANGE NOSE ATTITUDE. I THINK I DID NOT DO THAT
BECAUSE OF THE NUMBER OF OTHER LIGHTS AHEAD, ALSO PROBABLY SURFACE
CRAFT, AND NO HAZARD-FREE RTE WAS OBVIOUS TO ME.
SYNOPSIS: AN M/G CREW IN NIGHT OP, OVer WATER,
BECAME SLIGHTLY DISORIENTED AND HAD A GPWS WARNING.

SOURCE: ASRS #210764
During radar vectors for ILS-DME runway 8R, ATC communications failure left the aircraft on a flight path to a 10,300 foot mountain. A successful recovery was made by the pilot after receiving a GPWS warning.

Flight Path Profile
DHC-7
DENVER, COLORADO
MAY 1992
INCIDENT

CIRCUMSTANCES: During radar vectors for ILS-DME runway 8R, ATC communications failure left the aircraft on a flight path to a 10,300 foot mountain. A successful recovery was made by the pilot after receiving a GPWS warning.

Pilot Initiates left climbing turn
GPWS Pull Up! Starts
Heading 260

DME DISTANCE ~ NM
MKI GPWS WARNING

ALTIMETER MSL ~ FEET

TIME TO PROJECTED IMPACT ~ SECONDS
NARRATIVE:

Radar vectored for the ILS-DME-1 8R at DEN, N of approach course on vector Hdg of 260° at 9000 MSL. Knowing of and seeing the mountains W of Denver (VFR), we tried calling and requesting a turn with no answer. At 20 DME, the GEWS went off, commanding a pullup. Initiated a climbing left turn visually avoiding terrain. Called TWR freq and advised them. Calling ATC by phone afterward; they said they had a radio problem and were unable to contact 3 acft. Supplemental info from ACN 214250: They told us that they tried many times to call us. Also they said they tried to call 3 other acfts with no response. He blamed it on an ATC com failure.

SYNOPSIS:

ATC com failure at DEN TRACON leads to CFTT for commuter PLC.

Pilot Report NASA ASRS #214254

ATC Arrival 128.6
DENVER Approach (R) North 127.4
South 127.9
Final 128.3
DENVER Tower North & South 119.5
East & West 118.3
Ground 121.9

DENVER, COLO
STAPLETON INTL
ILS DME-1 Rwy 8R
LOC 110.3 IGGW

Apt. Elev. 5333'
CIRCUMSTANCES: Controller inadvertently cleared aircraft to 10,000 feet altitude below MSA and Minimum Radar Vectoring Altitude. Controller assumptions, confusion and blocking radio traffic delayed corrective clearance, leaving aircraft on trajectory into Mt. Hood.

WEATHER: IMC, Radar controller 'save'... but where was MSAWS?

THE ATC RADAR VECTOR 'TRAP'

With Enhanced GPWS, Mt. Hood begins to display as light dots at 11-1/2 NM range on Map Display.

With Enhanced GPWS, Mt. Hood turns solid yellow on Map Display - straight ahead at 4 NM with aural 'CAUTION! TERRAIN!' 60 seconds prior to projected impact.

With Enhanced GPWS, Mt. Hood turns solid red on Map Display straight ahead at 2 NM range, with aural 'TERRAIN AHEAD!' 30 seconds prior to projected impact.

ATT: "...turn right direct to Battleground and climb immediately!"

With an Enhanced GPWS installed and the pilots following the STAR Arrival procedure, the Enhanced GPWS would show Mt. Hood to the left of the aircraft as light dots with a minimum range at 6 NM. No other terrain would be shown throughout initial approach.

Flight Path Profile
DC-10
PORTLAND, OREGON
April, 1992

Controlled Flight Towards Terrain Incident

With Enhanced GPWS, Mt. Hood turns solid red on Map Display straight ahead at 2 NM range, with aural 'TERRAIN AHEAD! TERRAIN AHEAD!' 30 seconds prior to projected impact.
NARRATIVE

ALL AREA SECTORS WERE COMBINED AND TFC WAS BEING WORKED ON 2 RADAR SWORDS. DURING THE RELIEF BRIEFING, THE PREVIOUS CTLR STATED THAT HE HAD TURNED ACR X 5 DEG LEFT TO GO BEKIND SOME TFC. THIS PUT THE ACFT ON A TRACK TO JOIN THE NASHVILLE ONE AIR INTO PDX AND I WAS NOT AWARE THE STAR HAD NOT BEEN ISSUED. ACR X HAD BEEN CLRED TO 140 AND I CLRED HIM TO 100 IN ORDER TO MEET THE LGA WITH PDX. AS ACR X DESCENDED THROUGH 134 I REALIZED HE HAD FLOWN THROUGH THE PDX 079 RADIAL, WHICH WOULD HAVE HAD TO INTERCEPT TO FLY THE STAR. I CLRED A CLIMB TO 130 AND A RIGHT TURN DIRECT TO THE VOR AS THE ACFT WAS ABOUT TO ENTER AN AREA OF HIGH TERRAIN AROUND MT HOOD, THE PLT’S REPLY WAS BLOCKED BY ANOTHER ACFT. ACR X THEN STATED HIS CLIMB WAS TO 100. I REPLIED NEGATIVE AND AGAIN ISSUED 130 (WHICH BY NOW HE HAD DESCENDED BELOW) AND A RIGHT TURN IN AN EFFORT TO TURN ACR X AWAY FROM THE MOUNTAIN PEAK. I ALSO INFORMED THE PLT IT APPEARED HE’D FLOWN THROUGH THE AIR AND ASKED IF HE HAD MT HOOD IN SIGHT. THE PLT CONTINUED TO SEND AND STATED THAT HE HAD BEEN ISSUED A MSG. AGAIN, I ISSUED A RIGHT TURN DIRECT TO THE VOR AND A CLIMB. THE ACFT FINALLY BEGAN HIS TURN AND CLIMB AND WAS HANDED OFF TO PDX ACPS. ACR X CAME WITHIN 3 NM OF THE PEAK (11329 MSL) AND DESCENDED BELOW 110 BEFORE COMPLYING WITH INSTRUCTIONS TO TURN AND CLIMB. A MESCOM BETWEEN 2 CYLINDERS CONTRIBUTED TO THE INITIAL DEVELOPMENT OF THE SITUATION... ACR X HAD NOT BEEN ISSUED THE STAR AS SHOWN ON THE FLT PLAN. DUE TO COMPUTER PROCESSING OF PREFERENTIAL AIR ROUTES, IN SOME CASES THE FLT PLAN SHOWS THE STAR HAS BEEN ISSUED WHEN IN FACT IT HAS NOT. I ASSUMED THE FLT HAD BEEN TOLD TO REJOIN THE STAR AS WOULD HAVE BEEN STANDARD PROC IF IT HAD BEEN INITIALLY ISSUED. I BELIEVE THE SITUATION DEVELOPED INTO AN ILLUMINATED ONE DUE TO LACK OF RESPONSE ON THE PART OF THE PLT. ACR X CONTINUED TO SEND AND WAS SLOW IN TURNING WHILE THE PLT QUESTIONED WHY HIS CLIMB WAS BEING CHANGED. THE AIR ROUTE NEEDS TO BE CHANGED. ALTHOUGH THE ROUTE IS FLT CHECKED DOWN TO 100, THERE IS NO ROOM FOR ERROR DUE TO THE PROX OF HIGH TERRAIN. THERE HAVE BEEN NUMEROUS INSTANCES OF ACFT FLYING THROUGH THE INTERCEPT RADIAL PLACING THEM HEAD-ON INTO MT HOOD. UNTIL NOW, THE DANGEROUS SITUATIONS HAVE BEEN AVOIDED.
CIRCUMSTANCES: During a night visual approach to ("Mill Visual") runway 28R, aircraft descended below MSA and almost collided with 4390 feet mountain 20 NM from the airport. A timely GPWS Warning and prompt pilot response led to a successful recovery.

WEATHER: Clear, unlimited visibility

CONFIGURATION: 5 degrees flap, Gear Up

Flight Path Profile
B727-200
PORTLAND, OREGON
APRIL 1992
INCIDENT
NARRATIVE:
FLY SEA TO PDX ON HELNS 2 ARR TO PDX.
AFTER KALMA, PDX APCH VECTORED US APPROX HDG 140 FOR SPACING FOR INBOUND ACFT FROM THE S, AND FOR DOMINION/BASE FOR THE MILL VISUAL APCH. WE WERE A LITTLE FURTHER THAN USUAL AROUND THE ARPT, PROBABLY FOR ANTICIPATED SPACING. IT WAS A BLACK HELLS NIGHT AND WE WERE LEVEL AT 5000 FT MSL. APPROX XING 4488 WE Began APCH AND MILL IN SIGHT AND WERE CLOSED FOR THE MILL VISUAL Rwy 28R APCH. THE AREA HELMS WAS LIKE A "BLACK HOLE" BECAUSE OF FOREST AND IT BEING UNPOPULATED. THE CITY LIGHTS/ARPT WERE OFF ON THE WING -- A BEAUTIFUL NIGHT. AFTER BEING CLOSED FOR THE VISUAL, I BEGAN DESCNT SO AS TO ARRIVE OVER THE MILL AT THE RECOMMENDED 2000 FT MSL. AT APPROX XING OF V112 AT 4500 FT MSL THE GPWS WENT "WHOOP! WHOOP! STRANGER TERRAIN!" FOR A SPLIT SECOND WE THOUGHT IT WAS A FALSE WARNING SINCE WE WERE STILL LOOKING AT THE ARPT/ CITY. THEN I NOTICED BOTH RADIO ALTIMETERS GO FROM 2500 FT TO 400 FT IN ABOUT 1-2 SECONDS -- I IMMEDIATELY APPLIED FULL PWN/ASU INITIATED A MAX CLIMB UNTIL OVER THE BEAR'S OUTSKIRTS (LIGHTS). THEN I CONTINUED THE DESCNT/VISUAL APCH AND LANDED. OUR WHOLE CREW SERVES PDX DAILY AND KNOWS THE ARPT WELL. SIMPLE FACT IS THAT MOST PLTS FLYING INTO A FAMILIAR ARPt USE THE APCH PLATE AND DO NOT OFTEN REFER TO THE AREA CHART. APCH CTL WAS WORKING OTHER ACFT AND DID NOT CALL US ABOUT BEING TOO LOW. HE TURNED US OVER TO TWR AROUND THE MILL. ALTHOUGH WE SCREWED UP AND LEARNED OUR LESSON, IT MAY BE PRUDENT TO PUBLISH WARNINGS FOR NIGHT VISUALS ON THE 19-1 APCH PLATE (MILL VISUAL) AND AT LEAST PUT THE WSA 'PIE' BACK ON THE TOP OF THAT CHART. WE WERE STUPID, AND VERY LUCKY.

SYNOPSIS:
ACR LOT, IN A NIGHT OP, WAS SAVED FROM IMPACTING ON DESIGNATED MOUNTAINOUS TERRAIN BY THE GPWS WHILE ON A VISUAL APCH TO 28R MILL VISUAL APCH TO PDX, OR.
Circumstances: "Scenic Air Tours" aircraft operating under Part 135 impacted Mt. Haleakala while enroute VFR into IMC back to Honolulu.
Weather: VFR deteriorating to IMC, Cloud base 1000'
Time: 15:53 Local Standard Time
Fatalities: 9
Other: Probable 30° outbound VOR 'UPP' radial error. Minimum IMC instrumentation on aircraft.

FLIGHT PATH PROFILE
Be-E18S
Maui, Hawaii
22 April, 1992

Pilot probably sees terrain, attempts desperate climbing turn
Mode 'C' Altitude readout of 8100'
Mode 'C' Dropout at 8500'
310° Flight track (intended 287°) ~ 120 kts.

Pilot initiates gradual climb from 5500 as cloud heights increase, in probable attempt to stay on top/VFR

Distance from Impact
~ NM

Time to Impact ~ SECONDS

Predicted MKG GPWS WARNINGS
(No GPWS Installed)
Figure 1.--Tour route.
Circumstances: Aircraft while under radar vectoring, was flown into a mountain 3NM from airport. Aircraft was on a flight from Amsterdam to Khartoum with Athens as refueling stop. Aircraft was loaded with medical relief supplies. Aircraft was given a clearance to descend to 2000 feet and to maintain a heading of 010 degrees.

Time: Daybreak 07:00 local

Configuration: Gear down, flaps 25

Fatalities: 7

Other: It has been unofficially reported that there was a shift change for ATC personnel at 07:00, and the aircraft was overlooked for some minutes. The aircraft flew onwards on the last clearance through the localizer and into terrain.

Capt: "Athens approach, we have just had instrument (GPWS) warnings and flags (ILS) --- what is your intention?"

Capt: "Approach control we are standing by ---"

ATC: Maintain one oh on the heading --- and two thousand altitude

FLIGHT PATH PROFILE
B707-320
Athens, Greece
24 March, 1992

Capt: "Athens approach, we have just had instrument (GPWS) warnings and flags (ILS) --- what is your intention?"

Capt: "Approach control we are standing by ---"

ATC: Maintain one oh on the heading --- and two thousand altitude

"Pullup!" etc. (Installed)
ATHENS, GREECE

ATIS 123.4

ATHENS Approach (R) 121.4 119.1
ATHENS Radar 121.4
ATHENS Tower CVD, 118.1 MHL 122.1

Ground 121.7

All Slt: MB
Apt Elev: 3MB

Trans levels: By ATC
Trans alt 5000' (4932')

ATHENS 123.5

ATHENS 294 HK

Ground 121.7

4400'

Do not overfly Acropolis (5NM north of ATHVOR) below (prop) 5000', (jet) 10,000'.

MISSED APPROACH: Turn LEFT, climb to EGN NDB to 4000' (3932') and hold.

SRAIGHT-IN LANDING RWY 33R

MADAH 1200' (1132')

West of runway only.

Return to TOC
Circumstances: During a VOR ILS Runway 35 approach, the aircraft almost flew into a 16,408 foot mountain. This professional crew initiated the approach from the enroute inbound VOR instead of the procedure VOR. No "hands on" terrain recovery training, but captain made a superb recovery utilizing available energy of aircraft. Mk II GPWS installed, giving 6 seconds of additional precious warning time over a MK I.

Time: Night
Weather: Rain, IMC, Thunderstorms in area.

FLIGHT PATH PROFILE
DC-8
Quito, Ecuador
Reported in March, 1992

Note: This flight path to terrain profile based on captain's report and topographical chart for area. No FDR or CVR data, but captain's report and terrain fit closely.
At about 10 D.M.E., I noticed that the radar altimeter warning light came on momentarily. Since I knew we were over very high terrain, I made a note to keep an eye on it. Seconds later, the radar altimeter came alive, and started a rapid descent from 2,500. At about 1,300 feet, I applied MAX power (to the mechanical ETOPS) and rotated the aircraft to a 17 degree nose up pitch. We were at about 14,000 feet MSL at this time. The radar altitude continued to drop, and finally settled at about 150 feet, with the GPWS yelling "Terrain, Terrain" etc. The aircraft was now on a maximum climb of about 4,000 fps, but the radar altitude continued to show between 150 and 200 feet. I knew that the terrain was higher to the left, so I tried to turn right, but each time I banked to the right, the radar alt. would lose about 50 feet. Finally, after what seemed like an eternity, we climbed out of radar altimeter range, and at this time, we had passed 16,000 feet. We climbed back to 17,000 feet, and returned to the VOR. (The weather was lousy, with thunderstorms in all sectors). We advised Quito approach (no radar available) that we had returned to the VOR and would be making a second approach. I then asked the F/O for his opinion, and he stated that it had to be a false warning. He said that he had verified that we were on the correct radial, the correct D.M.E. and the correct altitude. He stated that in the past he had experienced various warnings from the radar altimeter in the same area, and that he was convinced that they were false warnings. We again reviewed the approach procedure, and established on the radial to commence a new approach. I had a gut feeling that something was not right, so I decided to abandon the descent at 16,000 feet, and return to the hold, to take another look at everything.

I asked the F/O to again double check all frequencies, radials, etc. Just then he said "oh oh". We have been tuned to the wrong VOR all along. The frequency belongs to Monjas Sur, and we are supposed to be flying QII which is 10 miles north of here. We listened to the F/O, and as we were commencing the approach, we were advised by Quito that the field was again below minimums, with a severe thunderstorm. At this point, we had only 8,000 lbs of fuel remaining, and the required to reach Guayaquil would have been about that or more.

Since we were already established on the radial, I chose to continue the approach. We reached minimums with severe rain, and there was nothing in sight. We continued the approach, and at about 100 feet, saw the end of the runway. After completion of the landing, the tower informed us that the airport was closed. They never said a thing about all the time it took us to complete the approach, and we never brought it up. We sat in a darkened cockpit for about 15 minutes, without saying much of anything. Then, after getting to a hotel to spend the night, we started shaking.

We were asked to ferry to Guayaquil the next morning. It was a beautiful, clear day, and the tower authorized us to proceed VFR. We took a short cut to Guayaquil "as a special case", and flew right over Monjas Sur VOR, at 15,000 and proceeded on the 150 radial outbound, but had to climb to avoid getting too close to the terrain which was on both sides of the runway. We were flying between two mountain ranges, the one on the right being Mt. Chimborazo, which rises to nearly 20,000 feet.

As the saying goes: "NEVER AGAIN". I am just glad that I was able to live and tell about it.
Circumstances: Aircraft had made two ILS approaches to runway 07. On the second approach, flown by the F/O, the approach became unstable and a go around was initiated by the Captain. After levelling at 2000 feet AGL, the aircraft entered a spiral to the left. The captain turned to controls over to the F/O who attempted a late roll out and pull-up recovery.

Weather: M 4 4, visibility 2 miles, light rain and fog. Wind 10kts/100°; 35 kts/160° at 220 feet.

Time: 03:27 local

Fatalities: 4

Some possible causes:
1. Vertigo and late hand off of control to F/O.
2. Faulty Capt's Attitude Display Indicator or Flight Director.
 - see 1 Jan. 1978 737 Accident Bombay (this report)
 - see 12 Nov 1980 C-141 Accident - Cairo
3. Engine asymmetry - rudder trim
4. Turbulence - roll rotor
5. Other

FLIGHT PATH PROFILE
DC-8-63
TOLEDO, OHIO
15 February, 1992

ATC: "turn left three zero zero"
Capt: "Jesus Christ! - what's the matter?"
Capt: "What is the #? the matter here?"
Capt: "You got it?"
F/O: "I got it"

Sound of Attitude Alert
GPWS: "Glidaslope" (3) "Sinkrates"
Capt: "Push the power and get back to the glidepath"
GPWS: "Glidaslope"
Sound of power increase
Capt: "Okay, now take it back--stay with it!"
Capt: "OK, I got it"
Capt: "Flaps 25"
Capt: "climb power"

1. ATC: "Rogers, climb and maintain three thousand"
2. F/O (on radio): "I's on the missed"
3. Capt: "Gear up"

"Sinkrate" MKII GPWS
"Bank Angle!"
"Bank Angle!" repeated (if MKVII installed)
(Not installed)
ATIS 118.75
*TOLEDO Approach (R) 128.0
CLEVELAND Center (R) 123.9 when App Insp.
TOLEDO Tower 118.1
Ground 121.9

TOLEDO, OHIO
TOLEDO EXPRESS
ILS Rwy 7
LOC 109.7 ITOL

3100'

118.75

MCLUR

LOM

15 NM

2300'

(1019')

2200'

(1018')

2000'

(1017')

1800'

(1016')

1600'

(1015')

1400'

(1014')

1200'

(1013')

1000'

(1012')

MM

GS 882'/200'

TCH 58°

TDZE 682'

APT 684'

MISSED APPROACH: Climb to 1200' then climbing RIGHT turn to 2500' direct
VWV VOR and hold.

Return to TOC
Conditions: While on VOR approach to runway 06, aircraft hit 9.8 NM short of runway threshold. Captain was anxious to get down to MDA after exiting the procedure turn.

Time: (night)

Configuration: Landing gear down-Flaps intransit to 25

Damage: Aircraft destroyed in fire. 5 on board walked away with no injuries.

Other: Example of Procedural 'Tap'
Very shallow approach slope procedure 1.6°.
3000' intercept altitude needs to be raised to 4000' (2.8°).

Drum and pointer altimeter. Aircraft apparently lower by 1000 feet than intended. Clipped tree tops. No GPWS installed.
KANO, NIGERIA

MALAM AMINU KANO
VOR DME Rwy06
VOR Rwy 06
VOR 112.5 KA

CAUTION:
DO NOT OVERSHOOT R-244 ON FINAL TURN FOR LANDING.

MISSED APPROACH: Climb on 064° to 4000' (2435') or as directed.

STRAIGHT-IN LANDING RWT 06

VOR, Start turn at 3 Min
Circumstances: During a VOR DME-C approach to Medford, the flight crew received a GPWS warning at 15 NM or so from the runway and immediately pulled up. It is believed the aircraft's radio altimeter dipped to 400 feet. The flight crew had complied completely with all procedures. They asked and received permission to conduct an ILS DME 14 approach with a circle to land.

Weather: IMC
Time: Daylight

Flight Path Profile
B737-200
MEDFORD, OREGON
January 1992

Incident

This incident illustrates the incompatibility between the terrain clearances for some instrument approach procedures and those for GPWS. A similar conflict exists for radar vectoring off the instrument procedures. What is a nuisance alert? What is a marginal terrain clearance?
MEDFORD, OREG
- JACKSON CO
VOR DME-C
VOR 115.6 OED
OED VOR
Alt. Elev. 1331'

Pilot controlled lighting.

VOR
D7.3
D12.0
GOLI
D20.0
D34.0
D39.0
D24.0
D27.0
D34.0
D39.0

FT JONES VOR, 115.6

CIRCLE-TO-LAND

Old procedure------GPWS Warnings

<table>
<thead>
<tr>
<th>Altitude</th>
<th>GPWS Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 70</td>
<td>3120 (°A70°) 1½</td>
</tr>
<tr>
<td>B 120</td>
<td>3120 (°A70°) 1½</td>
</tr>
<tr>
<td>C 160</td>
<td>3120 (°A70°) 1½</td>
</tr>
<tr>
<td>D 200</td>
<td>3120 (°A70°) 1½</td>
</tr>
</tbody>
</table>

New procedure------No GPWS Warnings
Circumstances: During a VORTAC approach to runway 05, aircraft inadvertently began a rapid descent rate and hit crest of mountain after turning onto the final approach course.

Time: 19:20 Local
Weather: IMC, Airport reported winds 20kt/040 Gusts 30, visibility 5 miles 11@20°
Configuration: Believed to be gear down flap 2.
Fatalities: 87 out of 96 on board.

FLIGHT PATH PROFILE
A-320
Strasbourg, France
20 January, 1992

Speculation exists that the aircraft was inadvertently placed into a -3000 fpm Vertical Speed (VS) descent instead of an intended -3.3° Flight Path angle (FPA) descent. The A-320 utilizes a common AFCS indication and control input for setting the "VS or FPA" by the pilot.

There has been at least two incidents where this has happened.

Aircraft equipped with Heads Up Display (HUD) and Automated Altitude Callouts.

No GWPS Installed.

Source of Data: Air & Cosmos No. 1368
For flight path. (6 March 1992)
French Newspapers for partial cockpit conversation.

The above possible MK III warning is shown if a MK III had been installed in aircraft.
(MK V not certified at time of accident for use on the A320)
9 Survive as Airbus Carrying 96 Crashes in French Hills

Associated Press
MONT SAINT-ODE, France, Jan. 21 (Tuesday)—A French Airbus A-320 carrying 96 people crashed in snow and fog on a wooded ridge in eastern France Monday night. At least nine survivors, including a toddler, were found during a four-hour search.

The 20-month-old girl was the only person to emerge unscathed from the wreckage of the state-run Air Inter flight, police said. The smoking debris was strewn about a snowy pine forest.

Two of the survivors were critically injured. Most of all the survivors were seated in the rear of the plane, rescuers said. Crews worked in 20-degree cold to remove the injured and the dead from the crash site near Mont Saint-Odile, a 2,500-foot peak in the Vosges Mountains, 30 miles southwest of Strasbourg near the German border.

Rain and snow slowed the search by about 1,000 people. Logging roads provided the only access to much of the fog-shrouded area. The airline set up a center at Lyon's St. Exupery airport for relatives of those aboard. Few details about the passengers were available, although most reportedly were business travelers.

Flight IT-5148 was on route from Lyon to Strasbourg when radio contact was lost shortly before the scheduled landing at 7:25 p.m. (1:25 p.m. EST), officials said. The wreckage was located shortly before midnight. The plane carried 96 passengers and a crew of six, Air Inter said.

An airline communique said there was no indication what had caused the crash. The place, put into service in December 1984, had no record of mechanical trouble in 6,212 hours of flying time. It was certified in December 1987.

Airbus blamed pilot error in both accidents, but some aviation officials suggested a computer malfunction. The A-320 is the only commercial aircraft that uses computers to control all flight controls.

9 Survive as Airbus Carrying 96 Crashes in French Hills

...
Circumstances: Commuter flight from Plattsburgh. While on final to ILS runway 23, the aircraft hit short into a ridge just below the crest of a 2390 foot hill.

Weather: IMC - Morning. 05:30.
Configuration: Gearup - Flaps up.
Fatalities: 2 out of 4 on board.

FLIGHT PATH PROFILE
Be-1900C
SARNAC LAKE, N.Y.
3 January, 1992

Fatalities: 2 out of 4 on board.
2 dead, 2 hurt in plane crash

SARANAC LAKE, N.Y. — A commuter airplane crashed approaching an Adirondack Mountain airport earlier today, killing two people and injuring the two others on board, authorities said.

The survivors were taken to a hospital about seven miles from the crash site.

Friday, January 3, 1992
Circumstances: After an unstabilized approach to ILS 33, the aircraft landed long (2000') and fast (+30 kts). Under heavy braking in an attempt to stop within 5800 feet of remaining runway, the aircraft departed the runway tearing off the nose gear and left main gear.

Time: 18:53 local (night)
Weather: 100 meter overcast, 1200 meter visibility, some fog with wind at 010 degrees and 7 kts.
Other: Captain flying. F/O called for a missed approach at least 3 times during the approach.
Injuries: None of the 97 on board.
Damage: Aircraft damaged severely and written off.

F/O: "--- We're doing 260 (kts) and too high. Let's break it off and come around!" --- (no answer)

This accident illustrates how GPWS Alerts and Warnings are often related to unstabilized approaches.
WARSAW, POLAND

OKECIE

ILS Rwy 33
LOC 110.3 WA

AIP 302
MRSA APPROACH Climb STRAIGHT AHEAD to 880' (529°), then turn LEFT (MAXIAS 190 KT) to PNO VOR/NDB climbing to 2490' (213°) and hold, and as directed.

Do not turn before passing IAP.

Straits-in Landing Rwy 33

<table>
<thead>
<tr>
<th>ILS</th>
<th>Straight-in Landing</th>
<th>800M H</th>
<th>800M</th>
<th>1200M</th>
<th>1800M</th>
<th>2400M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>551(200)</td>
<td>720M</td>
<td>720M</td>
<td>1200M</td>
<td>1800M</td>
<td>2400M</td>
</tr>
<tr>
<td>B</td>
<td>571(220)</td>
<td>800M</td>
<td>800M</td>
<td>1200M</td>
<td>1800M</td>
<td>2400M</td>
</tr>
<tr>
<td>C</td>
<td>511(215)</td>
<td>800M</td>
<td>800M</td>
<td>1200M</td>
<td>1800M</td>
<td>2400M</td>
</tr>
<tr>
<td>D</td>
<td>527(220)</td>
<td>800M</td>
<td>800M</td>
<td>1200M</td>
<td>1800M</td>
<td>2400M</td>
</tr>
</tbody>
</table>

CIRCLE TO LAND
Prohibited North & NE of airport

Altimeter Setting
870|5093|1600m
970|5092|2800m
1060|5091|3600m

 rv 100 ft per mile

SAS 118.3
WARSAW Approach (K) 128.8
OKECIE Tower 121.6
Ground 121.9

QFE (QNH corrected) Trans level by ATC
Trans level (2099') alt 3310

Altitude Conversion
QNH (QFE) 3800' (2499') 1050m 3310 (2099') 900m 3010' (2599') 810m 2490' (1999') 650m 2380' (1899') 600m 1330' (1199') 360m 880' (899') 320m 160m

All alt Nps (AMntag) Trans level by ATC

AIP Rev. 362
FLIGHT PATH PROFILE
MD-80
Basle-Mulhouse, France
Reported in December, 1991

Conditions: Co-pilot, flying with autopilot engaged and flight director needles centered for a descent of 1500 fpm, flew low below the glideslope, with localizer captured and vertical speed, well short of the runway ILS 16 threshold.

Weather: 3.3°C 7.1° 006 01/M00 1024.icing in clouds. Wind 060/6kts.

Conditions: Pilots, preoccupied with capturing localizer. Aircraft in landing configuration. GPWS glideslope alert function deliberately disabled by airline policy, hence there was no "Glideslope" aural alert.

GLIDESLOPE (NOT HEARD)
MKII GPWS ALERT/WARNINGS (GLIDESLOPE ALERT FUNCTION DISABLED)
Flight Path Profile
Be-400
ROME, GEORGIA
11 DECEMBER, 1991

Circumstances: Aircraft departed for flight to Huntsville, Alabama. Pilot had pre-filled flight plan, and was attempting to get clearance while remaining VFR and below Chattanooga TCA.
Weather: Scattered low level clouds, fog but VFR near field.
Time: 9:40 local (morning)
Configurations: Clean
Fatalities: 9

C/P: "do a one eighty to the left?"
Pilot: "--- you're getting close. You're gunna to the right"
Pilot: "--- huh?"
Capt: "--- to the right"
Pilot: Okay, (but) I can't see over there"
Capt: (If you turn left) you're gunna turn right back into that guy shootin' the approach"
Pilot: "Okay"
Capt: "there's a mountain right out there"
Pilot: "yeah"
Capt: "and an antenna you won't be able to see in the fog."
Pilot: "Should I just punch up?"
Capt: "No --- there's a guy on approach out there"
Pilot: "which way do you want to go?"
Capt: "go back to the right"
Pilot: "I can't see over here --- that's why I wanted to go the other way"
Pilot: "don't climb any more-- bring it right on around --- pull it back a little ---"
Pilot: "uhh?"
Capt: "slow'or down a little"

Cpt: "--- Atlanta Center --- we're off runway one in a right turn --- VFR -- looking for a clearance to Huntsville"
Center: "--- squawk 2231 --- maintain VFR --- we have traffic four five right now southeast of Rome. I'll have something for you --- later"
Center: "--- say altitude VFR"
Capt: "--- we're at thirteen hundred VFR --- just southwest of Rome airport"

ALTIMETE
MSL
~FEET

ALTITUDE
MSL
~FEET

DISTANCE TO IMPACT
~ NM FROM LIFTOFF

TIME AFTER LIFTOFF
~ SECONDS

SECONDS TO IMPACT

GPWS MKVI
WARNING (NOT INSTALLED)
Crash kills store officials

ROM, Ga. — A corporate jet taking executives on a Christmas tour of their grocery stores slammed into a mountain Wednesday, killing the seven passengers and two crew members on board. A twin-engine Beechcraft jet owned by Birmingham, Ala.-based Bruno's Inc. and bound for Huntsville, Ala., went down on Lavendar Mountain on the Berry College campus just northwest of Rome, 80 miles north of Atlanta. Nobody survived. The cause of the crash was under investigation. Among those killed in the crash were Bruno's Chairman Angelo J. Bruno, his brother, Vice Chairman Lee J. Bruno, and three company vice presidents.

The company operates more than 240 stores in Alabama, Georgia, Florida, Tennessee, Mississippi and South Carolina.
CIRCUMSTANCES: During a localizer back course to Boeing Field runway 31L, the aircraft prematurely descended to the Minimum Descent Altitude of 700 feet before reaching the final approach fix at 'Bense! Apparently the 'SEA' DME was left in 'Hold' position and DME indications were from 'SEA' and not the IFFI localizer DME.

TIME: Night
WEATHER: IMC, 600 broken
OTHER: Pilots very tired.

DME 'Hold' features are very useful but can also be very deadly:

Other DME 'Hold' Incidents/Accidents see:
- Spokane 20 Jan 81 Be-99 7 Fatalities
- Juneau 22 Oct 85 LJ-24 4 Fatalities
- Juneau 12 Nov 92 Be-100 8 Fatalities

Flight Path Profile
CL-601
SEATTLE, WASHINGTON
November, 1991

DME 'HOLD' TRAP INCIDENT

NO GPWS INSTALLED

LACRE D 7.6

Phantom Bense

Landing gear selected down

'BENSE' D 4.2

Controller: "--I have a low altitude alert on you (MSAW)..."

Landing Flaps selected

D 1.6

D 0.5

3000
2000
1000
0

ALTITUDE MSL
- FEET

3000
2000
1000
0

DISTANCE TO RUNWAY ~ NM

Don Bateman

MK VI GPWS ADVISORIES / WARNINGS (NOT INSTALLED)
Narrative: We descended to various step down altitudes on approach based on DME. During the final step down (1600 FT - 700 FT), the approach controller got an alt warning on us and notified us we were too low. Our DME had been in 'hold' off the Sea VOR by mistake, and not the BFI LOC as they should have been. When the controller called, we were just breaking out, we stopped descent, got the field in sight and landed normally. Both pilots had been on duty for 12 hours and dealing with wx, ice, etc. Fatigue was a factor. My reliance on the other pilot to set up the approach was also a factor. We fly together often and are both good instrument pilots (most of the time)! Thank you ATC for having this alt warning capability -- we are embarrassed and wiser -- but very much alive!
Circumstances: During routine supply run from Thule, aircraft struck tundra some 12 nm short of runway 5.
Weather: Clear, haze, wind 15 kts 010°
Configuration: Clean
Fatalities: 5 with 6 seriously hurt out of 13 on board.

Other: Aircraft may have been on visual to runway 5?
Altitude setting problem? Transition altitude?
WX radar range setting problem? Questions that presently are not answered.

Flight Path Profile
C-130
ALERT, NWT
30 OCTOBER, 1991

ALTIMETER
SETTING
PROBLEM?
TRANSITION
ALTITUDE?
WX RADAR
RANGE
SETTING
PROBLEM?
QUESTIONS
THAT
PRESENTLY
ARE
NOT
ANSWERED.

DISTANCE TO RUNWAY 05 THRESHOLD ~ NM
TIME TO IMPACT ~ SECONDS

NO GPWS INSTALLED
(MK VII GWPS WARNINGS IF INSTALLED)
Five dead, six seriously injured in arctic crash

Five military personnel from the Canadian Forces were killed and six were seriously injured in a military plane crash in the High Arctic on Wednesday, according to the Department of National Defence.

The crash occurred on a training flight from Resolute Bay to Frobisher Bay for a helicopter exercise. The plane was carrying two pilots and four passengers.

The plane went down near Cape Belknap, about 200 miles west of Resolute Bay, in rough and snowy conditions.

Military officials said the crash was due to mechanical failure.

The aircraft involved was a CH-148 Cyclone, a multirole helicopter used for search and rescue, transport and medical evacuation.

A Royal Canadian Mounted Police official said the plane was carrying medical equipment.

Resolute Bay is a small community on the northeast coast of Baffin Island, with a population of about 2,000.

The crash site was on the south side of Cape Belknap, a prominent feature on the coast.

The Royal Canadian Air Force has activated a search and rescue operation.

Weather conditions at the time of the crash were described as severe, with strong winds and snow.

Search and rescue teams from Resolute Bay and Frobisher Bay are on the scene.

The cause of the crash is under investigation.

The Department of National Defence said it would not release any further information at this time.

The crash is the second in six weeks involving a Canadian Forces helicopter in the High Arctic.

In May, a CH-148 Cyclone crashed near Resolute Bay, killing one person and injuring another.

The Canadian Forces has approximately 2,000 personnel deployed in the High Arctic, primarily to support military operations and ensure sovereignty.

The Department of National Defence has published a list of names of the dead and others injured in the crash.

The names are:

- [Names not provided]

The Department of National Defence said it would not release any further information at this time.
CIRCUMSTANCES: During initial approach, the aircraft was prematurely cleared to descend to 8,800 feet prior to reaching the 'Otumba' VOR. (Minimum Altitude was 11,000 feet) on reading the VOR, a Otumbar Two Arrival clearance was then given. A timely GPWS Warning occurred as the aircraft approached a 5,700 foot mountain. The pilots immediately climbed to 11,000 feet.

WEATHER: Clouds shrouded the high terrain.

OTHER: Possible language and mis-communication between controller and pilots.
OTUMBA TWO ARRIVAL

MAXIMUM SPEED:
A. 250 KIAS below 18000’ within 30 NM of MEX VOR.
B. 200 KIAS below 10500’ within 10 NM of MEX VOR.
C. Observe speed restriction in the National airspace.

MAXIMUM APPROACH SPEED:
160 KIAS or minimum maneuvering speed.

In case of DME failure at any point during the procedure, maintain last altitude and proceed to the station in accordance with ATC instructions.

ARRIVAL
From OTU VOR proceed via established tracks descending to specified altitudes until Intercepting Vasos Int at 8800’ and expect clearance for final approach to assigned runway.

Narrative: CLRED DIRECT OTU VOR. (NO FURTHER CLRNC OR EXPECTED ARR GIVEN.) CLRED TO DSND TO 8800 FT WHILE STILL N OF THE OTU VOR. APPROX OVERHEAD OTU VOR AT APPROX 10000 FT MSL, CLRED FOR THE OTU 1 ARR AFTER SWITCHED FROM MEXICO CENTER (126.6) TO APCH CTL. (I HAD THE ARR OUT IN FRONT OF ME. SINCE WE WERE CLRED DIRECT DTU VOR PREVIOUSLY, I ANTICIPATED THIS ARR, HAD LOOKED AT IT, AND PLACED IT ON THE YOKE CUPBOARD. I ALSO TOLD THE FO TO TAKE IT OUT.) AS I WAS TURNING OUTBOUND ON THE 195 DEG RADIAL OF OTU VOR, ATC ASKED IF WE WERE FAMILIAR WITH THE ARR. THE FO RESPONDED ‘YES’. ATC ASKED, ‘WHAT IS YOUR ALT?’ FO RESPONDED 9600 FT CLBING UP TO 11000 FT. THE GND PROX WARNING SYS TERRAIN WARNING SOUNDED AND I IMMEDIATELY APPLIED MAX PWR AND EXECUTED A POSITIVE PULL-UP OUT OF THE DANGER ZONE TO ABOVE 10000 FT CLBING TOWARD 11000 FT. BY THIS POINT, WE WERE FLYING THE OTU 1 ARR AND ALREADY ESTABLISHED ON THE OTU VOR 195 DEG RADIAL OUTBOUND AND AT CRUISE (7 DME) TURNING R TO INTERCEPT THE NEZ VOR 232 DEG COURSE INBOUND BACKED-UP WITH THE IMEX 232 DEG LOC. I NOW BEGAN DSNDING TOWARD 9600 FT AND CONTINUED THE OTU 1 ARR ON THE HIGH SIDE OF PUBLISHED ALTS UNTIL ESTABLISHED ON THE IMEX LOC/GS INBOUND. WHEN I WAS FIRST CLRED DIRECT TO OTU VOR AND ANTICIPATED/TOOK OUT THE OTU 1 ARR PLATE (ALSO TOLD FO TO TAKE OUT SAME PLATE), I DID NOT BRIEF ‘IN-DEPTH’ BOTH VERT AND LATERAL NAV PROCs AS I HAVE BEEN TRAINED TO DO OVER AND OVER AGAIN, ESPECIALLY SINCE WE WERE FLYING OUTSIDE UNITED STATES AIRSPACE. THUS, WHEN ATC (126.6) CLRED US TO DSND TO 3800 FT WHEN WE WERE STILL N OF OTU VOR, I SHOULD HAVE NEVER ACCEPTED ANY ALT CLRNC LOWER THAN 12000 FT. WE WERE BEHIND SCHEDULE (STARTED WHEN WE BEGAN DUTY DAY) AND I WAS TRYING TO MAKE UP SOME TIME, I PLANNED AND BEGAN DSNCT CLOSER IN TO MAINTAIN A HIGHER AIRSPD FOR AS LONG AS I COULD. I FOCUSED MORE ON LATERAL NAV AND RELIED ON ATC FOR VERT NAV SINCE I HAD HEARD THE ‘MAGIC’ WORDS ‘RADAR CONTACT.’ I ALLOWED MYSELF TO BECOME COMPLACENT AND TRUST ATC FOR VERT NAV. ONE MUST NEVER, EVER DO THIS WHILE FLYING ANYWHERE, ESPECIALLY OUTSIDE UNITED STATES AIRSPACE WHETHER IN RADAR CONTACT OR NOT.

Supplemental Info from ACN 188454: The CLRNC FOR THE OTU 1 ARR SHOULD HAVE BEEN GIVEN BEFORE WE ARRIVED OVERHEAD OTU. Supplemental Info from ACN 188682: The PNF USUALLY CHKS ALL ALT AND XING RADIALs. THIS NIGHT IT DID NOT TAKE PLACE.

We missed the mountain peak on J39<49 from OTU to MEX by less than 500 FT AGL. I FEEL THERE IS A LANGUAGE BARRIER ALSO. IT IS OFTEN HARD TO TELL WHAT AN ATC CTLR WANTS OR IS SAYING. He MAY HAVE ACTUALLY CLRED US PROPERLY TO THE OTU 1 ARR, BUT THE WAY WE INTERPRETED IT WAS COMPLETELY DIFFERENT. OUR READBACK IN ENGLISH MAY HAVE BEEN MISUNDERSTOOD ALSO.
Circumstances: Aircraft flew into mountain 43 mm from Honiara while on visual flight rules in bound from San Cristobal Island.
Weather: Heavy rain and cloud.
Time: Day light
Fatals: 15

No GPWS installed

"...Leaving 8 for 4 on visual descent."

Mt. Nashua

Mauau Sound

ALITUDE MSL ~ FEET

DISTANCE TO IMPACT ~ NM

TIME TO IMPACT ~ SECONDS

MK VI GPWS WARNING (NOT INSTALLED)
SOLOMONS CRASH

A de Havilland Canada Twin Otter of Solomon Airlines, the Solomon Islands internal carrier, crashed with the loss of 15 lives on the southern tip of Guadalcanal island late last month. The aircraft, on a routine flight from San Cristobal to Guadalcanal, crashed into a jungle-covered mountain in bad weather and was found only after a three-day search.
Circumstances: Aircraft prematurely descended too early and flew into side of Mt. Are near the summit on approach to Djibouti.

Weather: Poor, Mountain shrouded in cloud

Configuration: Clean

Fatalities: 4

Other: Aircraft flying food and relief supplies on behalf UN World Food Program. Aircraft had diverted from flight to Dire Dawa from Djibouti, back to Djibouti, because of weather.

No GPWS Installed
The flight of the Djibouti territory is mandatory to establish contact with Djibouti at any minutes before entering the state.

Aircraft inflight Addis Ababa FIR from Mogadishu FIR have to contact DJIBOUTI to HF frequencies 10 minutes before entering Addis Ababa FIR.
Circumstances: Incident. Aircraft inadvertently mishandled on ILS 28 approach to Charles de Gaulle airport by use of auto-flight controls. The result was an unstabilized approach, eventual go-around and the maximum flap speeds exceeded by some 38 kts. F/O flying. Crew actions not co-ordinated.

Weather: 8/8 at 500 feet.
Time: Night.

F/O extends spoilers for 9 seconds, aircraft slows from 280 to 210 kts. F/O then retracts spoilers, selects Flap 1 and vertical speed (WS) to -1200 fpm descent.

F/O sets Flap 2 (190 kts) on 2700' GFE.
F/O extends spoilers, disengages A/P 2, captain sets 500 feet into FCU window to help aircraft get down to glideslope. (F/O unaware of captain's action) WS mode inadvertently replaced by 'OPEN DESCENT' (aircraft goes to Airspeed Hold and engines to Idle).

F/O engages 'APPROACH' mode. No effect on Flight Director as glideslope deviations must converge for 3 seconds. (Not in airplane operating manual).
F/O decides to level off, moves throttles from "CLIMB" to FLEVMCT, and suggests a go-around to Captain. No response from thrust as ATS still in "OPEN DESCENT".

Aircraft pitches up to 9½° nose up, full flaps, throttles at 35° but still in Idle.
F/O selects Full Flaps 3.

F/O decides to go-around and positions throttles to "TOGA" thrust builds --- 42 seconds of overspeed.

ALTIMETER
ABOVE
AIRFIELD (QFE)
~ FEET

DISTANCE TO RUNWAY THRESHOLD
~ NM
Circumstances: Aircraft hit at 4000 feet level of Crocker Range, some 30 mm south of runway 02, during initial approach. Inappropriate descent clearances from ATC, ATC distracted working inbound airliner. Weather: Terrain shrouded in layered clouds. Fatalities: 12

ATC: "...proceed to the VOR and descend south to 9500 feet"
Co-pilot: "...Level at 9500 feet"
ATC: "...continue descent to 4000 feet"
Co-pilot: "Level at 4000 feet"
ATC: "...cleared at 2500 feet"
Co-pilot: OK down to 2500 feet"

Capt: "...let's climb back up and turn right... back to the VOR:

High performance climb
Smooth nose up to 8 degrees, climb power added

FLIGHT PATH PROFILE
Gulfstream II
Kota Kinabalu, Malaysia
4 September, 1991

Don Beteman

MK VI GPWS WARNINGS
(NO INSTALLED)
NO GPWS INSTALLED
Crashed jet found in Malaysia

KUALA LUMPUR, Malaysia — Searchers combing thick jungle today found the wreckage of a jet carrying 12 people, including U.S. and British oil executives and their wives. Officials said there appeared to be no survivors. The jet, owned by Conoco Inc. of Houston, Texas, disappeared from radar Wednesday as it prepared to land in Kota Kinabalu on the island of Borneo for refueling on its way from Tokyo to Jakarta, Indonesia. The wreckage of the Grumman Gulf Steam 2 was found 910 miles east of Kuala Lumpur.

All believed dead on U.S. jet that crashed in Malaysia

KUALA LUMPUR, Malaysia — Searchers on Friday found the wreckage of a corporate jet carrying 12 persons — nine of them Texas oil executives and spouses, plus a crew of three. Officials said apparently no one survived.

The jet, owned by Conoco Inc. of Houston, disappeared from radar Wednesday as it prepared to land in Kota Kinabalu on the island of Borneo for refueling en route to Jakarta, Indonesia, from Tokyo.

The wreckage of the Grumman Gulf Stream II was found 390 miles south of Kota Kinabalu, said Stanley Marsh, U.S. Embassy spokesman in Kuala Lumpur. He said the plane descended into the Crocker mountain range at an altitude of 4,000 feet.

Conoco's president, Constantine Nicandros, said: "The plane crashed and ran into the mountain. Why... we just don't know."

The company identified those on the jet as William K. Dietrich, 53; his wife, Gayle, 54; Colin H. Lee, 55, and his wife, Brionne, 55; H.K. "Kenny" Bowden, 57, and his wife, Connie, 50; James Myers, 56, and his wife, Linda, 41; and Ann K. Parsons, 55. The crew was identified as pilots Kenneth H. Fox, 45, and Gary Johnson, and mechanic Steve H. James, 40. All were from Houston.
This accident appears to be very similar to a DC-9/30 accident on 20 June 1973 at Puerto Vallarta (See this book). The aircraft, also with no DME or ATC radar aid, was late getting down and fast which took it off the procedure into terrain.

"...we are in procedure turn."

Circumstances: Aircraft hit mountain ridge while on initial approach to ILS/VOR runway 04. It is believed aircraft was in a procedure turn, but off the bounds of the procedure.

Weather: IMC

Configuration: Believed to be in a maneuvering flap with landing gear up.

Fatalities: 69
A 2 The Seattle Times Friday, August 16, 1991

Rescuers find no survivors in Indian plane crash

NEW DELHI, India - Rescue workers struggled through dense jungle and driving rain to a hill in northeast India where an Indian Airlines Boeing 737 crashed, but found no survivors among the 69 people aboard, officials said today.

All 63 passengers and six crew members aboard the plane, on a flight from Calcutta to Imphal, were Indian, airline officials said.

They suspect something was wrong with the instrument landing system guiding the plane through the clouds to the airport, whose control tower lost radio contact with the Boeing just two or three minutes before it was due to land yesterday.

Workers trek through the jungle back a makeshift bridge on Sunday, bearing the charred bodies of most of the passengers from a jetliner that slammed into a mountain in eastern India. Sixty-three passengers and six crew members were on board the Indian Airlines Boeing 737-220 when it crashed in hilly jungle terrain on Friday, 57 miles short of its destination of Imphal. There were no survivors. There has been no official word on the cause of the accident.
FLIGHT PATH PROFILE
G-II
Caracas, Venezuela
17 June, 1991

CIRCUMSTANCES: During an improvised instrument approach to runway 10, the aircraft impacted terrain 5 NM short of the runway. The glideslope was inoperative for ILS DME runway 10. There is no approved localizer only approach because of terrain. The appropriate approach was VOR DME runway 10, which would have ensured terrain clearance. The captain however, preferred the 'precision' of a localizer approach over that of a VOR radial. The captain improvised letdown altitude instructions to the flying co-pilot from 'Guare' (10.7 DME) inbound on the localizer.

TIME: 22:00 EDT (night)
WEATHER: 30 @, light rain IMC, 300/3 miles, wind calm, altimeter 0118
CONFIGURATION: Gear down, approach flaps
FATALITIES: 4
OTHER: Aircraft fitted with an operating Voice/Terrain Advisory System ('Talking Altimeter'), but no GPWS. 'Talking Altimeters' are heard repeatedly on every approach. Captain in right seat.

Captain: "Pull em ~1 the way to the hard stops"

"Inbound Hotel for landing approach"
ATC: "--contact approach control 119.2"

"-flap ten"
'O one oh two on your track"

Normal ILS glideslope approach profile 3.70'

Captain: "We can come down now... let her down at about fifteen hundred"

'D10.7 TUY VOR

Captain: "Guare--ILS is up"
C/O: "--how can you tell?"

Captain: "Twenty-five hundred to be our circle to land 'minimums'"

VTA: 'Terrain--Terrain'
C/O: "I don't know when we've gonna get a glide--"

VTA: '100', '100', '100', '100', '100'

Aircraft begins to level off at 2500 feet
(circling minimums)

"Get out-- shit!!"

"-Twenty-five hundred to be our circle to land 'minimums'"

Captain: "-Pull em ~1 the way to the hard stops"

...
Circumstances: Aircraft inadvertently landed with all landing gear retracted. F/O, seated in Captain's seat gave order for "Gear down". Captain, seated in F/O's seat and flying aircraft, assumed F/O was stating gear was down. Checklist interrupted by communications and never completed. Flaps were left in 25. However, F/E believed GPWS "Pull up" was caused by flaps not in landing position. F/E tried to use the "Flap override" to silence warning to no avail. F/E eventually pulled GPWS circuit breaker. The configuration warning was (routinely) silenced. Tower radioed "Go around" using wrong aircraft call sign.

Time: 18:45 local

Damage: Substantial - Aircraft later scrapped

Other: MKI GPWS installed. "Pull up" warning only. MKII and on, identify cause of GPWS warning. See: London B747 incident July 1987

FLIGHT PATH PROFILE
B727-200
Taegu AB, Korea
13 June, 1991

D7.0 TAG

3.00° Glideslope

MKI GPWS "Pull up" Starts

D1.6 TAG

MKI AND NEWER GPWS MODELS WOULD ANNUNCIATE "TOO LOW...GEAR"
TAEGU AB
TAEGU, KOREA
ILS Rwy 31
TACAN Azimuth Required
LOC 108.7 ITAG

TAEGU Approach (R) 135.9
TAEGU Tower 126.2

Alt Set: IN (MB on req)
Trans level: FL 140
Trans alt: 14000'(116685')

MISSED APCH FIX

D10.0 TAG

D12.0 TAG

D12.0 TAG

D7.0 TAG

D3.1 TAG

D1.6 TAG

GS 191'(1804')

LOC INTCT

RECOMMENDED

5000'

14000'

(1868')

(1888')

(1888')

(1888')

12 DME Arc

CIRCLE-TO-LAND

STRAIGHT-IN LANDING RWY 31

ILS

LOC (GS out)

DARK 315'(200')

NAV 640'(525')

NA Northeast of Rwy 13-31

STRAIGHT AHEAD to TAG TAC, then turn LEFT, climb outbound on TAG TAC R-290 to 5000' and hold at D10.0 TAG.

APPROACH: Climb STRAIGHT AHEAD to TAG TAC, then turn LEFT, climb outbound on TAG TAC R-290 to 5000' and hold at D10.0 TAG.
Circumstances: Aircraft undershot the runway 02L threshold by 400 feet, bouncing out of the approach lights onto the runway. Aircraft had been flown on autopilot to 160-200 feet AGL.

Weather: CAT II, RVR 1200 on start of final but deteriorated to RVR 700. Winds calm.

Configuration: Landing

Damage/Injuries: No injuries to 132 passengers and 6 crew but damage to trailing edge flaps, aft fuselage, engine cowlings and tires.

Other: Airline recommends that autopilot remain coupled to 80 feet AGL. Captain had flown very few CAT II approaches over previous year. MK I GPWS installed but no warning.
NASHVILLE, TENN
NASHVILLE INTL
ILS Rwy 21 CAT II
Special Approach & Alt.
Certification Required
LOC 109.2 IMA
Apn. Flt. 59°

MIA
BYLOM

PHOTO
144 VI

1004

2500 when directed by ATC.

SIMULTANEOUS APPROACH
AUTHORIZED WITH Rwy 23.

Missed Approach: Climb to 4000' outbound via BNA VOR R-014 to TANDS INT
and hold.

STRAIGHT-IN LANDING Rwy 21
RA 104°
max 699' (100')

CAT B ILS

RA 158°
max 749' (150')

me 12
me 16
Charter aircraft took off runway 26L bound for Amarillo, Texas, leveled off at 3500 feet to remain VFR below TCA to avoid San Diego ATC departures, and flew into mountain.

Circumstances: Charter aircraft took off runway 26L bound for Amarillo, Texas, leveled off at 3500 feet to remain VFR below TCA to avoid San Diego ATC departures, and flew into mountain.

Time: 01:45 a.m., night

Weather: VMC clear, visibility 10 miles

Configuration: Clean

Fatalities: 10

Other: Professional crew, but intimidated by ATC and uncertainties on how to depart IFR with tower closed, deciding to pick-up IFR clearance after clearing TCA area, staying below TCA floors. Aircraft not equipped with GPWS.

4500 FEET

Pilot: "Yes sir, this is the pilot flying that Hawker... down at Brownsville (sic)... got a question for you. Remember you mentioned that SID outta here?"

FSS: "Right."

Pilot: "Yeah, the thing that I... I question on that... uh..."

FSS: "Uh huh."

Pilot: "And see if you can clarify this... ah I'm going off here VFR... and if ya meet that SID... you're climbing into the TCA (unintelligible)... very possibly without an IFR. I question that. You see what I'm saying?"

FSS: "Yeah, I understand what you're saying now."

Pilot: "If I had an IFR clearance... yes, that would be..."

FSS: "That would be fine, right."

Pilot: "So I would be better off if I headed right northeast and stayed down... say below three thousand?"

FSS: "Uh huh."

Pilot: "Do you agree on that?"

FSS: "Yeah sure, that'll be fine."

Pilot: "Okay. I just wanta check with you on it and I understand that's a normal IFR departure... but I'm going out of here VFR."

Capt: "San Diego Approach --- standing by for IFR clearance to Amarillo"

Approach: "Your clearance check-d out --- I'll put it right back in... squawk 0306" (aircraft squawking 1200)

Capt: "OK --- squawk 0306"

Approach: "--- what's your position?"

BROWN FIELD

FLIGHT PATH PROFILE

HS-125
Brown Field, California
15 March 1991

NEXT PAGE
Plane carrying McEntire's band crashes; 10 killed

OTAY, Calif. — Seven members of country-western singer Reba McEntire's band, along with her road manager and two pilots, were killed when a private plane crashed in a mountain area about 25 miles southeast of San Diego about 1:45 a.m. yesterday.

McEntire was not aboard. There were no survivors. Those on the plane included four: manager Jim Hammon, band leader Kirk Cappello, who played keyboard, vocalist Paula Kaye Evans, guitarists Michael Thomas and Terry Jackson, keyboardist Joey Cigainero, drummer Tony Saputo and Chris Austin, a vocalist who played fiddle and guitar.

McEntire, 35, and her band had performed in San Diego Friday night. The singer had stayed behind in San Diego and was going to take another flight yesterday. McEntire's hit records include "Whoever's In New England," "Little Rock," "Walk On" and "Rumor Has It."
Circumstances: Aircraft apparently departed Maracaibo on an incorrect radial or airway for a ~150 nm flight to Santa Barbara. On initial descent, the aircraft was ~80 nm east of Santa Barbara. A GPWS (MKI) "Pullup!" warning occurred. A pullup escape recovery was initiated within 2 seconds of the GPWS warning. A good rotation rate (2°/second) produced 2 g's and a probable nose up attitude of 25°. Full climb power was applied producing ~6500 fpm climb.

After the GPWS warning ceased, the attitude was lowered to ~12° and a right turn initiated. The climb rate dropped the 2000 fpm. The aircraft turning into higher terrain, impacted about 100 feet below the crest of the ridge. Probable contributing factors to the navigation error were complacency, distraction, unintendedness and assumptions.

Weather: Sunny day, initial haze later developed into heavy haze, mountains obscured in clouds, probable IMC

Configuration: Clean

Fatalities: 43

NOTE: This accident is very similar to the Utah DC-8 (see 18 Dec 1977) where the F/O attempted a pullup escape maneuver after receiving a MKI GPWS warning. He pulled to about 30° nose up and would have escaped but for a push over, (negative g), presumably by the captain.

In either case, stall margin was not a problem. None of the crews for all the known GPWS related accidents, ever received GPWS "hands on" practice recoveries.

We demand practice recoveries for windshear, but do not for CFIT situations with a GPWS warning.
CARACAS, Venezuela - A Venezuelan jet carrying 43 people crashed into a mountain southwest of Caracas after straying miles from its scheduled course, authorities said Wednesday. There were apparently no survivors.

The DC-9 twin-engine jet disappeared Tuesday afternoon while flying from the oil-rich city of Maracaibo to Santa Barbara, 135 miles to the southeast. But the wreckage was found nearly 100 miles east of Santa Barbara, strewn over a half-mile area on a remote Andean mountain.

"It seems there are no survivors," said Franklin Rodriguez, a manager for the airplane company, Aeropostal. Company officials said all of the victims were Venezuelans.

Speaking to reporters in Maracaibo, Rodriguez said a search team had searched the crash site on the 13,800-foot Paramo Los Torres mountain, which is about 350 miles southwest of Caracas.
Circumstances: During a descent and turn over the airport, the aircraft was incorrectly cleared down to 4,000 feet, and hit the top of a mountain.

Weather: IMC

Configurations: Clean

Fatalities: 63

Flight Path Profile
C-130
NEA ANGHIALOS, GREECE
5 FEBRUARY, 1991

Pilot: "Overheading the NDB.... "I'm in procedural let down...."

Tower: "..O.K....cleared to descend down to 4000..."
The wreckage of a Greek military plane that vanished from radar screens nearly a week ago has been found on the top of a snow-covered mountain in central Greece. Authorities said there were no survivors among the 63 airmen aboard. The C-130 Hercules disappeared as it made an approach to land at Volos while on a routine mission from the capital Tuesday. The cause of the crash is under investigation.

The Greek Hercules that crashed on 5 February was found on a mountain top near the Nea Anghialos military air base on 8 February. All 63 on board had been killed. The aircraft was on a flight from the Elefsis military airfield near Athens to Nea Anghialos near the city of Volos. The Hercules flew via the Tanagra non-directional beacon (NDB) north of Athens.

Early reports state that, following the procedural turn for landing, the pilot was apparently given clearance to descend to 4,000ft (1,212m) instead of the 5,000ft that the NDB approach stipulates.

The aircraft crashed in mountainous terrain during bad weather. The pilot appeared to have attempted a crash landing.
NAIROBI, Kenya — A Sudanese relief plane crashed and burned early today while trying to land at Nairobi's international airport in heavy fog, killing all 10 aboard, airport authorities said.

The dead, seven crew members and three passengers, were all Sudanese nationals, said Mike Fernandez, an official with Trade Winds Express Ltd., the Kenyan company handling the jetliner's cargo.

The Boeing 707 was arriving from Sudan's capital, Khartoum, to pick up emergency relief supplies destined for famine-threatened southern Sudan when it crashed.

The aircraft overshot the runway at Jomo Kenyatta International Airport once and was making a second attempt at landing when it crashed, said Fernandez.
FLIGHT PATH PROFILE
AC 690
Kelso, Washington
30 November, 1990

Circumstances: During initial approach to Kelso, the aircraft prematurely let down and hit a mountain.

Time: Night 19:00 PST
Weather: IMC
Fatals: 5 out of 6 onboard

Cancelled IFR to VFR to save time. Probably saw Kelso City lights in distance.

WINLO 19.9
MINIMUM ALTITUDE FROM WINLO 4700 FEET

ABERNATHY MTN

TIME TO IMPACT ~SECONDS

DISTANCE TO NDB ~NM

MK VI GPWS WARNINGS (NOT INSTALLED)

TERRAIN/TERRAIN - PULL-UP! (etc.)
5 Canadians die in plane crash

Survivor found walking in woods

RYDERWOOD, Wash. — The head of a logging equipment company and four other Canadians died when a light plane crashed into the forest near this southwest Washington town, officials said.

The lone survivor was found walking in the woods by bow hunters early yesterday morning, nearly 20 hours after the accident happened, said Bruce Holmes of the Washington state Aviation Division.

Kathy Madill, 43, of Nanaimo, British Columbia, was airlifted to Enumclaw Hospital in Enumclaw, Ore., where she was listed yesterday in fair condition with a broken collarbone, hypothermia and shock.

The plane was flying from Nanaimo to Kelso, Wash., on a business trip Friday night for S. Madill Co., said company spokesmen Steve Shaw.

He described Madill as the world's leading manufacturer of heavy-duty logging equipment.

The firm is headquartered in Canada but has a plant in Kalamia, about south of Kelso.

Killed in the crash were Madill's husband, company President Pat Madill, 42, and his stepdaughter, Leanne Johnson, 18; Johnson's boyfriend, Ralph Pumphrey, 20; and company pilot Bill Anderson and his wife, Marlene Anderson, all of the Nanaimo area, Shaw and Holmes said.

The company plane, a 10-seat Aeron Commander 660, crashed into a forested ridge — west of Ryderwood and about 80 miles north of Portland — about 7 p.m. Friday, Holmes said.

The group was headed to the Kalamia plant, Shaw said.

"It's our plant in the States," he said. "We flew down two or three times a month, at least."

The firm, established in 1911, employs 100 people in Nanaimo and 20 in Kalamia, he said.

Shaw said he began notifying airports and search and rescue teams Saturday afternoon when officials at the Kalamia plant called to ask the whereabouts of the company pilots.

The cause of the accident was being investigated by the National Transportation Safety Board and the Federal Aviation Administration.
Circumstances: During NDB approach to runway 17 in heavy weather, and circle to land on runway 35, aircraft lost visual contact with runway. A non-decisive missed approach was initiated, props were put in fine pitch but climb power was not applied. Pilot still trying to find airport. During left turn, spatial disorientation led to overbanking. Flight crew was under pressure to make landing, as returning to Bangkok was only alternative. Trainee Captain and "FO" instructor Captain complicated "who was flying?"?

Weather: Dark, very poor visibility, rain and wind 32 at 20 kts.

Time: Dusk 18:15 Local Time

Configuration: Landing

Fatalities: 36
Jet from Bangkok hits coconut trees

BANGKOK, Thailand — Two Seattle residents among 53 people who died in the crash of a Thai plane carrying foreign visitors to a resort island, the U.S. Embassy said yesterday.

Killed in the Bangkok Airways crash were Edward G. Lincoln and Kathleen Lincoln, who live in the Greenwood area.

An embassy official identified the Lincolns as being among passengers in the plane that slammed into coconut trees in heavy rain and strong wind late Wednesday as it appeared to land on Koh Samet. Witnesses said the plane exploded and then crashed about six miles from the airport.

Everyone aboard the plane, a de Havilland turbo-prop, was killed, including the crew members and 33 more foreign passengers, officials said.

The airport, with no radar or advanced ground control equipment, opened last year to draw more tourists to the pristine island in the Gulf of Thailand, 300 miles south of Bangkok. The plane was on a 50-minute flight from Bangkok when it crashed.

Prime Minister Chatichai Choonhavan ordered an investigation into the crash and an inspection of safety conditions at Koh Samet airport, the spokesman said.

Embassy officials said they had no additional information on the two Seattle victims.

Family members could not be reached yesterday at the Lincolns' home.

A Metro spokesman in Seattle said yesterday that the transit agency had been told one of its employees may have been involved in the accident.

"We have a Ken Lincoln who works for us as a commuter or customer service representative," Jim Linder, Metro spokesman, said.

"There is a possibility she may have been involved in the accident."

"But until we get a chance to talk to the family, we feel it is not appropriate to release any information," he said.

Passengers also included four from Japan, two Austrians and one German, said Niraak Phraesree of the public relations department of Bangkok Airways. There also may have been Swedes and Indians aboard.

Kapitan Thongkho, a Thai transport official, said he saw the plane crash and explode about five minutes later. He said he was watching the plane because it was not clear how it had hit the trees.

The plane was expected to return to Koh Samet, he said.

Two passengers also included four from Japan, two Austrians and one German, said Niraak Phraesree of the public relations department of Bangkok Airways. There also may have been Swedes and Indians aboard.

Kapitan Thongkho, a Thai transport official, said he saw the plane crash and explode about five minutes later. He said he was watching the plane because it was not clear how it had hit the trees.

The plane was expected to return to Koh Samet, he said.

Two passengers also included four from Japan, two Austrians and one German, said Niraak Phraesree of the public relations department of Bangkok Airways. There also may have been Swedes and Indians aboard.

Kapitan Thongkho, a Thai transport official, said he saw the plane crash and explode about five minutes later. He said he was watching the plane because it was not clear how it had hit the trees.

The plane was expected to return to Koh Samet, he said.
Circumstances: Preliminary Incident Data

While on final approach to ILS runway 26L, the aircraft inadvertently descended to less than 390 feet, some 1400 feet below the outer marker crossing altitude of 2800 feet. A MSAW occurred, the aircraft advised, and a missed approach was made. There was no GPWS warning from the MK V.

Configuration: Landing.

Weather: Clear but marginal visibility. 2½ miles obscured, limited contrast to terrain.

Time: Daylight afternoon.

Other: It has been reported that the aircraft was cleared for ILS 26L near 'Pettis', then suddenly recleared for VOR runway 26R with AFGS engaged for approach mode. The aircraft was almost established on the VOR approach when it was recleared back to the ILS. The AFDS did not couple to glideslope and reverted to a vertical speed mode. There is significant terrain left of the localizer course, and the aircraft fortunately missed the terrain (and towers) (2217', 1770', 1437', and 1419' feet MSL).

FLIGHT PATH PROFILE

B737-300
Ontario, California
16 November, 1990

DISTANCE TO RUNWAY ~NM

TIME TO IMPACT ~SECONDS

MK V INSTALLED — NO WARNING

ALITUDE MSL ~FEET

Next Page
MISSING APPROACH: Climb to 1700', then climbing left turn to 6000', direct PDZ VOR then via outbound PDZ VOR R-078 to EDITS/12.0 DME, and hold.

MISSING APPROACH: Climb to 1700', then climbing left turn to 4000', direct PDZ VOR and hold.

NOTE: Dual VOR or DME required for missed approach.

NOTE: LOC and VOR required for missed approach.

API APPROACH: Climb to 1700', then climbing left turn to 6000', direct PDZ VOR then via outbound PDZ VOR R-078 to EDITS/12.0 DME, and hold.

API APPROACH: Climb to 1700', then climbing left turn to 4000', direct PDZ VOR and hold.

API APPROACH: Climb to 1700', then climbing left turn to 6000', direct PDZ VOR then via outbound PDZ VOR R-078 to EDITS/12.0 DME, and hold.

NOTE: Dual VOR or DME required for missed approach.

NOTE: LOC and VOR required for missed approach.

API APPROACH: Climb to 1700', then climbing left turn to 4000', direct PDZ VOR and hold.
FLIGHT PATH PROFILE
DC-9/30
Zurich, Switzerland
14 November 1990

Circumstances: Aircraft hit short during an ILS approach to runway 14.
Weather: Rain, Fog, The 6 mile visibility
Time: Night 20:13 Local Time
Other: Probable landing configuration, stable approach
Fatalities: 49 - all on board
Terrain profile accuracy based on unofficial ground track. Both ground track & cockpit conversations from unofficial sources. Possibility of glideslope receiver failure and no flag.

Cockpit Altimetry procedures in use:
- Flying pilot uses QFE on initial and final approach
- Non-flying pilot uses QNH until Final Approach Fix, then goes to QFE.
F/O believed to be flying.
Nav frequency selection controlled by a 3-way position switch allowing:
- Individual selection
- Selection of both from Captain's control head.
- Selection of both from F/O's control head.
The GPWS glideslope signal input is directly from Captain's receiver.
If the Captain was using Nav receiver to determine 249 & 271 VOR radials, there would have been no glideslope signal to the GPWS (see similar incident 28 June, 1986 DC-10 @ Portland)

Next Page
By Onne Carey
Associated Press Writer

CHICHI, Switzerland — An
Alitalia DC-9 jetliner approaching
Zurich airport crashed into a wooded
hillside and burned Wednesday night,
killing all 40 passengers and six crew
aboard, police said.

Witnesses reported what appeared to
be fire and explosions before the plane
hit, Zurich police told a news confer-
ence.

Flight AZ404 of the Italian airline,
coming from Milan, crashed about
8:20 p.m. (11:20 a.m. EST) five miles
north of Kloten international airport
outside Zurich, near the village of
Welsh, airport spokesman Peter
Gutknecht said.

Of the four on board were Italians, an
Alitalia spokeswoman said. Italian re-
ports said most of the other passengers
were apparently Swiss and Japanese.

Police said it did not expect to publish
a full passenger list before Thursday.

Swiss aviation authorities said they
had begun an investigation, and Italian
authorities said they would dispatch a
team of investigators.

The crash site is about 10 miles
northeast of central Zurich in northern
Switzerland.
INCIDENT #2
Circumstances: FMGS engaged and tracking Localizer B/C 27
Flight Path Angle selected for 3.0 degrees but was inadvertently in Vertical Speed. Pilots adjusted vertical speed back to 1200 fpm, but became distracted and descended well below REEBO and below MDA. Error was detected by pilots and tower. Aircraft was re-established on visual approach slope.
Weather: Considerable haze
Configuration: Landing
This incident based on "sketchy" data provided by line pilots.
MISSED APPROACH: Climb to 2500' via bearing 272° from AN LMM to SARGS INT.

NOTE: Aircraft landing visibility reduction for bad conditions NA.
INCIDENT #1

Circumstances: Aircraft was laterally directed by the pilot to fly direct to "SWATT" and not to "VYDDA" by means of the Plan Mode on the ND. The FMGS was engaged in Heading Mode, and an altitude of 2700 had been inadvertently selected.

Other: A GPWS warning occurred and the pilot climbed to 3700 feet.

This incident based on "sketchy" information provided by line pilots.
MISSION BAY AREA
SAN DIEGO INT'L-LINDBERGH
LOC Rwy 27
LOC 110°.9 JUBR

APPROACH: Climb to 2500' via bearing 272° from AN LMM to SARGS INT.

STRAIGHT-LANDING Rwy 27
CIRCLE-TO-LAND

A
Rwy 50 or 1
800'/28°=3/4
1 ½
2

B
C
D

NOTE: Air carrier landing visibility reduction for local conditions NA.
Flight Path Profile
B737-200
UNALAKLEET, ALASKA
2 JUNE 1990

Time: 09:00 AM
Weather: Fog 1 1/2 Mile Visibility
Configuration: Landing
Other: Very Business Like Crew, Practicing CRM And Following Procedures. Unfortunately The Captain Misread The Approach Plate And The Error Was Not Detected. A Last Moment Pull-Up, and Fortunate Circumstances Saved Four Crew Members On Board. Aircraft Was Destroyed. Aircraft Was Equipped With MK I GPWS, But There Was No Warning. Operator Was To Install New MK VII Later In Year With "Smart" 500 Foot Altitude Callout And Other Callouts.

DIRGE
D 5.0 IUNK
LOC

F/O: Ground contact
Capt: "OK" "ooohhhhh"
Capt: Flaps thirty"
Capt: "There comes the ten to fifteen hundred... 500 is what we're heading for..."
Capt: "Two point three DME"
Capt: "There's a thousand"

Capt: "Fifteen till ten DME"
Capt: "Fifteen hundred to ten what we're shooting for"

800' FPM
145 KTS
559'
758'
21'

0 1 2 3 4 5 6 7 8 9
0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40

TIME TO IMPACT ~ SECONDS
DISTANCE TO RUNWAY ~ NM

3000
2000
1000
2000
3000

ALTITUDE MSL ~ FEET

MK VII ALTITUDE CALLOUTS (MKI INSTALLED, NO WARNING)
"500" "200"
"MINIMUMS-MINIMUMS" (Set to 350' radio)
Air crash causes delay, passengers waiting not told

ANCHORAGE (AP) — MarkAir passengers waiting to depart Unalakleet for Anchorage were kept aboard Flight 87 for hours Saturday morning without being told delay was caused by a MarkAir plane crash four miles away.

"Needless to say there was some confusion," said MarkAir vice president Larry Anderson.

Flight 3087 from Anchorage to Unalakleet was added to MarkAir's Saturday morning schedule to accommodate hundreds of fishermen — many of them with family in Seattle — ready to leave town when this week's Norton Sound herring fishery ended on Thursday.

MarkAir said the Boeing 737 crashed around 9 a.m. as it made a final approach at the remote, gravel airstrip.

There were four crew members but no passengers aboard. The crash injured two flight attendants, Michelle St. Amour and Sonya Nelson, both of Anchorage.

St. Amour apparently was the more seriously injured and doctors from Nome who examined her at the crash site determined she should be moved only by stretcher.

The pilot, Capt. Glenn Smith, and copilot, Robert Fell, were uninjured, a MarkAir spokesman said.

The crew was returned to Anchorage on Flight 87 and the injured women were treated at Providence Hospital where they were re-examined Saturday night.

Anderson said passengers may have sat as long as four hours, without being allowed to leave the plane, so that the plane could leave for Anchorage as soon as the injured crew members were loaded on.

"Because of fog, the helicopter that went out to the crash site wasn't able to just go out and back," Anderson said.

Anderson said the wait could have been as long as four hours.

Passenger Teresa Perry of Anchorage said the plane was boarded around 10 a.m.

MarkAir said the plane left Unalakleet around 2:20 p.m.

Perry, who was traveling with her 3-year-old daughter, Natalie, said she finally heard from one of the herring fishermen aboard that the delay was linked to a crash. "But that wasn't until we were collecting my baggage in Anchorage," she said.
Circumstances: Aircraft hit short by 60 feet of runway perimeter during VOR-Visual Approach to runway 02.
Weather: 4 KM visibility, wind 330/8 kts.
Configuration: Landing.
Damage: Blow out tires, damaged wing spar, wheel well doors hydraulics.

FLIGHT PATH PROFILE
B737-300
Iloilo, Philippines
18 May 1990

3 DEGREE VISUAL APPROACH

1800 fpm
136 Kts

136 Kts

Perimeter Fence
Road

GPI

MKV ALERT/WARNING INSTALLED

"SINKRATE"
SINKRATE
PULL UP
PULL UP, ETC.

DISTANCE ~ NM
TIME ~ SECONDS
ALTIMETE ~ FEET

0 100 200 300 400
0 1 2 3 4 5 6 7

RETURN TO TOC
Circumstances: Charted aircraft hit 80 feet below summit of Mt. Emerald on initial approach to Mareeba 4 nm left of track. Clearance was to hold at 10,000 feet.

Other: Aircraft fitted with GNS. No ATC Radar.

Time: Night 17:38

Weather: Raining, clouds.

Fatalities: 11

FLIGHT PATH PROFILE
Ce Citation II
Cairns, Australia
11 May 1990

250 Kts - 1000 fpm

MILE

MARK VII GPWS (NOT INSTALLED)
Eleven missing after jet crashes in Qld rainforest

By MICHAEL CARRICK

The mayor of Cairns, Alderman Keith Goodwin, is believed to be one of 11 people on board a Comair Clipper jet that crashed in a rainforest during bad weather in far north Queensland last night.

The secretary of the Queensland Local Government Association, Mr Greg Hoffman, said the 10 passengers were cancelling from five north Queensland towns.

Civil Aviation Authority officials and army helicopters were last night trying to locate the crash site near the sugar town of Atherton and Mareeba, 1404 km north of Brisbane and 3800 km south-west of Melbourne.

"It (the jet) just dropped off the radar screen," a Mareeba police spokesman said.

Emergency signals were picked up by commercial aircraft about 6.30 pm.

Mr Jeffrey Evans, of the authority's Brisbane office, said the missing jet, which could carry up to 14 passengers and the pilot, was on a flight from Brisbane to Cairns via Mareeba when it lost radar contact with Cairns Airport at 5.38 pm.

Mr Evans said the authority's search and rescue satellite had been unable to locate the distress signals, indicating that the Clipper's beacon had been damaged or was lying in a valley.

An authority spokesman said the distress signal "could have been set off accidentally or have been triggered by the impact of a crash."

Police said they had no confirmation of the fate of the passengers, but the Mareeba and Atherton hospitals had been placed on an "emergency standby to receive crash victims."

Mr Hoffman said he could not release names of those who had been at length. "They have been contacting the North Queensland Local Government Association's daily news conference yesterday and today," he said.

"It is unusual practice for a group of councilors to charter a plane between them for these excursions."

The deputy mayor of Cairns, Alderman John Cheal, said: "We believe Mr Goodwin was on board."

Alderman Ciland said the mayor was one of a group of councilors returning north from a local government conference at Airlie Beach.

The Atherton deputy shire clerk, Mr Gordon Malloch, said a local councillor, Mr Terry Rich, was among those missing.

A weather bureau spokesman said flying conditions in the crash area were terrible: "It has been raining and the cloud is very low."

The missing aircraft was en route from Cairns to Mount Isa, a Cairns-based company.

By GREG ROBERTS, Cairns

An inquiry into the crash of a Comair Clipper in North Queensland could take several months to determine the cause of the disaster, a spokesman for the Civil Aviation Authority said yesterday.

The spokesman said the plane wreckage had been found on a wide area, making investigations difficult.

A violent electrical storm is believed to be responsible for the crash on Friday night, which killed all 11 people on board.

It is believed the storm caused the pilot to lose direction and crash into dense forest on the slopes of Mount Emerald, 15 kilometres north-west of Atherton, in an estimated 200 km/h.

Cairns was in a state of shock yesterday following the death of the crash in the craft of its mayor, Alderman Keith Goodwin, and a prominent alderman, Mr Ross Black.

Seven other senior, local government councilors from four towns were also killed, along with the pilot and a Roma Catholic nun.

Contact with the jet was lost after 5.30 pm on Friday, when air traffic controllers at Cairns Airport accessed the pilot, Mr Steve Lodge, in order to describe a small plane on a holding pattern at 9000 feet.

The direction was given but before the charter jet was able to land at Mareeba for a stop on its return from the local government conference at Airlie Beach.

The charter jet, a clipper, was on its way home to Cairns from Mount Isa, a Cairns-based company.

A Cairns pilot, Mr Craig Rose, said yesterday that the crash site was "horribly scenic" for air traffic.

Despite this, Cairns Airport, the fifth busiest airport in Australia, is not closed by the crash.

A memorial service is expected to be held in Cairns on Monday.
CIRCUMSTANCES: During a night scheduled VOR approach to runway 24 the aircraft crashed short by 7 NM. The Captain had broken out to VMC at 900 feet MSL and decided to complete a visual approach.

WEATHER: 400 Feet AGL broken, 1000 feet AGL, overcast, four miles visibility in light rain, wind 4 mph from 270 degrees, Temperature +8C. dew point +8C degrees.

TIME: 21:35 EDT night

CONFIGURATION: Gear down, flaps clean

FATALITIES: 1 of 4 on board

OTHER: No VASI approach slope indication. Possible 'Black hole' visual illusion, poor eye location, minimum night training low time captain. Poorly designed procedure - No DME fix for descent to MDA.

Flight Path Profile
BE C-99
MOOSONEE, ONTARIO
30 April, 1990

Captain sees runway lights on breakout - declares a visual approach

Let down fix not defined

Broken Clouds 900 Feet

Captain selects landing gear down

Visual slope ~ 0.9 degrees to runway

Minimum Descent Altitude 440'

GPWS Envelope

'500' '200' '50' GPWS WARNINGS (Not installed)

VOR/DME 'VMO'

ALTITUDE MSL ~ FEET

DISTANCE FROM
RUNWAY 24 ~ NM
Circumstances: Aircraft flew into a hill in cloud while operating visually 15 NM north of their reported position.
Weather: Generally clear but with areas of low cloud and poor visibility.
Time: Daylight
Configuration: Clean
Fatalities: 14

Flight Path Profile
RAF SHACKLETON
ISLE OF HARRIS, SCOTLAND
30 APRIL, 1990

Pilot: "Benbecula approach... weather not suitable for a visual approach... we're going to climb and turn right"

DISTANCE TO IMPACT ~ NM

TIME TO IMPACT ~ SECONDS

MK VII GPWS WARNING
(NOT INSTALLED)
RAF Shackleton crash due to human error.

London: The crash on a Royal Air Force Shackleton AEW2 on April 30, 1990, was caused by human error, the UK Ministry of Defence has said.

The aircraft was operating off the west of Scotland in generally clear weather but with areas of low cloud and poor visibility over the coast. While operating with a Tornado F3 the Shackleton had turned off its radar and after this decided to conduct a visual approach to Benbecula.

On contacting the tower at Benbecula, the crew gave their position as "about 20 miles west of the airfield," according to the MOD. Investigation after the crash revealed the aircraft was in fact 15 miles north of their reported position.

The crew then contacted Benbecula approach stating that the weather was not suitable for a visual approach and that the aircraft was climbing and turning right. The Shackleton hit a hill in cloud on the Isle of Harris three minutes later. It was determined that the aircraft was in controlled flight and all four engines were developing cruise power.

While the last position shown on the aircraft's ground position indicator was about 20 miles south west of the accident site, navigational inaccuracy was not considered to have been a primary cause of the crash.
Circumstances: While on an ILS approach to runway 10R, the aircraft inadvertently was 1000 feet below the Final Approach Fix, with both altimeters indicating 4100 feet. On the missed approach, it was discovered that the altimeter settings were incorrect.

Weather: Ceiling 300 feet, visibility 2 miles with fog.

Time: Night 19:40 Local

Configuration: Landing gear down, Approach flaps.

ATC: "Two nine point four eight (29.48)"

Captain: "What is your Altimeter Setting? (Aircraft Barometric Altimeter set at 30.48)"

F/O: "Level at 4100 ft""

ATC: "Climb maintain 5000"

F/O: "Going Around"

Missed Approach initiated by captain. Glideslope deviation still full fly up.
MISSING APPROACH: Climb to 3900' via outbound BOI VOR R-111 within 6 NM then climbing RIGHT turn to 6000' direct BOI VOR and hold.
Circumstances: While on a visual approach, the aircraft ran out of flying speed and hit short into a golf course, bounced, hit some trees and an embankment.

NOTE: The AFs Altitude Acquisition Mode was inadvertently activated for "700". (The airfield elevation was 2,914 feet). The pilot had meant instead, to activate the Vertical Speed Mode for "700" feet per minute descent. The pilot also inadvertently set the vertical mode to "Open Descent" instead of a Speed Select Mode. The Auto Thrust (FMGS) went from Speed Mode to Thrust Idle Mode.

Weather: Not a factor.

Configuration: Landing gear down, flaps 30

Engines: V2500

Fatalities: 90 out of 139 (7 crew)
Flight Path Profile

APPROACH INCIDENT
SPOKANE, WASHINGTON
B727-200
27 JANUARY, 1990

Notes: Radar Vectors To ILS 21. Night, 2400 RVR
Blowing Snow, MK I GPWS Instated.

ATC: "...Cleared To Maintain 4000 Until
Established On Glideslope..."

TURNING FROM 24° TO 200°

ATC: "...Climb Immediately"

205°

4300'

2914'

2.75° GLIDESLOPE

2 DOTS LOW

BELOW GLIDESLOPE ALERTING AREA

PROJECTED IMPACT

TIME ~ SECONDS

DISTANCE TO RUNWAY ~ NM

ALTITUDE ~ FEET

PROBABLE MK I GPWS 'GLIDESLOPE' ALERTS
Aircraft descended below the glideslope in IMC weather. There was a possible subtle incapacitation of the Captain at first not recognized by himself or the other cockpit crew members. Suggestions and limited corrective actions by both F/O and F/E initially rejected by Captain until the GPWS below 'glideslope' alert and ATC action.
Circumstances: Weather, ATC delays, fuel concerns, all added pressure to the crew to make a successful approach and landing to runway ILS 226. The approach was manual and unassisted by Flight Director or Autopilot, and became instabilized during the last 3 NM resulting in considerable GPWS warnings and a fateful missed approach which resulted minutes later in fuel exhaustion.

The argument is for "specific GPWS training and updated GPWS equipment, where if the crew had properly responded to the GPWS alerts and re-established a normal ILS glideslope profile, they would have arrived at the decision height where the runway environment would have been in view to complete a successful landing."

Fatalities: 73
NEW YORK, NY
KENNEDY INTL
ILS Rwy 22L
LOC 110º 116W
MIL ALT 22º 116 119.9
Apt Elevation 13º

MISSED APPROACH: Climb to 500' then climbing LEFT turn to 3000' outbound via JFK VOR R-190 to CHANT INT/190 and hold.
Circumstances:
While on an ILS approach to runway 04, the aircraft impacted 9.5 NM short of the runway threshold.

Weather:
IMC - x=00, visibility 1/4 mile, wind 180/06 46F, dewpoint 45F.

Time:
17:10 local

Configuration:
Landing

Fatalities:
7

Other:
Both pilots had very high time prop aircraft experience, but only 160 hours in type and their first jet.

NO GPWS Installed.
Seven are killed when jet crashes at Ark. airport

A twin-engine corporate jet crashed short of a Little Rock municipal airport runway in a storm late yesterday, killing all seven people aboard, authorities said.

The 21-seat Gulfstream II jet, carrying employees of an Eastman Kodak Co. subsidiary, apparently was attempting a landing, witnesses said.

Seven bodies were recovered from the wreckage, said Coroner Steve Nawojczyk. He said there were no survivors.

The plane hit guidance lights short of the airport, hit a street near an airport intersection, struck railroad tracks and a fence, losing a wing and wheel, and plowed 200 feet into airport property without reaching the runway, said Bill Booker, who was at the scene.

Heavy rain and lightning swept through the area about the time of the crash.
CIRCUMSTANCES: This was a scheduled flight to Palmar Sur and Coto 47 to the south. The flight departed on a VFR flight plan. But after departing runway 07 and while climbing to 8500 feet, the aircraft entered IMC weather. Unfortunately the aircraft was slightly east of the intended track, and the aircraft impacted the westerly flank of Cerro Cedral at 7,250 feet...

TIME: 08:30 local

FATALITIES: 23

OTHER: No radio altimeter or GPWS installed

NOTE: Every year, world wide, there are many accidents where the aircraft in VFR flight rules is flown into terrain after encountering instrument meteorological conditions (IMC). Costa Rica is no different than any other country. Some accident examples in Costa Rica are:

<table>
<thead>
<tr>
<th>Date</th>
<th>Aircraft Model</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 February 1987</td>
<td>PA-23</td>
<td>4</td>
</tr>
<tr>
<td>19 April 1984</td>
<td>DC-3</td>
<td>4</td>
</tr>
<tr>
<td>12 June 1983</td>
<td>PA-34</td>
<td>3</td>
</tr>
<tr>
<td>12 April 1983</td>
<td>PA-34</td>
<td>3</td>
</tr>
<tr>
<td>24 September 1979</td>
<td>Ce-182</td>
<td>3</td>
</tr>
<tr>
<td>8 April 1979</td>
<td>PA-34</td>
<td>5</td>
</tr>
<tr>
<td>21 June 1978</td>
<td>PA-23</td>
<td>2</td>
</tr>
<tr>
<td>24 December 1974</td>
<td>PA-23</td>
<td>1</td>
</tr>
</tbody>
</table>

Controller: "-- Identify, then notify ALS when reaching 5000 - then contact radar.

Cpt: "-- through 4500, climbing to 8500-- south pass to Palmar then Coto, squawking 0 40 0--"

Turn initiated to 160°

Runway 07

Don Bateman

Flight Path Profile
C-212
SAN JOSE, COSTA RICA
15 January, 1990

Distinct Path Profile

SAN JOSE, COSTA RICA
15 January, 1990

Controller: "-- Identify, then notify ALS when reaching 5000 - then contact radar.

Cpt: "-- through 4500, climbing to 8500-- south pass to Palmar then Coto, squawking 0 40 0--"

Turn initiated to 160°

Runway 07

Don Bateman

"Terrain! Terrain!
Pull Up! Pull Up! etc
Standing at 18 seconds before impact."
Airliner crash kills 23 in Costa Rica

SAN JOSE, Costa Rica

A twin-engine propeller-driven airliner carrying 23 people crashed into a mountain in stormy weather shortly after takeoff and everyone on board was killed, officials said.

Carlos Jimenez, a spokesman for the Public Security Ministry, said the plane crashed into 1,500-foot Picc Blanco, about 10 miles southwest of the San Jose airport. He said 10 passengers were foreigners.

A rescue patrol that reached the crash site at 9 p.m. yesterday, about 12 hours after the crash, recovered all 23 bodies, said Juan Felix Barrantes, head of the Civil Guard.

The Spanish-built twin-engine commuter plane belonged to Servicios Aereos Nacionales and had a Costa Rican crew of three.
Notes: Aircraft clipped top of mountain and crashed during instrument VOR-A approach.
Weather: IMC in a snowstorm.
Fatalities: 16 on board, but no fatalities.

Flight Path Profile

METRO III
ELKO, NEVADA
15 JANUARY, 1990

Notes:
- Aircraft clipped top of mountain and crashed during instrument VOR-A approach.
- Weather: IMC in a snowstorm.
- Fatalities: 16 on board, but no fatalities.

BULLION 'BOU'
VOR-DME 114.5

IMPACT AT 6463 FEET

6400' CIRCLING MINIMUMS

MK VI GPWS WARNING (NOT INSTALLED)

"TERRAIN!"
"PULL-UP!" ETC.
"Miracle": All aboard survive air crash

Commuter plane hit mountaintop, then slid

Associated Press

ELKO, Nev. - All 16 people aboard a commuter plane survived after it hit a mountaintop yesterday during a snowstorm and plunged down a hillside in a crash landing some passengers called a miracle.

"We started bumping up and down, and I didn't know where we were or what was happening," said Nicole Blum, a 28-year-old passenger. "Apparently we were sliding down the mountainside at that time, but I didn't realize it.

Most of the passengers walked away from the crash, but 15 people were taken to Elko General Hospital in fair condition, and 12 others were treated and released, according to hospital representatives.

One passenger, who suffered a broken leg and at least two broken ribs, was the most seriously injured, the hospital said. "I think it's a miracle none of us died," said 16-year-old Kristina Stabink, Nicole's sister.

The year-old Metro II twin-engine plane, carrying 14 passengers and two crew members, crashed when the pilot was attempting an instrument landing during the snowstorm.

The wreckage, tailless wreckage of a SkyWest commuter plane lies on a snowy hillside near the Elko,

Helicopter pilot Ted McBride, who spotted the wreckage, said the plane appears to have clipped the top of a 3,645-foot mountain.

The plane then became airborne briefly before skidding about a quarter of a mile down the steep slope.

No one aboard was thrown from the plane, and its fuselage was intact on the mountain.

There was no immediate indication of what caused the crash, SkyWest President Jerry Atkin said in St. George, Utah, where the airline's headquarters is located. But he said the plane was 900 feet lower than the target altitude when it crashed.

SkyWest serves 44 cities in Nevada, Utah, Arizona, Colorado, California, and Washington.

Colorado: In Colorado yesterday, a fire broke out in an engine of an Aspen Airways plane shortly after take-off. The CRJ-900 jet landed safely at the Grand Junction airport for an emergency landing, officials said. None of the 80 passengers was injured.
Circumstances: Aircraft hit 600 feet short on an instrument approach to runway 21 R. Aircraft intercepted Localizer 2 NM inside outer marker.

Time: 22:30 PST
Weather: 14°F
Configuration: Landing
Fatality: 4

ATC: "415 Roger --- you still seven north of the airport?"

415: "Okay we just had a couple of flags on our instruments --- everything appears to be all right now. We're going to continue with the approach 415"

ATC: "415 --- Roger and right now I show you four miles north of the airport"

415: "Four north of the airport --- 415"

415: 415 is doing a missed approach --- we'd like vectors for another one please...""

"SINKRATE"
"GLIDESLOPE"
Circumstances: While under radar vectors for runway 11, aircraft missed the slopes of Mt. Soufrière by an estimated 100 feet. Controller error not detected by flight crew.
Time: Daylight
Weather: Cloudy - Base 20, Top 60, Cumulus 90
Configuration: Clean
Other: Crew very fatigued and apparently did not read back clearance and had lost situational awareness. MK I GPWS installed and operational. First warning apparently ignored.

FLIGHT PATH PROFILE
B747-200
Pointe-A-Pitre, Guadeloupe
December, 1989

ATC: "...Altitude Please?"
F/O: "3700 Feet"
ATC: "CLIMB IMMEDIATELY!
TURN RIGHT TO 350 NOW!
CLIMB TO 8000 FEET!"

F/O: "We'd Like Vectors"
ATC: "Vectors To Final Approach Runway 11"
"Turn To Two Two Zero (220) - Descend To 3700 Feet" (Meant To Say Zero Two Zero (020))

Probable MK I GPWS Warning
MK VII GPWS (Not Installed)
CIRCUMSTANCES: During initial approach to ILS-29, the aircraft struck a mountain. This Medevac aircraft was positioning to Bardufoss from Tromso which is only 32 NM from the north. The aircraft was entering a procedure outbound turn, but overshot the Initial Approach Fix (IAF) NDB by 2-1/2 NM (or 30 seconds). It was too fast, turning outside the approved procedure area and prematurely descended to 5000 feet. It struck the mountain ridge some 35 feet from the top. There was also a probable atmospheric altimetry error... because of non-standard temperatures, placing the aircraft some 300 feet low.

TIME: 23:02 local

WEATHER: IMC - wind 270/1 skt. Visibility over 10km at airfield.

CONFIGURATION: Clean

FATALITIES: 4

OTHER: Radio altimeter installed. No GPWS. Military radar coverage.

Flight Path Profile

Ce-551

BARDUFOSS, NORWAY
14 November 1989

Don Bateman

MK VI GPWS WARNING (not installed)
BARFUSS, NORWAY

BARFUSS Approach (ILS Rwy 29)

ILS Rwy 29
LOC 108.7 BF

GS located 277' (115m) in front of the Rwy 29.
Procedure based on max 160 KT IAS.

MISSED APPROACH: Climb STRAIGHT AHEAD on 288° to SA Lctr, then turn RIGHT and continue climb on 308° from SA Lctr to 5000' (4775') and join holding over SJA NDB.

STRAIGHT IN LANDING RWY 29
ILS

<table>
<thead>
<tr>
<th>Altitude (feet)</th>
<th>7800</th>
<th>8800</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIL out</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>NOT AUTHORIZED</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>3200</td>
<td>3200</td>
<td>3200</td>
</tr>
</tbody>
</table>

SJP 2100' IAS 2.05° 70° 30° 10° 10° 10° 10°
Flight Path Profile
RADAR VECTORING INCIDENT
B737-200
SPOKANE, WASHINGTON
9 NOVEMBER, 1989

Capt: "Left 10 for 9 Foxtrot"

ATC: "Spokane--fly 270 for visual approach 21" Descend at pilot's discretion, maintain 7 thousand"

Capt: "Descend 5 thousand" (No response from ATC)

Notes: Premature Descent Clearance For ILS Runway 21 IMC, 17 E 60 100 15 Mile Visibility Wind 180 Degrees, 20 Kts at Altitude. MK I GPWS Installed

MK I GPWS WARNING ("W-W-Pull Up") Installed

MK VII GPWS WARNING (Not Installed)
"Terrain-Terrain Pull Up"
This radar vectoring incident, (one of at least three at Spokane), illustrates the danger of miscommunicated ATC/pilot descent altitude clearances. Fortunately in this case (as in the others), the flight crew pulled up on activation of GPWS. Flight crews are particularly vulnerable when radar descent clearances are in areas off the instrument approach procedure. (Interestingly some of the terrain not shown on the adjacent plate is shown on the government procedure. It also appears that Spokane does not have ARTS III Minimum Safe Altitude Warnings (MSAW) for the controller.)
Flight Path Profile
DHC-6
MOLOKAI, HAWAII
28 October, 1989

Summary:
Flight 172 Maui to Molokai Aircraft Flew into Coastal Mountain Ridge Affter Canceling IFR To Fly VFR Along Northern Coast In Uncontrolled Airspace

Weather:
Scattered Clouds At 900 Feet, Heavy Rain At Times, 4500 Feet Tops, 8 NM Inland, ½ NM Offshore

Equipment:
Color Wx Radar And Radar Altimeter

Fatalities:
20 (2 Crew Included)

GPWS WARNING
(NOT INSTALLED)
8.6 SECONDS
Remain-Remain Pull-Up! To Impact
TRAGEDY ON MOLOKAI

20 die in worst interisland air crash

8 from high school teams among dead

By David Wolfe

KAHUNAENA - Molokai, the Friendly Isle, became the island of despair yesterday as grieving parents, family and friends received word of a crash that claimed the lives of 20 people - including eight students and two teachers - in the worst interisland air crash in Hawaii's history.

The crash occurred near the return Molokai Valley of Hawaii, where it apparently was a small aircraft. It was apparently the cause of an air crash in 1983.

A donor yesterday was unable to be contacted and officials were unable to contact the families of the dead. The crash caused a total loss of the flight.

Investigations of the NTSB Paris Safety Board were conducted at the crash site today.

According to the NTSB, the flight also consisted of a passenger from Kauai, the flight from Molokai, and a pilot from the mainland.

The crash is currently being investigated by the NTSB. The island's 8,000 residents feel close to each other and in their election of the Molokai High School volleyball teams.

"This is a very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close."

"This is a very, very small community," said Molokai High School principal Bob Smith. "It's a very small community, and we're very close.
CIRCUMSTANCES: While on an ILS approach to runway 01, to be followed by circling to Runway 19, the aircraft inadvertently descended off the localizer course into terrain. A radar controller at Bandufoss detected the problem and alerted the flight crew in time for a successful recovery.

WEATHER: IMC - aircraft picking up ice

TIME: 13:52 local

CONFIGURATION: Gear up, flaps 15

OTHER: Short flight from Bardufoss (36 nm) put time pressure on the pilots. Pilots also were busy and distracted with anti-ice procedures and watching engine EPRs. (Ice on windshields and wipers.) No approach briefing. Captain was receiving little help from co-pilot. 120 people on board. Early primitive MK 1/2 GPWS installed and no warning.
MISSING AP? KOC 11. T CLIMB STRAIGHT AHEAD on 310°. Then turn LEFT climb to 5000' and hold. Approach VOR.

LANDING RWY 01 CIRCLED. LAND.

 turbulence not authorized West of airport

CIRCLE TO LAND

MISSED APPROACH: Climb STRAIGHT AHEAD on 010° via TMA to OM/053.3 TC ILS, then turn LEFT climbing on R-350 outbound TRO VOR. At 3500' proceed to KV via MILSEY VOR. Climb to 3000' (975') prior to level indication.
Summary: Night Departure Runway 21 Cleared For Alpha Departure. Aircraft Inadvertently Turned To Left And Later Corrected To Right, But Too Late. Aircraft Hit Mountain. (19:56 Local)

Weather: Not Significant

Fatalities: 54

Flight Path Profile
B737-200
HUALIEN, TAIWAN
26 OCTOBER, 1989

GPWS: "Terrain-Terrain WW Pull Up!" "Terrain-Terrain WW" "Terrain WW" "Flaps Up..." "Flaps Up"

F/O: "Should We Have Not Turned Right?"

Pilot: "Approach Control This Is 204"

ATC: "Good Evening 204--Radar Contact--Cleared For High Speed Climb--Maintain 11 Thousand"

Tower: "Takeoff Was At 54"

Pilot: "Thanks Good Night"

Runway 21

Start Left Turn (25° Roll)

Start Of Right Turn (25° Roll)

270°

Wings Level

Roll Increased Rapidly To 45° to 327° Heading (At Impact 221 Kts)

4000

3000

2735'

2000

1000

0

3000

415'

ALTITUDE MSL ~FEET

TIME ~ SECONDS

TIME ~ SECONDS

MK II GPWS WARNING

6.3
Crashed 737 ‘turned wrong way’

A China Air Lines (CAL) Boeing 737-200 (B-180) crashed into Taiwan’s central mountains on 26 October. The crash happened about ten minutes after take-off from the coastal city of Hualien, on a regular 30-minute flight to Taipei.

The Deputy director of the Taiwan Civil Aviation Authority, Chang Kuang-foo, says: “The plane should have turned to the right after it was airborne. How come it went left?”

The normal procedure out of Hualien is to make the initial climb to the east over the sea, then turn north and pass over the Chishan mountains, into which the aircraft-crashed. On this occasion the pilot, who has flown 15 years with CAL and had logged 6,500 flying hours, turned left and flew west.

The 737-200 was delivered new to CAL in 1986. Its wreckage is spread widely through several valleys, and no survivors are expected from the 47 passengers and seven crew.
Flight Path Profile
B727-200

TEGUCIGALPA, HONDURAS
21 October, 1989

Circumstances: While On A VOR DME Rwy 01, Aircraft Prematurely Descended And Impacted Terraced Mountain 6½ NM Short Of Runway
Weather: Heavy Rain, Wind, Foggy. GPWS Was Leased From Continental Airlines.
Configuration: Gear Up. 25 Flap
Fatality: 131 Out Of 149 On Board (Captain & F/O Survived)

Similar Accidents:
* 21 March 1989 L-188 Hit 4500' Level
* 25 February 1989 DC-7 Hit Same Mountain
* 10 Fatalities

Distances from Runway Threshold: 12 11 10 9 8 7 6 5 4 3 2 1 0

Time to Impact: 22 SECONDS

Estimated Warning Time IF MK 1 GPWS On Board Had Been Left Activated By Airline (Warning Would Have Been WHOOP-WHOOP PULL-UP)
727 Strikes Mountain Approaching Tegucigalpa, Honduras

Following is a preliminary report:

On October 21, at 0745 local time, during a VOR DME 01 approach to Tegucigalpa in IMC, Flight 414, a 727-200 operated by the Honduran national airline Tan-Shas, struck a mountain 4.8 miles from the runway when the captain deviated below approach chart minimum step down altitudes. Of the 141 passengers and crew on board, 131 were fatally injured; the captain and first officer survived.

Weather at the airport was clear but surrounding mountain tops were obscured by clouds with tops around 7000 ft and bases approximately 5000 ft MSL.

The 727 was leased from Continental Airlines. A Mark 1 GPWS was installed but it was disconnected in accordance with company directives in order to provide commonality with the rest of the company's non-GPWS-equipped 727s.

The captain and first officer were recently qualified on the 727, but both had extensive experience at Tegucigalpa; the captain while flying in command of 737s and the first officer while serving as a Honduran Air Force T-37 instructor pilot. The captain had approximately 17,000 hours flight time.

The captain conducted the approach without reference to his approach chart, that is, the chart was not out. The first officer had the approach chart out but made none of the company-required altitude-DME crossing callouts.

Based on communications tapes and flight recorder plots, the crew may have called 14 DME before actually arriving at that position. Another flight was inbound to Tegucigalpa at that time and sequencing priority, based on which flight was closest to the airport, could have been a factor. Flight 414 was cleared for the VOR DME approach to runway 01, a procedure specifying a series of step downs to avoid high terrain beneath the final approach course.

The flight began a continuous descent from 7600 ft about 11 DME (instead of waiting to pass the 7 DME, 7500 ft step down point) and entered the cloud deck about 7000 ft. Initial sink rate was approximately 600 ft/min but after passing 6700 ft, sink increased to about 1800 ft/min, then, at 6500 ft, decreased to approximately 1500 ft/min. All the while, the flight was beneath the step down profile.

First impact occurred on an agriculturally-terraced mountain saddle, approximately 4800 ft MSL, at 4.8 DME. The right wing and tail separated and fuel from ruptured tanks ignited, consuming a large part of the fuselage...
Circumstances: During a missed LDA/DME approach, the aircraft accelerated into the ground in IMC.

Time: 06:29 PDT

Configuration: Clean - Climb Power

Weather: Visibility to the south ½ mile in fog (fog bank advancing north across the field)
- XBR 35 120 wind calm
- Visibility 5 miles, fog, smoke

Fatalities: 7

FLIGHT PATH PROFILE
Metro III
Terrace, B.C.
26 September 1989
Circumstances: During a B/C LOC approach to runway 27, the aircraft inadvertently descended below MDA and severed four electrical transmission lines 75 feet AGL. Because of weather, the aircraft was recovered from a visual approach runway 19 to B/C LOC approach 27 for favorable winds.

Time: Night 21:33

Other: MSAW did not provide alert to controller because software inhibited area to minimize nuisance alerts.

Injuries: None out of 60 on board

Damage: Main gear & nose gear doors torn off. 12 inch cut into vertical stabilizer to spar. Hydraulic systems A & B lost.

Pilots may have mistaken shopping mall for approach lights.
This is a preliminary report:

On September 8, at approximately 2130 local time, a U.S. Air 737-200 descended below MDA before reaching the visual descent point (VDP) on a night IMC back course localizer approach to runway 27 striking two high tension electrical power lines 1.2 miles from the approach end of the runway. The “B” hydraulic system was lost as a result of wire strike damage but the flight was able to make a successful missed approach and divert to Salina, Kansas where it landed uneventfully.

Weather: Special report at 2127 CDT; indefinite ceiling, ½ mile visibility, thunderstorms and heavy rain. This information was not transmitted to the crew.

Half hour old ATIS stated 2500 ft scattered, 7500 ft overcast, visibility 10 miles.

The flight departed Pittsburgh and was routine in all respects until the incident.

Initially, the crew was given vectors for a runway 19 visual approach but two aircraft missed the approach due to low visibility in heavy rain showers so approach control switched runways, setting the crew up for the back course localizer to runway 27.

The first officer returned the nav aids for the back course localizer and shortly thereafter the crew was cleared for the approach. Approach control didn’t broadcast the 2127 CDT special weather observation until after the flight had been handed off to the tower. No updated weather information was provided by the tower before the incident which occurred at 2134 CDT.

An FAA air carrier inspector, recently rated on the 737, was seated in the cockpit jump seat during the approach. He didn’t notice anything irregular and did not alert the crew in any manner before the incident.

After intercepting the final approach course in rain showers with the captain hand flying, the crew reported sighted lights which they equated with the approach end of the runway (the runway has no approach lights, but has REILs and VASI). With outside cues in sight, the captain descended below MDA (375 ft above the touchdown zone) before reaching the VDP one mile from the runway.

Rain became heavier, windshield wipers were switched on and the descent continued. Around this time, with very heavy rain beating on the windshield, the first officer (who recently had completed a windshear training package) became aware of flattening of terrain cues and called out “go-around.”

The captain immediately responded, rotating the nose upward and pushing the throttles to the forward stops.

Almost simultaneously the aircraft struck and severed three power lines approximately 75 feet above the ground and 1.2 miles from the runway threshold.

The crew felt the airplane lurch and heard a bang but didn’t equate these perceptions to an obstacle strike. Then, a short time later, all B system hydraulic fluid was lost. Although the cockpit crew and FAA inspector didn’t notice anything indicative of a wire strike outside the cockpit, passengers reported seeing a bright blue flash at about the time the airplane pulled up. The flight then diverted to Salina, Kansas and landed uneventfully.

After landing, an inspection revealed a deep cut in the vertical fin leading edge about 2 ft below the top of the stabilizer. The cut extended back to the front spar which apparently had sufficient rigidity and mass to sever the ½ inch ground wire which it had struck. The nose gear struck and severed two of four 1½ inch 150 KVA power lines strung below the ground wire. These impacts separated the nose gear’s right door and damaged the left nose gear door. One of the snapped flailing wires damaged the left main gear shimmy damper and anti-skid electrical connections and severed a B hydraulic system line in the wheel well, depleting the system.

The captain had operated in command on the 737 for about one year and the first officer had flown the 737 for about two years.
Air ambulance crashes in Oregon; 3 are killed

GOLD BEACH, Ore. (AP) — A twin-engine air ambulance crashed Monday while trying to land at the Gold Beach airport, killing the three volunteer crew members on board.

Curry County Sheriff Chuck Deneen said the twin turboprop Beechcraft King Air operated by Mercy Flights Inc. of Medford hit a power pole at 12:50 p.m.

Mercy Flights identified the dead as the pilot, Richard Mendolia, 40, of Medford; co-pilot Wally Nitowski, 46, of Eagle Point, and the flight nurse Diane Lefler, 40, of Jacksonville.

The crash was the second in Mercy Flights' 40 years of volunteer service.

The plane was engulfed in flames as it tumbled into the front yard of a house next to the end of the runway, Deneen said.

The crash temporarily cut off power to part of this city of 1,000 on the southern Oregon coast.

Deneen said the plane apparently got off course in fog as it made its approach to the airport.

The plane hit a parked truck and flipped over before coming to rest next to the house. The house and a boat were damaged by the heat from the flames.

There were no reports of anyone hurt or killed on the ground, said sheriff's Deputy Karen Baker.

Mendolia and Nitowski were local commercial pilots and Lefler worked at Ashland Community Hospital, said Mercy Flights operations director Bob Cecil at a press conference in Medford.

Cecil was called in from the crew rotation list and Nitowski and Lefler were already at Mercy Flights' office at the Medford-Jackson County Airport and volunteered to go when the call came in for a flight, Cecil said.

"They were here because they loved to be here," Cecil said with tears in his eyes. "It is love of man and love of flying that causes us to do what we do."

They were dispatched to pick up an 81-year-old woman who had suffered a stroke and bring her to Medford for treatment, said Rex Strichtler, medical director for Mercy Flights.

After the crash, the patient was taken by road to Medford, he said.

The air ambulance service stopped operations for 24 hours to mourn the dead crew, Cecil said.

Mercy Flights was founded in 1949 to carry children suffering from polio from rural areas to hospitals in Portland.

Mercy Flights founder George E. Milligan and three other people were killed in 1965 when a Mercy Flights plane carrying a patient from Gold Beach crashed on approach to Medford-Jackson County Airport.

Baker said Federal Aviation Administration officials were on their way to Gold Beach to investigate the crash.
FLIGHT PATH PROFILE
DHC-6
NR. Gambella, Ethiopia
7 August, 1989

NOTES:
Circumstances: Aircraft hit mountain on an unscheduled VIP charter flight to Pumyido.
Weather: Terrain obscured by low clouds.
Fatalities: 16

DISTANCE TO IMPACT ~NM

 ALTITUDE
MSL ~FEET

TIME TO IMPACT ~SECONDS

MK VI GPWS (Not Installed)

"TERRAIN - TERRAIN"
"PULL UP! PULL UP!"
(8 Times)
Leland called martyr in war on hunger

Associated Press

"HOUSTON -- Rep. Mickey Leland was eulogized yesterday as a martyr for the cause of world hunger, and mourners were urged to honor his memory by carrying on his work. Mickey is gone, but his values and his work will live after him in our memory and in our commitment," House Speaker Tom Foley said at a funeral Mass at St. Anne's Catholic Church.

"We can all do something by which to remember Mickey and to honor his life and work," Foley said. "We can commit ourselves to reward and serve those values and commitments that marked Mickey's life and led to Mickey's death."

Leland, 44, a Texas Democrat, was killed with 19 others Aug. 7 when their plane crashed in Ethiopia while carrying them to a camp for Sudanese refugees. A private burial is planned for the six-term congressman when his remains are returned to Houston, probably this week, friends said.

Hundreds of people crowded under the ornately carved arches of the central Houston church yesterday, and hundreds more gathered outside as politicians and clergymen praised Leland's work on behalf of the starving.

Leland's wife, Allison, and other family members attended the service, along with numerous dignitaries. The Mass followed Friday's memorial service, which drew 5,000 people.

Bishop Joseph Fiorenza of the Diocese of Galveston-Houston read a message delivered through the Vatican Embassy in Washington. Pope John Paul II, the message said, "is well aware of Rep. Leland's great humanitarian effort to relieve the starvation of the Sudanese refugees in Ethiopia."

The Rev. Jesus Jacobo spoke at a service that mixed a traditional Roman Catholic Mass with gospel singing.
CIRCUMSTANCES: Aircraft hit 4775 foot mountain at the 4000 foot level on initial 'visual' approach. The aircraft was inbound on 'H59' 4NM west of track in VMC conditions at 15 DME, a descending turn to 159° from 120° was made to form a left base to runway 09 visually. Unfortunately the aircraft entered IMC and the pilots did not detect their error in time.

WEATHER: High terrain shrouded in cloud.

TIME: 15:30 local approx.

FATALITIES: 34

NO GPWS INSTALLED
SAMOS, GREECE

SAMOS

LARKI ONE ALFA (LARKI 1A). ORMOS ONE ALFA (ORMOS 1A), URNIL ONE ALFA (URNIL 1A)

SAMOS Approach 124.1
SAMOS Tower 124.1
SAMOS 124.1

SAMOS, GREECE

SAMOS

CIRCLING VOR DME
VOR 111.6 SAM

SAMOS Approach 124.1
SAMOS Tower 124.1
SAMOS 124.1

SAMOS, GREECE

SAMOS

CIRCLING VOR DME
VOR 111.6 SAM

SAMOS, GREECE

SAMOS

CIRCLING VOR DME
VOR 111.6 SAM

MISSED APPROACH: Climb on R-360 outbound VOR to 3000' (2980'), then turn RIGHT (MAX IAS 185 Kt) to VOR climbing to 6000' (5980').

CIRCLING CIRCA
A: 1750' (1730')
B: 1850' (1830')
D: 2100' (2080')

STRAIGHT-IN LANDING

CIRCLING TO LAND
Prohibited North of runway

A
100 1750' (1730')
125 1750' (1730')
160 1850' (1830')
175 2100' (2080')

B
C
D

NOT AUTHORIZED

2000m
4000m
6000m

2000m
4000m
6000m
CIRCUMSTANCES: While on VOR DME approach to runway 22L, the aircraft prematurely descended down to within 160 feet of the water. GPWS installed and gave timely high descent rate warning. Mis-set barometric altitude settings (29.91 inches instead of 991 millibars) leading to the aircraft being low in altitude by 640 feet.

WEATHER: IMC, 70C 5 KM VIS Winds 200 at 25-30 kts

MIS-SET BAROMETRIC ALTITUDE SETTING 640 feet

Flight Path Profile
DC-10/30
COPENHAGEN, DENMARK
July, 1989

INCIDENT

Next Page
NARRATIVE: A 3-MAN MOV CREW EXPERIENCED IN EUROPE OPS REPORTED FOR SCHEDULED DUTY AT XE06 EDT TO FLY OTTO-BOB, CHANGE ACFT AT BOG AND FLY BOG-CPH. SCHEDULED DUTY TIME WAS 1245, LEFT FROM BOG WAS DELAYED 2:30 FOR ACFT MAINT. CREW DEPARTED BOG WITH PROTECTOR COPENHAGEN ARR TIME OF 0755 EDT. CREW HAD BEEN AWAKE FOR 20 HRS INCLUDING THE ENTIRE EASTERN TIME ZONE NIGHT AT TIME OF 1800 AT CPH, ACFT IN USE AT CPH WAS 22L VOR DME, S/O (KAS) COPIED ATIS SHOWING ALTITUDE SETTING TO BE 29.91, CEILING AT 700', WIND AT 25-36 KTS 900'. TRANSITION LEVEL WAS 40 AND "QNH 991" WAS GIVEN BY ACPC. F/O WAS FLYING ACPC AND WAS CLASPED TO INITIAL ACPC ALT OF 2500' ON A 270 DEG INTERCEPT POSN, PUBLISHED QNH WAS 420', INTERCEPT OCCURRED AT 15 DME, AND FINAL ACPC FIX WAS AT 10 DME. UNIFORM INITIAL TWR CONTACT CREW WAS ADVISED OF HEAVY RAIN AT FIELD, FLY DIRECTORS WERE SHOWING ACPC ON COURSE BUT COL'S WERE SHOWING COURSE TO BE RIGHT. FLY DIRECTORS WERE TURNED OFF AND F/O CONTINUED WORKING TO CORRECT TO VOR COURSE. WIND AT 2000' WAS 310/40 KTS, DRIFT WAS 9L. AT 1000 ACFT CAPT CALLED OUT "1000" AND SHORTLY THEREAFTER S/O MONITORING ACPC (COMPANY DOES NOT SUPPLY ACPC CHARTS TO S/O'S) CALLED OFF "300 RADAR ALT, GO AROUND" MISSED ACPC WAS INITIATED IN HEAVY RAIN WITH PRESS ALT READING 800'. F/O FLEW MISSED ACPC. AFTER MISSED ACPC CAPT QUESTIONED TWR ABOUT ALTIMETER SETTING BEING 29.91 AND BILLED CONFIRMATION. A SECOND VOICE HOWEVER CORRECTED THAT STATEMENT TO 991 MILLIBARS. ACPT ALTIMETERS WERE READ FROM 25.91 TO 991 MILLIBARS, A 440' DIFFERENCE. F/O FLEW ACPT ON SECOND ACPC TO SAME RADAR ALT WITHOUT INCIDENT. ACPT MOST PROBABLY WAS SET IN 1500 FEET OF BEARING. CONTRIBUTING CONDITIONS: COPY OF ATIS. VERY TIRED CREW. "QNH 991" TERMINOLOGY. FL400 FEET ALTITUDE LEVEL DURING BUSY ACPT PERIOD, NO GLIDE SLOPE AVAILABLE ON ACPC. VERY STRONG WINDS, HEAVY RAIN. VERY LOW ALTIMETER SETTING (29.91). AS A MINIMUM FIX FOR THIS PROBLEM, TERMINOLOGY SHOULD BE QNH 991. WHEN QUOTING MILLIBARS ON RADIO PASCALS, "QNH 991" IS NOT ENOUGH. CALLBACK CONVERSATION WITH REPORTER SESSIONED THE FOLLOWING: THE S/O WAS MONITORING THE RADIO ALTIMETER ON DESCENT AND NOTED THE DISPARITY BETWEEN IT AND THE BAROMETER ALTIMETER AND CALLED OUT TO GO AROUND AS THE ANNEX TO THE COPPER-WIRE MACH VERSION WENT OFF SO WE WERE ALL COORDINATED ON THE CROP DOWN. ONE PROBLEM ON ALTIMETER SETTING IS THAT WE DID NOT RECEIVE THE ALTIMETER UNTIL ABOUT 4000' ON DESCENT. THIS IS COMMON IN EUROPE 4 - 6 FEET ON DESCENT. SO WAS HURRIED AND VERY TIRED AND APPARENTLY MISREAD THE ALTIMETER AS 29.91 WHEN THEY SAID QNH HIER HIER ONE.

SOURCE: ASRS 118461
FLIGHT PATH PROFILE
CV-580
Auckland, New Zealand
31 July, 1989

Circumstances: Aircraft accelerated back into ground during night takeoff. Co-Pilot flying with a faulty ADI. ADI had been previously reported with precession errors 5 to 10 degrees nose up, but was not replaced because of a lack of spares. Normal climb attitude is 6 to 8 degrees nose up.

Time: Night
Weather: IMC - light drizzle
Fatalities: 3
Other: Aircraft had been fitted with GPWS MK I but was later removed after leaving U.S.A. Aircraft still equipped with wiring, lights, etc. for GPWS. N.Z. Report: "GPWS might have helped avoid the crash. Although such equipment was recommended by ICAO for the aircraft class on International operations, it was not required for New Zealand registered turbo-prop aircraft after a trial test period resulted in unacceptable false warning rates."

Probable ADI-Oryo Precession To 8 Degree Nose Up.
Co-Pilot Begins To Lower Nose
Captain Retracts Flaps...Sets Climb Power
Maximum Altitude Attained
Tim Change To Nose Down
-1200 lpm
-2000 lpm, 180 kts
First Impact
GPWS WARNING IF INSTALLED
(Not Installed)
"DON'T SINK" "DON'T SINK" "DON'T SINK"
"SINKRATE" "SINKRATE" "SINKRATE"
"PULL UP" "PULL UP" "PULL UP"
Flight Path and Crash Profile

Manukau Harbour

Wreckage

First Impact

Approx. 400 feet

Last Sighting

Lift-off

Runway 23

4000m 3000m 2000m 1000m
Flight Path Profile
DC-10-30
TRIPOLI, LIBYA
27 July, 1989

Summary:
Locator Approach To Runway 27 (ILS INOP)
07:30, Local Time
Fog
Hit 0.7 NM Short Of 'LMM' Slightly Right Of Course
Early Primitive GPWS Installed (MK1½) Which Gave
A 7½ Second Tone Warning
76 Fatalities Out Of 199 Onboard, 4 Fatalities On The Ground

162 KTS
1900 fpm

270° 1500'

620' MDA
2200 fpm

LDH

0 5 10 15 20 25 30 50 60

TIME TO IMPACT ~SECONDS

7½ SECONDS GPWS MK 1½
'Whoop Whoop' (Tone Only)

AK VII (NOT INSTALLED)
18 SECONDS 'Sinkrate'
5 SECONDS 'Pull Up'

3000
2500
2000
1500
1000
500
0

ALTITUDE MSL ~FEET

DISTANCE TO RUNWAY ~NM
Korean DC-10 crashes in Libya

A Korean AIR McDonnell Douglas DC-10-30 crashed while attempting to land at Libya's Tripoli Airport on July 27. The DC-10 came down some three miles short of the airport, and destroyed houses and several cars. Four people on the ground, 72 passengers, and three crew were killed.

An Antonov aircraft that arrived at Tripoli an hour before the DC-10 had carried out a missed approach and diverted to Malta because of fog. Tripoli's runway 27 is equipped with a Category II instrument landing system, and the DC-10 is equipped for automatic landing, although it is not known if this was used. The captain, Kim Ho-jung, who survived the accident, said he had lost radio contact with Tripoli some 13 minutes before the accident.

Unconfirmed reports say the cause was reported engine trouble on Tripoli approach, and also that a wheels-up landing might need to be attempted. It confirmed this could point to a triple flame-out, which dictates a high-speed approach with stabilized landing gear up, and the need to leave emergency gear extension until as late as possible.

The DC-10 was operating flight XE003, a scheduled service which departs Seoul at 1400 local time and has intermediate stops at bangkok and jeddah, with arrival at Tripoli scheduled for 0730 local time. There were 181 passengers and 19 crew on board. The aircraft was the 34th DC-10 delivered to the airline. The accident (27-7328) was manufactured in 1973, the 125th DC-10 on the line, and was delivered to Thai Airways, which later sold it to Korean Air. It had amassed about 47,600 flight hours since new.

DC-10s are powered by General Electric CF6 turbofans, although the -30's CF6-50s produce more thrust than the -10's CF6-6. The unexplained failure of a CF6-6 led to the United Airlines DC-10-10 accident at Sioux City, USA, on July 19.
Circumstances: Aircraft hit short during an ILS approach to runway 10. The approved clearance was VOR DME Runway 10, but the ILS was on and utilized by the crew. Crew concerned about fuel required to divert to Guyama.

Weather: 900 meters visibility in fog.

Time: Night

Other: Possible contributing cause was improper management of Flight Director (No glideslope capture... fixed vertical speed from above the glideslope). Runway visible at times during approach. Aircraft was leased from U.S.A. with crew. (Ex. Braniff)

Fatalities: 170 out of 183 on board

FLIGHT PATH PROFILE
DC-8/62
Paramaribo, Suriname
7 July 1989

Glideslope Centerline

ZANDA
D8.0 ILS

Capt.: 'If I get a capture, I'll be happy'
F/O: 'On glideslope... just above'
Capt.: 'I didn't get no capture yet'

1000' AGL

1100 fpm
140 kts

D6.0 ILS

GPWS: 'Glideslope' 'Glideslope'
'Glideslope' 'Glideslope'
'Glideslope' 'Glideslope'
'200' '1000'

F/O: 'Punch it'

(FPWS silence)

GPWS Below Glideslope Alerting Area

GND

1.9 dots

D 4.8 ILS

F/O: '300'
Capt: 'OK MDA... I'll level off right here...'
F/O: '150'
F/O: 'Pull Up!'

TIME TO FIRST IMPACT ~ SECONDS

DISTANCE TO RUNWAY ~ NM

ALTITUDE MSL ~ FEET

MKI GPWS INSTALLED

(DON BATESMAN)
168 Aboard Airliner Killed in Crash in Suriname

PARAMARIBO, Suriname, June 7 (AP)—An Suriname Airways jetliner en route from the Netherlands with 168 people aboard crashed today in a jungle area near the Paramaribo international airport, killing 168 people, the airline said.

The Suriname News Agency said the DC-8 went down at about 4:20 A.M. two miles from Zanderi International Airport. Fourteen survivors were taken to University Hospital in Paramaribo, but their identities and condition were not immediately known.

An airline spokesman, Rob C. Lachmitting, said in Amsterdam that the plane crashed in dense fog. The airport has no radar, Mr. Lachmitting said.

The Suriname News Agency said three of the nation's top military officers were on the flight and identified them as the army chief of staff, Maj. Raymond Lieuw Yen Tai, the air force commander, Maj. Eddy Dijx, and the army chief of operations, Capt. Arnold B. Slama. All were presumed dead, the agency said.

The plane carried 173 passengers and crew members, Mr. Lachmitting said. The plane said the plane was flown by Americans and identified them as Capt. Will Rogers, Glyn Tobias, a pilot, and Rod Waters, the engineer. All were listed as full-time employees of Suriname Airways. Their hometowns and ages were not immediately known.

The 29-year-old DC-8, which was registered in the United States, broke into four pieces but did not explode, and no fire broke out, Mr. Lachmitting said.

There were no immediate reports on what caused the crash. Mr. Lachmitting said it was not caused by the plane's technical condition.

The airline spokesman said the airliner, leased by Suriname Airways from an unidentified American compa-

THURSDAY, JUNE 8, 1989

n, was extensively overloaded in Luxembourg on 18 days ago.

The plane, which took off late Tuesday from Schiphol Airport in Amsterdam, tried three times to land at Suriname's airport, another airline spokesman said in Amsterdam. The weather was "terribly bad" and on the third attempt the jet hit a treeline, the spokesman said.

At least three passengers were top Dutch soccer players of Surinamese origin, according to Inter Football, a Dutch organization for professional soccer players. They were to take part in a national tournament in Suriname.

A passenger list was not immediately available, but an airline spokesman in Amsterdam, Clem Jel, said most of those on board were Surinamese people living in the Netherlands.

182 people were on board a DC-8 that crashed outside Paramaribo.
Circumstances: During an ILS AFGS approach to runway 4 R, the aircraft overshot the localizer, and during an attempt to capture the localizer manually using the AFDS, the aircraft inadvertently descended well below the glideslope and 1 NM left of course, resulting in a missed approach.

Weather: Partially obscured 300 feet, scattered, measured ceiling 400 feet, ½ mile visibility for and rain.

Contributing Factors: 1. F/O had left Bank Angle Limit Selector at 10° and had not reset it to AUTO or 25° which limited the AFGS (and AFDS) bank angle during the intercept to capture the localizer
2. In an attempt to regain the localizer, the Heading Select Mode was engaged while in Approach Mode. The Captain disengaged the autopilot, manually flying with the AFDS, but because the glideslope had not been captured, the AFDS remained locked in Vertical Speed.
3. ATC’s very tight turn onto localizer

F/O: "Tower --- on the four right approach and we're leveling at two thousand."

Tower: "Roger. Intercepting the localizer?"

F/O: "Yes, we are. We went slightly through it."

Tower: "Alright, Fine"

Tower: "I show you Four Hundred feet --- Just inside the marker."

"I suggest you climb and maintain three thousand. Abandon the approach ---"

F/O: "We're climbing and in a missed approach ---"

Tower: "Okay. I just show you abeam 165 (169°) the marker about a mile, uh west of it"
Circumstances: During initial approach to Valence ILS 01, the aircraft struck a mountainous wall.

Weather: Lower ceiling 2300 to 2700 meters, tops 3500 to 5000 meters, and a layer of 5 to 7/8 cumulus, and stratocumulus from 600/800 meters to tops 1500/2000 meters. Visibility 5 to 10 km, -R. Aircraft probably in clouds. Wind from north at 5kts. Temp +9°C.

Time: 19:07 local (night)

Fatalities: 22

Probable Cause: Selection of incorrect VOR. ("LSA" INSTEAD OF "VNE) using correct outbound radial. Captain trusted VOR but not ADF bearing.

No GPWS installed

Capt: "it's funny there is really 30 degrees difference, can you believe it?--between the ADF and the ILS--"

Capt: "but then the ADF is no good, huh?"

Capt: "What does it say on the back course?"
22 Reported Dead in a French Plane Crash

VALENCE, France, April 10 (AP) - A passenger plane crashed into a foggy mountainside in southeastern France tonight, killing all 22 people aboard, officials said.

Rescue workers located the wreckage of the Fokker F-27 about three and a half hours after the crash, which occurred shortly after 9 p.m. at the plane was on its landing approach, local officials said.

They reported finding bodies among the aircraft's scattered debris in a forest near the village of Leponcel, about 15 miles from this city in southeastern France.

The wreckage was on the northern face of the Vercors mountain, at an altitude of 3,000 feet. Officials said the cloud cover was low and the area was foggy.

The twin-engine turboprop was flying for the private airline French-Air Service. It was making a regular flight from Orly Airport in Paris to Va-

nence.

Officials said there were three crew members and 19 passengers, including three children, aboard the plane.
CIRCUMSTANCES: While on final approach to TACAN RWY 18, the aircraft descended rapidly with engines at flight idle, failing to level off at MDA or on the proper approach slope, impacting 21/2 nm short of the runway.

CONFIGURATION: Landing

TIME: 19:57 CST, Night

WEATHER: 4 Q, 6 mile visibility

FATALITIES: All on board (7 crew and 1 passenger)

OTHER: This accident illustrates the need for GPWS to identify cause of warning.
Air Force Plane Crashes

HURLBUT Field, Fla., Feb. 28 (AP) — An Air Force cargo plane with eight people on board crashed and exploded tonight north of this base in the Florida Panhandle, officials said. It was not known whether anyone survived the crash.

The Lockheed C-141 Starlifter from Colorado Springs, was preparing to land at Hurlburt Field when air traffic controllers from adjacent Eglin Air Force Base lost radio and radar contact about 8 P.M., said Airman Jon Gerschat, duty officer at the air field.

Army Rangers reported an explosion about four miles north of the field, he said. Seven people on board were crew members and one was a passenger.
Circumstances: Charted aircraft enroute to Orange Co. John Wayne airport hit mountain 20 miles short.
Weather: Overcast, drizzle, scattered clouds in area
Time: 12:00 PDT
Fatalities: 10.

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
John Wayne Airport
19 February, 1989

FLIGHT PATH PROFILE
Ce-404
Orange, Co.
Tragedy hits a flight to Disneyland; crash kills 10

by Louis Sahagun
and John Kendall
Los Angeles Times

CORONA, Calif. - The shattered wreckage of a chartered twin-engine plane carrying five children, their parents and two other relatives on an outing from Las Vegas to Disneyland was found yesterday on a chaparral-covered peak. All 10 aboard, including the pilot, were dead.

The Cessna 402, flying in drizzly overcast weather at midday Sunday, failed to clear a 2,274-foot crest by approximately 100 feet and hit a peak overlooking Hagar Dor Canyon in the Santa Ana Mountains.

The plane went down about 20 miles short of its intended destination, Orange County's John Wayne Airport.

The Riverside County coroner's office tentatively identified the victims as Michael Cranson, 35, a Las Vegas metropolitan police officer; his wife, Reaann, 33; their five children, Shauna, 15, Stephanie, 14, Nicole, 12, Joshua, 11, and Kyle, 7; James Montano, 24, identified by officials in Las Vegas as Reaann's sister and brother-in-law; and Hassen Barro, the pilot.

Cranson, a 10-year police veteran, was an Explorer Scout leader and was president of the Sunrise Villa Ward of the Young Men's Mutual Improvement Association, a Mormon youth group. His wife was a counselor in a Mormon children's group, said a spokeswoman for the Church of Jesus Christ of Latter-day Saints in the Nevada city.

"They were very excited," she said of the family. "They had been planning this as a family weekend together. They were very devoted to their church and always were concerned about each other. They were just a beautiful family."

Barro was identified as the co-owner of Las Vegas Flyers, which owned the downed Cessna.

The crash was under investigation by the National Transportation Safety Board, whose crew arrived at the crash site late yesterday morning.

The wreckage was spotted by the crew of a radio-station helicopter.

A sheriff's rescue team and coroner's deputies were airlifted to the wreckage.

"There were toys in the airplane, including two little stuffed Mickey Mouses," said Mickey Worthington, supervising forensic embalmer for the coroner's office.
Flight Path Profile
Kuala Lumpur, Malaysia
B747-200
19 February, 1989

ATC: "--Continue to Descend to (two) seven -zero zero
Captain: "--Roger--cleared to twenty seven hundred-- we're out of forty-five"
F/O: "Ask if the, if the ILS is working?"
Capt: "--Is your ILS in operation this morning?"
ATC: "ILS for 33 Is not available, If you wish ILS 15 is available"
Capt: "No -- that's OK we'll come on straight in on 33"
F/O: "how in the hell does he expect us to find the runway?"

ATC: "--Descend to (two) four zero zero - cleared for NDB approach runway 33."
F/O: "--NDB that son of a bitch!" "--OK --four zero zero"
Captain "Alright go ahead I'll set you up"
you got them all set up right now, 265 and 355 and-- on 29 after - 329
in bound"
F/O: "--they're not set up like that"
Capt: "--yeh they're set up"
F/O: "--no they're not, etc."

F/O: "Screw this stuff lets go over and do an ILS"
"I don't even have the damn plate in front of me"
Capt: "--you're all right just keep on goin' down to four hundred feet"
"255-- still going to KL beacon it's on-- it's on yours--" "-- looking good"

F/O: "checklist S/O: "speed brake set* *Flaps*"
F/O: "Whoop-Whoop Pull Up" (twice)

GPWS: "Whoop-Whoop Pull Up (six times)"
S/O: "I've got 700 on the-- ?; Shift"

Capt: "- You got the ILS set-right? F/O: 'yep!"
I'll put.... 47 and that will give yo--

MINIMUM INITIAL APPROACH ALTITUDE 2400' (2311')

Circumstances: Aircraft hit hill 1NM short of FAF (KL'NDB) during NDB approach to Runway 33.
(+8NM short) (ILS & VASI Inoperative)

Time: 06:36AM Local - Dark (just before dawn)

Weather: 1100 foot scattered, wind calm, localized mist/fog
Configuration: Landing Gear down, Flaps 20
GPWS MK I installed

Fatalities: 4
Flight Path Profile
SANTA MARIA, AZORES
B-707-300
8 FEBRUARY, 1989

CIRCUMSTANCES: Charter Flight
Initial approach ILS 19, no radar
Aircraft cleared to 3000 feet, altimeter setting
given as 1027 MB. Actual setting was 1017
MB (280 foot error) Crew misunderstood
altitude clearance as 2000 feet. Readback
blocked by RT transmission.

WEATHER: 30 ø, wind 200/14 kts, 24 kt gusts,
unlimited visibility

CONFIGURATION: Landing gear up, flaps up

TIME: 1900 local

FATALITIES: 144
A 1968-built, hushkitted Boeing 707-331B (N7231T) of Tennessee-based American charter airline Independent Air crashed into a 1,800ft mountain on Santa Maria island in the Azores while on approach to Santa Maria Airport on the afternoon of February 8.

All seven American crew and 137 Italian passengers died. The flight was a holiday charter from Bergamo, northern Italy, to the Dominican Republic, and the aircraft was about to make a planned fuel stop at Santa Maria Airport, on the island's west coast.

Air traffic controllers report that the aircrew had elected to carry out a visual (rather than procedural) approach. Lowest (broken) cloud was at 500ft, and there was further cloud at 1,200ft. The aircraft hit the mountain at about 1,500ft. The aircraft had been cleared to descend to 3,000ft, but then the pilot said he was going visual. Standard local procedure is that descent below 3,000ft is carried out either on approach to runway 01/19, or to the west of the airport, over the sea. Approaches to the runways are over the sea, but the 707 approached from the north-east.

FLIGHT INTERNATIONAL, 18 February 1989
Flight Path Profile
Undetected Descent (Acceleration) During Initial Climb
HS 748
DAYTON, OHIO
12 JANUARY, 1989

Conditions: Night Take-off runway 24
No GPWS Installed
Fatalities: 2

Similar Accidents:
- METRO III 19 FEB 88
- C-141 12 NOV 80
- B-747 1 JAN 78

Conditions: Night Take-off runway 24
No GPWS Installed
Fatalities: 2

1000
900
800
700
600
500
400
300
200
100
0

ALTITUDE (feet) vs. DISTANCE (NM)

- Right Turn Begins to 18°
- Bank Angle Increased to 45°
- Bank Angle Reaches 50°
- Roll Out Initiated, Pull Up Begins
- Pull Up Increased to 1/2 G
- 221 KTS at Impact

'DON'T SINK' ALERT AREA

130 KTS + 1100 fpm

9½ SECONDS

MK II GPWS ALERT WARNING (IF GPWS INSTALLED)

Pull-Up Rate
Don't Sink

'BANK ANGLE', 'BANK ANGLE' MK VII

'BANK ANGLE'
(35 DEGREES)
Incident Location: Southeast of Tangiers Morocco near Telle Atlas Mountains (approximately 30 min. from Tangiers)

Date: Sometime in December, 1988

Aircraft Type: B737-300

Owner/Operator: Scheduled passenger

Type of Operation: IMC overcast and 500 feet ceiling

Weather: IMC overcast and 500 feet ceiling

Description of Incident: During initial descent and approach, into Tangiers, a momentary MK V GPWS "Terrain" alert occurred. The radio altimeter dipped to 1500 feet or so. Aircraft was descending to 5000 feet. The CRT map display showed the aircraft centered on the published track clear of any significant terrain. However, a cross check of IRS #1 and #2 position and raw VOR radials indicated aircraft was approximately 7 min. west of desired track. The captain decided to climb and because of the conflicting navigation data, elected to make an NDB approach. This was performed successfully. The incident was reported by the crew to their airline later. It was later confirmed that the aircraft was indeed west of track and a serious FMS error in position had been presented to the pilot via the EFIS map display. The error apparently was related to the Casablanca VORTAC and also involved some type of FMS algorithm problem. The incident has been reported to the airframe and equipment manufacturer.

Post Analysis: Don't put your complete trust in the FMS— ever! Continuous cross checking all sources of raw navigation data is still a wise, prudent policy.
CIRCUMSTANCES: During LOC DME approach to runway 23 aircraft impacted some 1.4 NM from runway 23 threshold.

WEATHER: Visibility reported as 2 KM haze winds calm to 270/04 Temperature 23°C.

TIME: Daylight 023 UTC (0653 Local).

CONFIGURATION: Landing.

FATALITIES: 139 out of 141 on board. Heavy uncontrolled fire.

OTHER: Possible F/O altimeter error of 320 feet.
Fire trucks did not arrive until 25 minutes after crash.
Construction Lights 1-1/2 NM short of the runway may have misled the pilots to believe they were over the runway.

NOTE: Approach procedure has low approach slope 2-1/3°

Flight Path Profile
B737-200
Ahmedabad, India
19 October, 1988

NOTE: Alert if MK VII had been installed.

-1300 fpm 168 kts
164 Die in Two Separate Crashes Of Airliners in India in One Day

NEW DELHI, Oct. 19—Two Indian airliners crashed in separate accidents today, killing 164 people, the highest toll ever in Indian domestic aviation.

The crashes came as India's two government-owned and operated domestic airlines have faced mounting criticism of shoddy maintenance practices.

While the causes of today's crashes are unlikely to be known for some time, both airplanes were among the oldest of their type in India. One, an Indian Airlines Boeing 737 crashed as it approached Ahmedabad in heavy fog, killing 130 of the 135 people aboard. It was part of India's first purchase of the U.S.-made aircraft in 1970, an airline official said.

The plane burst into flames after hurling to the ground in a northeastern suburb of Ahmedabad, this morning, a little more than two miles from the airport of that industrial city in western India. The New Delhi-bound flight originated in Bombay.

The explosion scattered charred bodies and baggage over a two-mile area. Three of the five survivors were reported in critical condition. Six foreigners were killed in the crash, but Indian officials could not say whether any U.S. citizens had been aboard.

One survivor, Vinod Tripathi, said there were two explosions, one in the air and one after the plane hit the ground. The plane was a 737, he said, manufactured by India.

The second crash, in the northeastern state of Assam, killed 31 passengers and the crew of three. The Fokker F28, operated by the domestic airline Vayudoot, smashed into a 1,400-foot hill near the state capital of Guwahati. The exact age of the aircraft that crashed is not known, airline officials said, but it was manufactured in the 1960s. Similar aircraft have been involved in four crashes in India, killing a total of 138 people.

Today, radio visibility hampered location of the plane's wreckage, and rescue parties were having difficulties reaching the crash site, in a remote corner of Assam. Officials expected no survivors.

Prime Minister Rajiv Gandhi, for years a pilot with Indian Airlines, and other top government officials expressed their condolences. Once held to be the safest story of aviation in the developing world—India's two international and domestic services rank among the world's largest—the country's airlines have been hobbled lately by growing difficulties meeting demand for air travel and reported mismanagement.

"Yes, we have been charged with poor maintenance standards," a top Indian Airlines official said, "but we have not accepted these charges. We make no compromises on safety, and we have one of the world's best track records to date."

Today's crash was Indian Airline's third in the past 25 years, and in the past two years, domestic airlines have been involved in a variety of mishaps, though none fatal. Planes have belly-landed on runways, doors of smaller aircraft have blown open in flight, and large animals and birds have been hit on takeoff and landing. A shortage of planes reportedly has forced the domestic carriers to overuse aging aircraft and the airlines have been accused of allowing maintenance standards to become lax.

Vayudoot, the smaller of the two domestic airlines, in particular has been at the center of criticism. Flight of the 18 planes remaining in its fleet are thrown back to another era, Indian aviation experts have charged. The airline's practice of trying to squeeze every possible mile out of its planes led the manufacturer of its 10 new Dornier 228 airplanes, to state publicly last year that Indian-operated aircraft no longer met the company's safety standards and should be grounded. Similarly, Indian Airlines' fleet of 47 planes is aging and lacking in overhauls and proper maintenance. The airline runs 26 Boeing 737s, 11 Airbus A300s purchased from France since 1976, six Aeron 866s and four Fokkers similar to the one that crashed today. According to the latest data, the world's largest airline, according to the latest data, the world's largest airline, operating nearly 500 flights daily, has been grounded from the air in the United States and other countries for safety violations.

The airline announced in February that it would buy 25 new jets and upgrade its fleet, but the Airports Authority of India has said it cannot afford the aircraft. According to the recent data, the world's largest airline, operating nearly 500 flights daily, has been grounded from the air in the United States and other countries for safety violations.

The airline announced in February that it would buy 25 new jets and upgrade its fleet, but the Airports Authority of India has said it cannot afford the aircraft.
CIRCUMSTANCES: During radar vectors (south of V327 off the airway) for an ILS Runway 30 approach, a miscommunication developed on the descent altitude clearance. The pilot believed it was 5000 feet, and the controller 7000 feet. A timely GPWS Warning and controller alert, and prompt pilot response allowed an expedient recovery from terrain (probable MSAW alert).

TIME: Night
WEATHER: VMC, 15 mile visibility

Flight Path Profile
MD-80
LONG BEACH, CALIFORNIA
October, 1988

INCIDENT
See 9 Nov. 1989, Spokane Wash for an almost identical incident.

Next Page
ON 10/SUN/88, DURING THE TIME XA16Z, MLG CHKED IN APPROX 10 MI E OF COREL INTXN WBOUND DSNDING TO 8000'. I DSNDED HIM TO 7000' (THAT IS THE MVA IN THE AREA). I WAS THEN SCANNING MY RADAR SCOPE FOR TFC THAT SAN DIEGO TRACON HAD PREVIOUSLY TRIED TO POINT OUT WHEN I NOTICED MLG DSNDING THROUGH 6400'. I IMMEDIATELY INSTRUCTED MLG TO CLB TO AT LEAST 6500'. THE PLT RESPONDED WITH "I WAS CLRED TO 5000'" I SAID, "NEGATIVE, CLB TO AT LEAST 6500'." THE PLT RESPONDED AND CLBED TO 6900'. I LATER HEARD A RECORDING OF THE INCIDENT AND I HAD TOLD THE PLT TO DSND TO 7000' BUT HE READ BACK THAT HE WAS DSNDING TO 5000', THE ALT READOUT WAS 6400' WHEN I CLBED HIM, BUT PRIOR TO CLBD THE READOUT GOT AS LOW AS 5700'.

SUPPLEMENTAL INFO FROM ACN 96167: UNDER THE CTL OF COAST APCH ON V372 JUST W OF HOMELAND (HDF 13.4) WE WERE AT 8000' MSL. WE WERE DIRECTED TO THE S OF V372 ON HDG 240 DEGS, VECTOR FOR LNDG AT LGB. WE "HEARD" A CLRED TO 5000' AND RESPONDED MLG TO 5000'. PASSING THROUGH 6000' THE CTLR COMMENTED THAT WE WERE AT 6000' AND CLRED TO 7000', WITH BACKLIGHTING THE SHAPE OF MOUNTAINOUS TERRAIN CAME INTO VIEW. I SAID WE WERE CLRED TO 5000' IN MY REPLY TO THE CTLR AND IN THE SAME BREATH ORDERED "CLB" TO THE F/O WHO WAS AT THE CONTROLS. SECONDS LATER "TERRAIN" WAS ANNOUNCED BY GND PROX WARNING, BOTH F/O AND I ABRUPTLY PULLED BACK ON THE CONTROL COLUMN AND WERE PASSING 6000' ABOUT THE TIME THE CTLR SAID SOMETHING LIKE "YOU CAN LEVEL AT 5500' " THEN SEEING OUR RATE OF CLB SAID 7000' WOULD BE OK. WE LEVELLED AT 7000' THEN IMMEDIATELY CLRED TO 5000'. I SAW THE HAZARD DUE TO BACKLIGHTING BUT DON'T KNOW HOW MUCH CLRNC FROM THE HILLS THAT WE HAD. LATER I SPOKE WITH APCH SUPVR WHO REVIEWED THE TAPE. THE CTLR HAD CLRED US TO 7000' FROM 5000' NOT 5000', WHY I HEARD 5000' IS A MYSTERY TO ME AS I WAS CERTAIN IN MIND OF THE CLRWC TO 5000'. THE CTLR MISSED MY READBACK OF 5000', 7 DOES NOT SOUND LIKE 5, SO I CAN'T EXPLAIN THAT. I HAD REVIEWED THE LA AREA CHART WHICH IS BETTER THAN THE LOW ALT CHART AND I KNEW THAT V372 NASA W OF HDF WAS 5000'. IN EVERY PREVIOUS APCH TO LGB THAT I HAVE MADE I CONTINUED TO SLI ON V372 THEN I WAS VECTORED OVER THE PACIFIC FOR A LEFT 270 DEGS TURN BACK TO INTERCEPT THE LOC FOR RWY 30. THIS TIME THE VECTOR OF 240 DEGS FOR A NIGHT TURN IN TOOK US OVER HIGHER TERRAIN. I'M NOT CONSCIOUS OF THOUGHTS ABOUT THE 5000' NASA AS THE CTLR GAVE CLRED TO 7000', BUT I "HEARD" 5000' AND READ BACK 5000'.

FORTUNATELY THE CTLR CALLED US AT 6000', AS WE DSNDED TO PERHAPS 5700' BEFORE REVERSING TO 7000'. HAD HE NOT NOTICED, THE BACKLIGHTING OF THE MOUNTAIN WOULD HAVE MADE THE NEED FOR A CLB APPARENT (I THINK), BUT THE TERRAIN WAS OBSCURED BY THE ICE ON THE CAGE. IT'S SIGNAL WAS FOLLOWED BY IMMEDIATE CREW RESPONSE AND A HAPPY ENDING. I DON'T KNOW THE ALT OR TOPS OF THE MOUNTAINS ON OUR ASSIGNED HDG. I DON'T KNOW HOW MUCH CLRNC FROM THE MOUNTAINS WE HAD, BUT IT CERTAINLY MAKES CLEAR THE IMPORTANCE OF GOOD COM BTWN THE CTLR THE PLT.
CIRCUMSTANCES: On departure from Runway 4, the aircraft was cleared to climb, maintain 7000 feet and to turn to a heading of 300 degrees. A timely Mark I GPWS warning and a prompt pilot response preceded by a 2500-foot AGL Radio Altimeter light led to a successful escape and recovery from terrain.

TIME: Night
WEATHER: VMC
Return to TOC
Circumstances: The aircraft hit the roof of a house 2½ miles short during a VOR/DME approach to runway 34L.

Weather: Heavy fog.

Configuration: Landing.

Time: 12:30 local.

Fatalities: 32 out of 52 onboard.

FLIGHT PATH PROFILE
B707-300
Rome, Italy
17 October, 1988
ROME, ITALY
Fiumicino
VOR/DME RWY 34L
NDB + DME RWY 34L
VOR 114.9 OST
NDB 321 OST

aro.

Return to TOC
Flight Path Profile
B707 - 320
LAGOS NIGERIA
21 JULY, 1988

CIRCUMSTANCES: Aircraft hit 1 1/2nm short of VOR, 8.5nm from runway
CONFIGURATION: Gear down, 25 flap
WEATHER: Wind calm 3200m 3 octers
300m 2 octer
TIME: Night 02:44 GMT
FATALITIES: 6 (Freight)
No GPWS Installed

Sound Of Altitude Alert (Probably set to 2500 Feet)
CAPT: “Okl Ok! Descend A Little Bit More
CAPT: “The Guy Said The Cloud Base Was Higher Than
The Actual... Screw Him... He’s Lying!
CAPT: “Put The Landing Gear Down”
F/O: “Landing Gear Down”
CAPT: “What Is Your Altitude On Your Altimeter?”
F/O: “I Am Now Reading 600 Feet”
CAPT: “You’re DME Shows Anything?”
F/O: “No”
F/O: “400 Feet!”
CAPT: “500 Feet...”
F/O: “Now I Am Reading 200 Feet... Maintain Now!”

NOTE: NO GPWS INSTALLED
Circumstances: While on a Localizer approach to runway 08, aircraft almost went in short some 3 NM from the runway. The FMS/FGS had been programmed for a -3 degree flight path, but inadvertently was in a Vertical Speed Mode.

A MK III GPWS was installed and gave a timely excessive "Sink Rate" alert and "Pull Up!"

Weather: IMC
Configuration: Landing
FOR INTERMEDIATE APPROACH SEE 21-3
Flight Path Profile
MD-81
POSADAS, ARGENTINA
12 JUNE, 1988

Conditions: VOR/DME Localor Approach To Runway 01
Weather: Thick Fog
Hit Trees 65 To 60 Feet High And Crashed
Short Of Runway By 1.7 NM
Fatalities: 23
MK II GPWS Installed - No Warning

Capt: "Let's Go Down To 100 Feet And Take A Look---
---We Will Make It Or Die Trying"
POSADAS, ARGENTINA

ARGENTINE JET CRASHES; 22 ARE PRESUMED DEAD

POSADAS, Argentina, June 12 (AP) — A DC-9 jetliner with 22 people on board crashed in heavy fog today while trying to land at an airport in northeastern Argentina, officials said. All those on board were presumed dead.

Six bodies were recovered from the wreckage of the plane, but intense heat prevented a complete search of the crash scene, the authorities said.

Austral Air Lines said 15 passengers and a crew of 7 were on board the plane, which left Buenos Aires at 7 a.m. today and landed in the river port city of Resistencia. The airline said the plane headed north from Resistencia and crashed into a grove of eucalyptus trees at 9:50 a.m. about half a mile short of the Posadas airport.

Posadas, the capital of Misiones province, is about 650 miles northeast of Buenos Aires, across the Paraná River from Encarnación, Paraguay.

The airline said the plane, Flight 46, crashed "for unknown reasons." Given the magnitude of the accident, it is presumed there are no survivors," the airline said.
Flight Path Profile
A-320
HABSHEM, FRANCE
JUNE, 1988

Circumstances: During fly-by over grass runway (2900) 34R, aircraft ran out of kinetic energy and crashed into woods at end of runway. Auto-throttles were disconnected. Altimeters set to GFE.

Weather: Not a factor. Wind 300/8 KTS

Configuration: Landing gear down
Flaps 3

Time: 12:45 Local Time

Engines: CFM 56-5
(Response Idle to Full Power: 8 seconds)

Fatalities: 3 out of 130 on board.

GPWS: "Too Low Thrust" (MK1) (disabled by crew)

"Two-Hundred"

"One Hundred"

"Forty"

"Fifty"

"Pilot"

"Thirty"

THROTTLE
MANUALLY
ADVANCED

THROTTLE
POSITION

46*

10000

100

500

400

300

200

100

0

500

ALTIMETER
ABOVE
AIRFIELD
~ FEET

AIRSPEED (ADDITIONAL CALLOUT SAFEGUARD) 100

THROTTLE
POSITION

IDLE

46*

46*

65%

46*

65%

46*

30

25

20

15

10

5

0

TIME TO IMPACT
~ SECONDS

1 KT/SEC
DECELERATION

Normal en-route "C" Control Law
(Load factor around 1)

Pitch-Altitude Control Law
(Referenced Pitch memorized at 50 foot radio AGL)

CIP: "Watch out for the pylons ahead... see them?"

Capt: "OK, I'm OK then, disconnect auto-throttle" (already disconnected)

Capt: "I'm not, I'm OK"

Capt: "Yeah, Yeah, Don't worry"

Capt: "To Go SIDS"

Capt: "SL...

"Thirty"

"Thirty"

"Fifty"

"Forty"

"Fifty"

"One Hundred"

150 KTS

155 KTS

Planned Fly By Height 100 ft

150 KTS

155 KTS

150 KTS

145 KTS

140 KTS

135 KTS

130 KTS

125 KTS

120 KTS

115 KTS

110 KTS

105 KTS

100 KTS

~300rpm

TIME TO IMPACT
~ SECONDS

\[\text{40} \quad \text{35} \quad \text{30} \quad \text{25} \quad \text{20} \quad \text{15} \quad \text{10} \quad \text{5} \quad \text{0} \]

\[\text{ALTITUDE ABOVE AIRFIELD ~ FEET} \]

\[\text{ALTITUDE ABOVE AIRFIELD ~ FEET} \]

\[\text{AIRSPEED (ADDITIONAL CALLOUT SAFEGUARD) 100} \]

\[\text{THROTTLE POSITION} \]

\[\text{IDLE} \]

\[\text{46*} \]

\[\text{65%} \]

\[\text{46*} \]

\[\text{65%} \]

\[\text{46*} \]

\[\text{30} \]

\[\text{25} \]

\[\text{20} \]

\[\text{15} \]

\[\text{10} \]

\[\text{5} \]

\[\text{0} \]

\[\text{TIME TO IMPACT ~ SECONDS} \]

\[\text{1 KT/SEC DECELERATION} \]

\[\text{Normal en-route "C" Control Law} \]

\[\text{(Load factor around 1)} \]

\[\text{Pitch-Altitude Control Law} \]

\[\text{(Referenced Pitch memorized at 50 foot radio AGL)} \]

\[\text{CIP: "Watch out for the pylons ahead... see them?"} \]

\[\text{Capt: "OK, I'm OK then, disconnect auto-throttle" (already disconnected)} \]

\[\text{Capt: "I'm not, I'm OK"} \]

\[\text{Capt: "Yeah, Yeah, Don't worry"} \]

\[\text{Capt: "To Go SIDS"} \]

\[\text{Capt: "SL..."} \]

\[\text{"Thirty"} \]

\[\text{"Thirty"} \]

\[\text{"Fifty"} \]

\[\text{"Fifty"} \]

\[\text{"One Hundred"} \]

\[\text{"Two-Hundred"} \]
Circumstances: During approach to runway 31R, the aircraft entered a heavy rain cell and visibility went to zero at about 400 feet AGL. The aircraft developed an uncorrected descent rate of about 1950 fpm until impact, resulting in considerable damage.

Weather: Rain showers, but no reported wind shear

Time: 16:31 EDT

Injuries: None of 155 on board.

FLIGHT PATH PROFILE
B747-200
JFK, New York
1 June 1988
NEW YORK, N.Y.
KENNEDY INT'L
ILS Rwy 31R
LOC -111.5 IRTH Eq.
Apn, Elv 12°

Simultaneous approach authorized with Rwy 31L
4000 when authorized by ATC.

NOTE: Radar required.

TCF at displaced threshold 42°, or ray end 10°.

APN 12°
3.6 TO DISPLACED THRESHOLD

MISSED APPROACH: Climb to 2000' then LEFT turn direct CRI VOR then via outbound CRI VOR R-225 to COL VOR and hold.

STRAIGHT-LINED RVR 31R

<table>
<thead>
<tr>
<th>ILS LOC (105 kHz)</th>
<th>CIRCLE-TO-LAND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000'</td>
</tr>
<tr>
<td></td>
<td>313°</td>
</tr>
<tr>
<td></td>
<td>313°</td>
</tr>
<tr>
<td></td>
<td>313°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRAIGHT-LINED RVR 31R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(105 kHz)</td>
</tr>
<tr>
<td>1000'</td>
</tr>
<tr>
<td>313°</td>
</tr>
<tr>
<td>313°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRAIGHT-LINED RVR 31R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(105 kHz)</td>
</tr>
<tr>
<td>1000'</td>
</tr>
<tr>
<td>313°</td>
</tr>
<tr>
<td>313°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRAIGHT-LINED RVR 31R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(105 kHz)</td>
</tr>
<tr>
<td>1000'</td>
</tr>
<tr>
<td>313°</td>
</tr>
<tr>
<td>313°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRAIGHT-LINED RVR 31R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(105 kHz)</td>
</tr>
<tr>
<td>1000'</td>
</tr>
<tr>
<td>313°</td>
</tr>
<tr>
<td>313°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRAIGHT-LINED RVR 31R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(105 kHz)</td>
</tr>
<tr>
<td>1000'</td>
</tr>
<tr>
<td>313°</td>
</tr>
<tr>
<td>313°</td>
</tr>
</tbody>
</table>
Circumstances: Aircraft hit precipitous terrain 5 NM short of runway on VOR/DME approach to runway 04 (2625' length) with circle to land runway 22. F/O flying, captain distracted by person in jump seat. Autopilot engaged - 'Special' company approach procedure being used.

Configuration: Landing, Flap 25
Weather: Fog, Rain
Time: 20:32 Local
Fatalities: 36

Flight Path Profile

DHC-7
BRONNOYSUND, NORWAY
6 May, 1988

Failure to level off aircraft

890' MT. TORGHATTEN

1500'

1200'

3000

ALTITUDE MSL FEET

0

DISTANCE NM

TIME SECONDS

MK II GPWS "MINIMUMS-MINIMUMS"
1½ SECONDS BEFORE IMPACT

*PRELIMINARY
MISSED APPROACH: Climbing turn LEFT on R-270 to join VEGAS holding at 3000' (2988'). MAX 1AS 130 KT. Climb to 710' (698') prior to level acceleration.

STRAIGHT-IN LANDING RWY 04

CIRCLE-TO-LAND

<table>
<thead>
<tr>
<th>RA</th>
<th>RW</th>
<th>VOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1500m</td>
<td>1450' (248')</td>
</tr>
<tr>
<td>B</td>
<td>1600m</td>
<td>1600'</td>
</tr>
<tr>
<td>C</td>
<td>1710' (328')</td>
<td>1600'</td>
</tr>
<tr>
<td>D</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
</tr>
</tbody>
</table>

Rate of Climb:

- C: 500 feet per minute (fpm)
- D: 500 feet per minute (fpm)
Circumstances: Pilot trying to make up time (3 hrs. late). Departed VFR, watching for inbound aircraft. Hit mountain top on abnormally low climb profile. GPWS installed but circuit breaker probably clipped. Airline's policy was not to maintain GPWS. Pilots possibly distracted watching for other aircraft.

Configuration: Clean
Weather: Very poor visibility (Haze)
8 km smoke

Fatalities: 143
No GPWS Warning

Flight Path Profile
B727-100
CUCUTA, COLUMBIA
17 March, 1988

F/O: "Are We Going To Bogota? (No Verbal Response)
But Aircraft Begins Right Turn (Back To Course)

AIRCRAFT, (To Other Aircraft)
"Pablo, We're Vasing To The Left Here
Towards The Mountains"
Other Aircraft: "O.K. Rachito, We're Already At 4,500"

Don Bateman
The following communications and significant cabin conversations took place between the ATC, the HK 1716 and the HK 727, from the moment the plane was authorized to enter into position on runway 33, until the HK 1716 crashed at an altitude of 6,295 feet:

18:12:35.1-C2: To Cartagena V19, illegible/ and 10 climb on course and 2216; I am in ready position.

18:12:36.4-THR: Maintain position. Note: This order is given by the Tower due to the landing of the HK 2670 on runway 02.

18:13:19.9-TMR: Avianca 1716 authorized to take off, wind 015° 10 knots.

18:13:25.1-C2: 1716

18:13:27.4-TMR: For your information, a 727 from your company is about to leave the VOR on ILS procedure.

18:13:33.2-C2: 1716

18:14:17.6-C1: Have taken off and proceeding according to plan, Avianca illegible.

18:14:23.13-TUR: Received, call on 119.9

18:15:01./illegible/-Cl: 1716 has taken off and proceeding according to plan. Traffic leaving the VOR Boeing 727 on ILS approach. Leave the VOR then; notify on 190, O.K.

18:15:05.1-TUR: 1716 proceed on planned course. Traffic leaving the VOR Boeing 727 on ILS approach. Leave the VOR then; notify on 190, O.K.

18:15:16.4-C1: Correct.

The conversation between the HK 1716 and the HK 727 is transcribed below:

18:15:54.3-C1: Pablo, we're veering to the left here towards the mountain.

18:15:57.3-C1 HK 727: O.K., Pachito. We're already at 4,500.

18:17:48.7-C1 HK 727: Leaving the exterior Avianca 727.

18:17:54.7-THR to the 727: Tell us when you see the field and begin circling.

18:17:58.7-C1 HK 727: O.K. we're going to approach full ILS for the 15

18:18:01.7 Impact.
Circumstances: Apparently aircraft deliberately deviated from Instrument VOR Rwy 16 procedures. Perhaps to sight see Buffavento Castle (left of course). Hit mountain after first clipping trees, removing fairings and bottom antennas. Aircraft on positioning flight for chartered flight to Finland. Cockpit filled with people. F/O flying.

Configuration: Gear Up, 15 flaps

Time: 08:00 local

Weather: Clear at airport, ¼ cloud cover. Clouds covering most mountain peaks.

Fatalities: 15
Undetected descent (Acceleration) During Initial Climb
Fairchild Metro III
RALEIGH - DURHAM
19 FEBRUARY, 1988

Conditions: Hurried turn on climb out
Weather: Very bad visibility
Time: 21:25 EST night
Fatalities: 12

Tower: "---Air Virginia 378 report established in the 290 heading and make that turn just as soon as feasible - Jet traffic to depart behind you"
Capt: "378"
Start of turn to 45 degrees bank
150 KTS
Roll out initiated
LIFT OFF 100 KTS
209 KTS at impact

ALTIMETER

ALTITUDE ABOVE LIFTOFF ~FEET

0 100 200 300 400 500 600 700 800 900 1000

RUNWAY 23R

LIFT OFF 100 KTS

DISTANCE ~NM

TIME ~SECONDS

35 30 25 20 15 10 5 0

"DON'T SINK"

"DON'T SINK"

"PULL-UP"

"SINK RATE"

"BANK ANGLE" CALLOUTS IF MK VII USED WITH OPTION

MK II GPWS ALERT WARNING (NOT INSTALLED)
Air Crashes Kill 18 in Carolina and New Jersey

Eighteen people were killed last night in the crashes of two airplanes, 12 aboard an American Eagle commuter plane taking off from Raleigh-Durham Airport in North Carolina and six in the crash of a small plane in a wooded area near Atlantic City.

Both crashes occurred in dense fog caused by a storm system that was moving rapidly up the Atlantic Seaboard from the south. It was also raining heavily at the time of the New Jersey crash. Officials of the Federal Aviation Administration in Washington D.C. said it was too early to know whether the weather was a factor in the crashes, although an air traffic controller at the Raleigh-Durham airport said officials there did not think the fog was a factor.

The crash near Atlantic City involved a twin-engine Piper Navajo that was on the way from Norwood, Mass., to Pomona, N.J. The crash occurred about 10:50 P.M.

In the North Carolina crash, a twin-engine American Eagle plane, flight 201 bound for Richmond, Va., crashed about 300 feet from the runway at about 10:25 P.M., just after taking off. There were 10 passengers and two crew members aboard.

The plane, a Swearingen-Skymaster, held up to 18 passengers. The names of the passengers were not immediately available. There were reports that most of the victims were from the Richmond area, and that one of them was a 17-year-old child.

American Eagle, a subsidiary of American Airlines, had recently resumed flights from its base at Raleigh-Durham Airport after filing for reorganization in Federal bankruptcy court on Jan. 18. The cause of the crash was unknown.

The National Transportation Safety Board and Federal Aviation Administration dispatched investigators to the scene, said Roger Myers, public information officer for the F.A.A. in Atlanta.

Plane Had Just Taken Off

An airport spokesman said the pilot took off to the south and banked to the west, a normal maneuver, just before the crash. "We have not heard that there was any communication between the tower and the pilot," she said.

Witnesses said they heard an explosion and saw a fireball before the plane went down near a small residential area.

Mary H. Ward, who lives in a mobile home three miles from the airport, said, "It sounded like a blast or something because they're been blanking down on this road putting up sewer lines and that's the way it sounded."

The plane took off from a new 10,000-foot runway near the American Airlines terminal. The runway was closed shortly after the crash last reopened at 10:15 P.M. The airport also closed briefly. A temporary moratorium was to be set up as a National Guard Auxiliary.

In Richmond, airport officials expected about a dozen family members and others waiting for the plane to be flown to a private lounge where they were told of the accident.

Fog had settled over the Raleigh-Durham area during the afternoon with visibility dropping below one mile at 4:40 P.M. Visibility at the airport's control tower at 8:35 P.M. was zero and 7/10 the ground visibility was an eighth of a mile, said Rod F. Gougl, a National Weather Service meteorologist.

The other crash occurred about two miles northwest of Atlantic City International Airport, officials said.

Anthony Willett, an F.A.A. spokesman, said the victims were not immediately identified. He said the twin-engine Piper Navajo, which is 32 feet long with a 46-foot wing span, is a type commonly used by commuter airlines.

However, he said the plane may have been privately owned.

The plane was on route to the airport in Pomona when it ran out of gas last at 10:10 P.M., Mr. Willett said. The crash was found about an hour later.

A police dispatcher in Norwood said the small airport there serves privately-owned aircraft.

3 Killed in Texas

EL PASO, Tex., Feb. 10 (AP) — A twin-engine plane plunged into a residential area near the 20-foot wing span, to the north of the small airport.

The flight was due to the weather, said William Keefe, the airport director.

"It looked like it was going to attempt to come onto the freeway, but as soon as it got over the freeway it just twisted," said Victor Armand, who was waiting at a stoplight near the crash site.

"The Gulfstream Commander 900 went down in moderate snow and light fog after takeoff from El Paso International Airport shortly before 9 A.M." said Tommy McFall, a National Transportation Security Board spokesman.

Airline officials said the victim's identities were not immediately released. The plane's destination was not available. The cause of the crash was under investigation.
Circumstances: During a non-standard VOR/NDB approach, the F/O thought he had sighted the airport and descended. The right wing struck a communication tower installed on a 12 story apartment building. A missed approach was initiated by the Captain. The aircraft carried a 20 foot 6 inch diameter section of steel communications antenna wrapped around leading edge of right wing.

Time: Night 04:50 local.
Weather: 100 meters/fog, wind calm.
Configuration: Landing
Damage: Severely damaged right wing, spars, flaps, engine, flaps, fuselage. Aircraft was written off.

FLIGHT PATH PROFILE
B707-300QC
Luanda, Angola
8 February, 1988
Flight Path Profile
Metro Twin Commuter
DURANGO, COLORADO
19 January, 1988

Circumstances: Aircraft hit ridge 5.3NM short, during a VOR/DME approach to runway 20.
Configuration: Landing
Weather: IMC
Time: Night
Fatalities: 8 out of 17 on board

(2715') D 7.5
(1715')

D 5.0
D 3.0

(915')
(515')

7200' IMPACT 7180'

HEIGHT ABOVE FIELD FEET

FIELD EVALUATION
~ 6650'

TIME-SECONDS

GPWS WARNING
(GPWS NOT INSTALLED)

FIND RATE x 3
"WW PULL UP"

DISTANCE ~ NM
DURANGO, COLO
-LA PLATA CO
VOR DME Rwy 20
VOR 108.2 DRO

Commuter Plane Down
With 12 People Injured

DURANGO, Colo., Jan. 19 (AP) — A commuter airliner with 16 people aboard crashed near here tonight, and officials said there were at least 12 people seriously injured. There was no word on fatalities.

"What we do know, we have survivors," said Bruce Hicks, a spokesman for Continental Airlines. The commuter plane was leased by a subsidiary of Continental, officials said.

Mr. Hicks said there were 14 passengers and two crew members aboard the Denver-to-Durango flight. He said the twin-engine, turboprop plane, went down about 7:30 P.M. about 10 miles east of Durango, near the town of Bayfield. Weather in the area was overcast with light snow. The region had gotten more than two feet of snow in the past few days.

A spokeswoman for the La Plata County Sheriff's Office said it received the first notification of the crash at 8 P.M. She said officials issued a call for persons with snowmobiles to assist in the rescue effort.

The plane is owned by Colorado Springs-based Trans Colorado, which leases planes and crew to Rocky Mountain Airways, officials said.
Flight Path Profile

B737-200
IZMIR, TURKEY
2 January, 1988

Circumstances: Flight Positioning Flight ILS VOR/DME approach
Configuration: Landing
Weather: Heavy rain, zero spread in temperatures
Fatality: 16 (5 crew members)
Other: Cleared direct to 'CL' strong false localiser felt of course. Impact 10% NM West of airport.

Flight Path Profile
IZMIR, TURKEY
2 January, 1988

Flight Path Profile

TOWER: "...Report Outer Marker 5000 Feet
Cleared To 4000 Feet...Report Outer Marker In Bound!"
F/O: "Let's only go down to 2350 (circling minimums)
Capt: "Get it down - Get it down."
AIRCRAFT: "...We Have Lost ILS!"
TOWER: "...Localizer Or Glideslope?"
AIRCRAFT: "...Both"
TOWER: "Both Are Up"
Flight Path Profile

B747 Incident
RIO DE JANEIRO, BRAZIL
31 December, 1987

Circumstances: Scheduled flight using MARICA SID, departure RWY 27 south, thunderstorm approaching. Captain flew more southerly to avoid big Q's. Pilot followed procedures for recovery explicitly.

Configuration: Clean
Weather: Very hot, 30°C+ humid
Thunderstorm approaching from East. IMC. Large wind from East.

Pilot reacted quickly and followed company procedures exactly and per training.

Pilot Reaction Time
~3½ seconds...Full Power Rotated to 20-22° slowly into stick shaker then out.

GPWS Warning starts "Terrain-Terrain-Pullup" "Terrain...Terrain"

PROJECTED IMPACT

200° RADIAL CAX STRONG CROSS WINDS

EARLY TURN ACCELERATING, CLEANING UP

TERRAIN 2½ NM EAST OF TRACK

TIME TO PROJECTED IMPACT

0 10 20

ACTUAL GPWS WARNING
CIRCUMSTANCES: Aircraft hit 3 NM short of ILS 23 runway threshold. Aircraft had been high and fast, leading to a de-stabilized approach.

WEATHER: Visibility 200 meters, wind calm, indefinite ceiling
Temperature 5°C, Dew point 5°C.

OTHER: ‘Glass’ (CRT) cockpit

FATALITIES: 16

Attention! La coupe en plan vertical ci-dessous est une projection sur l’axe du localizer 23 de la trajectoire réelle. Les pentes tracées sont supérieures ou égales aux pentes réelles. (L’erreur reste limitée à un maximum de 30°.)

NO GPWS INSTALLED

Flight Path Profile
EMB 120
BORDEAUX, FRANCE
21 December, 1987

Source: Air Inter #44
"Securite Des Vols" APR 1987
<table>
<thead>
<tr>
<th>HEURE</th>
<th>SOURCE</th>
<th>COMPOSITION/VOL/AERODROMES/COMMUNICATIONS/NOTES/PLANCHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14h09</td>
<td>BORD 229</td>
<td>ACCIDENT D'UN EMB 120</td>
</tr>
</tbody>
</table>
GPWS Saves Crew Who Flew Localizer Approach Tuned to VOR Frequency

This event is a human factors classic in which well known shortcomings in equipment standardization, equipment design, and procedures came to bear on the crew at a critical time. In the end, the GPWS saved the day, even though the captain required a second warning — 10 seconds after the first activation — to begin his pull up. —Ed.

A flight safety source reports:

24 November 1987,

Last December, during a back course localizer approach to runway 33 at Prince George, British Columbia, in IMC, a 737-200 was saved by its GPWS from striking a mountain about 7.5 miles right of the final approach course. The incident was caused in part by confusion over non-standard avionics displays, equipment operating differences in the airline’s recently-acquired 737 fleet, and failure to hear ATC warnings after VHF comm volume had been inadvertently turned down during a frequency change.

The flight approached Prince George Airport from the south with the captain’s VHF nav tuned to the runway 33 localizer back course, and as far as he knew, his HSI course bar indicating flight exactly on centerline. The first officer’s VHF nav was tuned to Prince George VOR, 7.5 miles east of the airport, to define Tabor intersection from which the flight could descend below 5000 ft to the final approach fix.

Unknown to the crew, the captain’s VHF nav, although properly tuned to the localizer frequency, was actually switched over to the first officer’s VHF nav. And rather than flying the localizer back course, he was actually tracking the 327 deg course inbound to Prince George VOR, about 7.5 miles east of the published final approach track. This error may have occurred in part because, on this particular 737, there was no VHF nav cross-over annunciator; other aircraft in the fleet were so equipped.

About this time, approach control handed the flight off to the tower, requiring a frequency change from 133.8 to 118.3 MHz. While switching frequencies, the volume knob, in the center of the frequency control was inadvertently turned down to an inaudible level precluding communications with the tower which was attempting to alert the flight to its off-course situation.

Mt. George, a 5750 ft cloud-obscured mountain peak, situated on the Prince George VOR 146 deg radial at 16.8 miles, lay directly in the flight’s path. Minimum sector altitude southeast of the airport is 7600 ft MSL.

Descending through approximately 6900 ft MSL with gear and flaps up, approximately 6 miles from Mt. George and about 22 DME south of the VOR, in IMC, three GPWS “Terrain-terrain” warnings occurred followed in rapid succession by three “Pull-up” warnings. The captain continued for another 8 seconds whereupon three more “Terrain-terrain” warnings occurred as the flight passed within approximately 800 ft of a 5300 ft peak. At that point the captain pulled up and began a missed approach.

Had the flight continued down to level off at 5000 ft before reaching the mountain, the crew would have heard 3 “Too-low-gear” warnings about 35 seconds from impact and 3 “Pull-up” warnings less than 2 seconds before striking the mountain.

(Continued on page 16)
Right
The 737's track is depicted in blue on the approach chart. Note the 5750 ft peak beneath the 326° course to YXS VOR.

Below
The blue line depicts the 737's pullup profile. Other warnings depicted below the pullup path are the GPWS activations which would have occurred had the flight continued its descent.

Warning credited for saving 96

A device that warns pilots they are too close to the ground may have saved the lives of 96 people aboard a Canadian Airlines plane flying into Prince George in late 1987, the Canadian Accident Investigation and Safety Board said Wednesday.

Following a flight data check during which a warning was issued, the flight continued on course and the pilots did not notice the warning. However, the report said, the pilots thought it was a fault in the system and rejected the warning. Just as an aircraft traffic controller said that they were all correct, the warning was ceased.

This led to their discovery of navigational equipment was not properly set and the report reviewed because they were not familiar with the equipment and didn't have proper training. The board's investigation shows the warning system may well have saved the lives of those we heard that day—such systems aren't mandatory at the time, although they are now.

The board has also recommended airlines work toward standardizing their aircraft equipment. It said Canadian Airlines has 68 Boeing 727s with at least 18 different cockpit arrangements.
FLIGHT PATH PROFILE
Be-200
Leeds/Bradford, England
19 October, 1987

Circumstances: During approach to runway 14, aircraft hit short by 2 NM. Apparently pilot had incorrectly set his altimeter for QFE, using 998 instead of 1008. (F)

Fatalities: 1

Don Bateeman

MK VI ALERT: "500" (NOT INSTALLED)
Within the Radar Vectors Area 3000' is the minimum initial altitude to be afforded by the Radar Controller. Descent below 3000' may be given on base leg to 2500'. Subsequent descent may be given within the Surveillance Radar Final approach area when on 45° leg or final approach.

LOSS OF COMMUNICATION PROCEDURE

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>ON DOWNWIND</th>
<th>ON BASE LEG or 40° LEG</th>
<th>WITHIN FINAL APPROACH AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runway 14</td>
<td>Continue approach visually or proceed to NDB at 3000' or lost assigned level if higher.</td>
<td>Continue approach visually or proceed to NDB at 3000'</td>
<td>Continue approach visually or climb ahead to NDB at 3500'.</td>
</tr>
<tr>
<td>Runway 28</td>
<td>Continue approach visually or proceed to NDB at 3000' or lost assigned level if higher.</td>
<td>Continue approach visually or proceed to NDB at 3000'</td>
<td>Continue approach visually or climb to or overtake the airport end, at not below 1750', turn LEFT and proceed to NDB at 3000'.</td>
</tr>
<tr>
<td>Runway 32</td>
<td>Continue approach visually or by using the alternative aid, if not possible proceed to NDB at 3000'.</td>
<td>Continue approach visually or by using the alternative aid.</td>
<td>Continue approach visually or by using the alternative aid, if not possible climb to or overtake the airport end, at not below 1750', turn RIGHT and proceed to NDB at 3000'.</td>
</tr>
</tbody>
</table>
Configuration Warning Horn disabled. Reason for circuit breaker pulled not explained (Aircraft may have taken off with horn disabled). Tower visually detected situation.

INCIDENT
B747-100
London, Heathrow
July 1987

GPWS 'Pull Up' Warning (Gave up less than 500 feet AGL)
'Get rid of that thing!' (GPWS) (circuit breaker pulled)
Tower... 'XXX B747... Your landing gear down?'
APL 'Going around'

Illustration of the need to identify the cause of the GPWS Warning.
TABLE 1 - Some Air Carrier Inadvertent Wheels Up Landings:

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Place</th>
<th>Damage</th>
<th>Type of Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Feb '86</td>
<td>B747</td>
<td>Islamabad</td>
<td>$15 million USD</td>
<td>Scheduled Pass.</td>
</tr>
<tr>
<td>7 Feb '85</td>
<td>B737</td>
<td>Calcutta</td>
<td>$2 million USD</td>
<td>Scheduled Pass.</td>
</tr>
<tr>
<td>3 Jan '83</td>
<td>B737</td>
<td>Berlin</td>
<td>$1 million USD</td>
<td>Training</td>
</tr>
<tr>
<td>11 Mar '83</td>
<td>B737</td>
<td>Casper, Wyo.</td>
<td>$1 1/2 million USD</td>
<td>Scheduled Pass.</td>
</tr>
<tr>
<td>7 Nov '82</td>
<td>DHC-5</td>
<td>U.S.A.</td>
<td>$0.1 million USD</td>
<td>Training</td>
</tr>
<tr>
<td>9 Aug '82</td>
<td>B727</td>
<td>Mexico</td>
<td>$2 million USD</td>
<td>Training</td>
</tr>
<tr>
<td>24 Aug '78</td>
<td>B737</td>
<td>Buenos Aires</td>
<td>$7 million USD</td>
<td>(destroyed)</td>
</tr>
<tr>
<td>4 Apr '78</td>
<td>BAC-1-11</td>
<td>England</td>
<td>$3/4 million USD</td>
<td>Training</td>
</tr>
</tbody>
</table>

Recent Incidents (Did not land wheels up)

5 Jul '87 B737 Cincinnati - Visual Approach - Gear handle not fully down - Mk I 'Pull Up' assumed false C/B pulled - Configuration warning C/B pulled after taxiing single engine - Tower alerted crew of 'gear not down' - Tower called 'gear not down' - Mk I GPWS - 'Pull Up' GPWS considered false and C/B pulled.

All of the above were equipped with Mk I GPWS and all gave 'Pull Up' warnings. All had the Configuration Warning System disabled for various reasons. However, in each case the flight path and its relationship to the runway appeared normal. The flight crew believed the 'Pull Up' warning to be false, and they disabled the GPWS and proceeded with full intentions to land.

In second generation GPWS models (MkII, III, V and VII) specific unique messages are given for the cause of the alert or warning much like 'Glideslope'. These messages also vary by phase of flight. If the gear is inadvertently left up on final approach, instead of 'Pull Up!', a "Too Low-Gear" message is given.

There has never been a reported wheels up incident for aircraft fitted with a MkII, et al.

Note: This author knows of no DC-9 series aircraft involved in an inadvertent wheels up or near wheels up incident. Apparently the DC-9 configuration warning system has performed as designed.

This author believes the difference between the DC-9 and the B737 is in the throttle handle switches. In the DC-9 both throttle handles must be advanced to arm the configuration warning horn. The B737 requires only one handle to be advanced. For single engine taxiing, the DC-9 configuration warning horn is silent, while the B737 will often sound. It appears that the B737 configuration warning horn is often deliberately disabled by the crew, and that is why there was no configuration warning for gear up on final approach. The implication is that the configuration warning was disabled at take-off, and that some number of B737 aircraft have probably taken off with no flaps. For the MD-80, the design engineers went to a throttle switch arrangement similar to the B737. Whether this was a factor at the fatal MD-80 Detroit accident or not, is one of conjecture.

A D for Take-off Warning. FAA issued an Airworthiness Directive for certain Boeing 727s and 737 transports requiring EPR/engine pressure ratio information in the logic which enables the Take-off Configuration Warning System. The new directive will reduce nuisance warnings during taxi when flaps are intentionally retracted, or while taxiing with less than all engines operating (now considered normal). Such nuisance warnings frequently cause the crew to deactivate the system, which could endanger the take-off.

Some airlines protested the rule, saying this is a pilot training and discipline problem, but FAA argued that nuisance warnings reduce the function of aircraft systems to an unsafe level.

In the original warning system, the input depended on throttle position. The enhanced version will add EPR to the logic, triggering the alarm if 1.4 is exceeded.

Some commentators pointed out that nuisance warnings could still occur, and FAA agreed that an EPR of 1.4 is high thrust setting, equal to thrust at brake release on takeoff, but added that this would not normally be attained during taxi. The agency said it would reduce nuisance warnings to an acceptable level. For more information, contact Boeing in Seattle or FAA at 206/466-1958.
Flight Path Profile

B-707

KANSAS CITY, MISSOURI

13 April, 1987

Circumstances: Aircraft hits short on ILS approach to Runway 1

Configuration: Landing
Weather: 100' ceiling, ½ mile visibility (rain\(\text{\&}\) fog), 040° 8
Thunderstorms
Time: Night
Fatals: 4

Possible Contributing Causes:
1) Failure to couple Flight Director to glideslope
2) Failed radio altimeter
3) Faulty glideslope receiver
4) Faulty GPWS

F/O: "500 Feet Above Minimums" (Sound Of Outer Marker).
..."Outer Marker"
TOWER: "...Weather Now 100 Feet Ceiling %
Mile Visibility
Wind 040 At 8"
CENTER: "...Maintain 2400 Feet...Until Established
Cleared For Approach"
CAPTAIN: "I'll Do it."

4TH PERSON: "Pull Up! Pull Up! Pull Up!"

F/O: "...1200 Feet"
TOWER: "We've Just Received LWAS! Climb And Maintain 2400 Feet"
CAPT: "Call The Radio Altitude Please!"

TOWER: "...Check Your Altitude Immediately, You Should Be At 2400 Feet"

"NO GPWS BELOW GLIDESLOPE ALERT"
KANSAS CITY, Mo., April 13 (AP) — A Boeing-707 cargo jet crashed in light fog tonight as it was preparing to land at Kansas City International Airport, killing those people aboard the plane, the authorities said.

The plane, registered to Burlington Air Express, formerly known as Burlington Northern Air Freight, crashed in a field near the airport, which is about 20 miles north of Downtown Kansas City, said Ron Cop, regional duty officer of the Federal Aviation Administration.

It was the first large plane to crash at the airport since it opened in 1972.

A Burlington official in Wichita, Kan., who would not give his name, said the flight originated in Oklahoma City.

The crash occurred about 10 P.M. Visibility at the time was about one-half mile.

Boeing-707 Cargo Jet Crashes, Killing Three
Flight Path Profile

B-727-200
SPOKANE, WASHINGTON
14 DECEMBER, 1986

Flight Path Details

ILS RWY 21
SPOKANE INTERNATIONAL
AL-463 (FAA)

Notes:
- Premature descent clearance while on vector to ILS Runway 21
- Weather: IMC
- Time: 15:56 Local
- Controller error
- MAI installed and working

Aircraft Track

![Aircraft Track Diagram]

- **22 NM to VDR**
- **312°**
- **Projected Impact**
- **Towers**
- **Mica Peak**

Chart Details

ILS RWY 21

SPOKANE INTERNATIONAL

<table>
<thead>
<tr>
<th>Approach</th>
<th>Runway</th>
<th>Time (Local)</th>
<th>Distance (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV</td>
<td>21</td>
<td>15:56</td>
<td>22</td>
</tr>
</tbody>
</table>

Chart Data

- **ILS RWY 21**
- **SPOKANE INTERNATIONAL**
- **AL-463 (FAA)**

Return to TOC
Flight Path Profile

BE-100
PITTSFIELD, MASS.
10 December, 1986

Circumstances: During an approach LOC runway 26, the aircraft struck a mountain 12.3 NM short of runway.
Configuration: Clean
Weather: 800 feet
Time: 0930 EST
Fatalities: 6

6 Die in Plane Crash in Berkshires

WINDSOR, Mass., Dec. 10 (UPI) - A twin-engine plane from the Middle West with six people aboard crashed into the side of a low mountain and burned into flames today, killing all those aboard, authorities said.

Spokesmen for the Federal Aviation Administration said the plane, bound for Pittsfield, Mass., crashed shortly after 9:30 A.M. in a rugged, heavily wooded area of the Berkshire Mountains. The identities of the victims were not immediately released.

The accident occurred in overcast conditions with an 800 foot cloud ceiling and visibility at about seven miles, the agency said.

A witness said the plane all but disintegrated upon impact. All that remained of it was its tail section, with a blackened outline burned into the mountainside, according to the witness, Don Carlson, an employee of Transportation Service of Pittsfield, who flew out to look for the plane when it failed to arrive at the airport as scheduled.

He said that from the air it appeared that flames had consumed the entire craft except the vertical stabilizer.

The crash site was in the extreme northeastern corner of the state, about 12 to 15 miles from the New York and Vermont borders and about eight miles northeast of the airport, the F.A.A. said.

Spokesmen for the agency said the twinjet jet was registered to the Edcon Corporation of Los Angeles. They said the flight originated at Plattsburg Airport outside Plattsburg, N.Y., at about 8 A.M. with two pilots and three passengers aboard, and picked up another passenger at Logans, Plattsburg.

The passengers, all men, were employees of Edcon, the spokesmen said.

"The aircraft was making an instrument approach to Pittsfield and for some reason it looked like he just went right into a mountain," Mr. Carlson said.

"The clouds may have obscured the mountain," Mr. Carlson continued, "but he was on an instrument approach and if he was doing everything right he should have cleared it."
FLIGHT PATH PROFILE
CFIT ACCIDENT
CORPORATE AIRCRAFT
BE-100, KING AIR
PITTSFIELD, MASSACHUSETTS
10 DECEMBER 1986

Conditions: The King Air was on an IFR flight plan and was
thundered by Albany approach control for a localizer
approach to Pittfield's RWY 26. The aircraft
hit Judges Hill near Windsor at an elevation of
2200 ft, 297 feet below the crest, at a distance
of 12.3 nm east of RWY 26.
Gear and flaps were up.

Weather: Overcast with a ceiling of 800 ft.

Fatalities: 6

Time 09:30 EST
FLIGHT PATH PROFILE

EMBRAER BRASILIA
ATLANTIC SOUTHEAST AIRLINES
SAO JOSE DOS CAMPOS, BRAZIL
19 SEPTEMBER 1986

Conditions: Hit 5150 ft. mountain at 5000 ft. after take-off on radial 11.7 deg. SJC
Weather: 4,000 ft. overcast
15,000 ft. cloud tops
Time: 3:05 PM
Fatalities: 5

Committer data control: Sundstrand SAO50A6

Sundstrand Data Control, Inc.
REDMOND WASHINGTON 98073-9701
unit of Sundstrand Corporation
DC-10 INCIDENT
ILS RUNWAY 10R
PORTLAND, OREGON
28 JUNE, 1986

Circumstances: Captain monitoring 'PDX' VOR (no ILS to Captain's ADI and GPWS) F/O flying Flight Director in vertical speed mode. Aircraft cleared for final approach, IMC conditions. Controller received MSAW alert. No GPWS warning as no ILS signal and aircraft in landing configuration and stabilized.
FLIGHT PATH PROFILE
DHC-6
Port Ellen, Islay, Scotland
12 June, 1986

Circumstances: Attempted visual approach into unsuitable meteorological conditions after making an error in visual position.
Weather: S to SW 5-10 kts 11°C
2000°-230° True 20 kts
5 to 70 kts stratus base 500-800'
Local 300' in patches covering high ground.
Visibility 5 KM-2 KM
200 m in hill fog.
Rain—Drizzle
Configuration: 11 degrees flap
Fatalities: 1 of 15 on board 11 serious injuries

Pullup initiated with Full Power
and then Stall Warning

MK VI GPWS WARNING
"TOO LOW, TERRAIN" (REPEATED)
USING "SENS" SWITCH (NOT INSTALLED)

TIME ~ SECONDS

INTENDED

ALTITUDE MSL ~FEET

DISTANCE TO RUNWAY ~NM

ACTUAL

ALTITUDE MSL ~FEET

DISTANCE TO RUNWAY ~NM

TWO LOW TERRAIN

MK VI GPWS WARNING
"TOO LOW, TERRAIN" (REPEATED)
USING "SENS" SWITCH (NOT INSTALLED)

TIME ~ SECONDS

INTENDED

ALTITUDE MSL ~FEET

DISTANCE TO RUNWAY ~NM

TWO LOW TERRAIN
INSTRUMENT APPROACH
AND LANDING CHART

ACFT
CAT
A.B.

ELEV 88FT
ISLAY/Port Ellen
NDB(L)'Lay' 128°

RADIO
FREQUENCY
133.95
PORT ELLEN INFORMATION
NOTE: Call all NDBs by name or code.

LIGHTING
APP 13 APARTH 81 APARTH 15LH
THIR 1334.5 Green W bears.

MISSED APPROACH POINT
From low marker, 1.7 km from threshold.

MISSED APPROACH PROCEDURE
At missed approach point climb straight ahead to 320' (500') then climbing left turn onto 130°. Climb to 1000' (1800') prior to accelerating then continue climbing to 2700' (4500') before returning to missed approach climb to minimum altitude as appropriate.

OBSOLETE CLEARANCE HEIGHTS

AIRCRAFT CATEGORY
PROCEDURE

VEHICLE MANOEUVRING
1188/1200 1188/1200
768/700 1375' (450') above AGL

LOWEST HOLDING ALTITUDE 750'

SNK to THIR 4700' min alt 3.20 2.21 2.00 1.48 1.34 1.27

The Accident Site
FLIGHT PATH PROFILE
B-727 INCIDENT
DENVER, COLORADO
16 MAY 1986

Departure: "Turn left to 245°, maintain 10,000 ft"
Capt: "Departure request higher altitude" (twice with no ATC response)
F.O.: "Request higher altitude" (three times with no ATC response)
Numerous ATC Traffic Transmissions
Departure: "Climb to FL200" (Blocked by captain's transmission)
Departure: "Turn left to 170°, immediately climb to FL200"

WARNING TIME TO PROJECTED IMPACT
MARK VII GPWC
MARK I GPWC (INSTALLED)

DISTANCE - NAUTICAL MILES
TIME - SECONDS

9000
8000
7000
6000
5000
4000
3000
2000
1000
0
0
50
40
30
20
10
0

14.9 SECONDS
4.7 SECONDS
10 SECONDS

HOOG 245°
21 DME VOR DEN
MSAWS alert
"GPWS "PULL UP"
Projected Impact by GPWS
MOUNT TOM 9735 ft
GPWS PULL-UP WEST OF DENVER...
An Unassertive Crew Heads for the Hills

Another airline reports:

Last May, a 737 flew directly at steeply rising terrain west of Denver, causing a GPWS activation and subsequent pull-up when the controller forgot about the flight; and the crew, unable to communicate with ATC because of frequency congestion, waited too long to take evasive action.

The flight departed Denver to the north with a clearance to 10,000 ft and a left turn to 245 deg. At 15 DME, the captain told the first officer to ask for a higher altitude. The first officer called departure control three times but frequency congestion prevented a response. At 20 DME, the captain called Denver for a higher altitude with no response. About that time, the controller's minimum safe altitude warning (MSAW) apparently activated. At 21 DME, Denver departure control instructed the flight to climb immediately to FL200 for terrain clearance and to turn left to 170 deg. and, near simultaneously, the Mark I GPWS activated once. The climb was accomplished at approximately 15 deg pitch up with go-around thrust, resulting in a vertical speed of 3000 to 6000 ft/min. According to reports, passengers were not aware of the event.

According to the airline, following the incident, the controller was decertified for additional training, the FAA reevaluated the west SID with a view toward pilot-initiated climbs during westerly departures and the captain's use of emergency authority was reemphasized to all crewmembers.
Flight Path Profile
U.S. Navy C9B
FALLON, NEVADA
15 MARCH, 1986

ATC: "--cleared to 6000"

ATC: "--immediately climb to 7500 feet"

GPWS: 'Terrain-Terrain,' 'Terrain-Terrain'
'Pull up-----'

NOTES: Premature descent clearance while on vector to TACAN Runway 31
Weather: IMC, Light Icing, Light Turbulence
Time: 15:50 Local
Trainee Controller Error (Distracted Instructor)
Mark II GPWS Installed And Operational

FAA MINIMUM
Flight Path Profile

EMB-110 Simmons Airlines
ALPENA, MICHIGAN
13 March, 1986

Conditions: Final ILS Approach Runway 1
Configuration: Landing
Weather: Less Than 1/2 Mile Visibility
 100 Foot Ceiling
Time: 20:00 EDT
Other: Second Approach
Fatality: 3 Out Of 9 On Board

Flight Profile

1.3 DOTS LOW
3.00' GLIDESLOPE
BELOW GLIDESLOPE ENVELOPE
'GLIDESLOPE' ALERT
'SINK RATE' ALERT
'PULL UP' WARNING
(GPWS MK II NOT INSTALLED)

MIDDLE MARKER

DH

ALTIMETER 1000
500
0
ALPENA, MICH.

PHILPS-COLLS NSINS
ILS Rwy 1

LOC 109.7, IAPN E-

AP, Rev. 689'

Commuter Crash Kills
3 in Michigan Woods

ALPENA, Mich., March 13 (UPI) -
A Simmons Airlines commuter flight

carrying nine people crashed in heavy

fog and rain tonight, killing three

people and injuring six, Alpena County

Sheriff's deputies said.

The plane said the plane crashed

around 10 p.m. in a wooded area two

miles south of Phillips Collins Airport.

The Federal Aviation Administration

was notified of the crash, sheriff's

deputies said. No further details were

immediately available.

Commuter Crash Kills
3 in Michigan Woods

ALPENA, Mich., March 13 (UPI) -
A Simmons Airlines commuter flight

carrying nine people crashed in heavy

fog and rain tonight, killing three

people and injuring six, Alpena County

Sheriff's deputies said.

The police said the plane crashed

around 10 p.m. in a wooded area two

miles south of Phillips Collins Airport.

The Federal Aviation Administration

was notified of the crash, sheriff's

deputies said. No further details were

immediately available.
Circumstances: During a manually flown approach to ILS Runway 17R, the aircraft hit short by 400 feet into approach lights and rolled along 200 feet between lights and made a missed approach to alternate. The manual approach had been preceded by two unsuccessful coupled approaches. Weather: Near or at minimum visibility.
HARLINGEN, TEXAS
RIO GRANDE VALLEY INTL
ILS Rwy 17R
LOC 111.3 IHR L

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.

MISSING APPROACH: Climb to 500', then climbing LEFT turn to 1600' direct SEBAS LOM/5.5 IHR LLS DME and hold.

CIRCLE TO LAND

CIRCUIT TO LAND

M In 23°(2050) S 22°(2310) D 34°(2125) D 34°(2125) D 34°(2125) D 34°(2125)

SEBAS LOM/ 5.5 IHR LLS DME GS 137°(1300) D 140°(1500) D 160°(1500) D 10 NM from SEBAS

NOTE: Pilot controlled lighting.
Circumstances: During visual night approach to Runway 9, the aircraft inadvertently descended well short (7NM) of the runway before error was detected. Aircraft was well right of localizer in possible false lobes. No ILS flags. No GPWS below "Glide slope alert."

Configuration: Landing
Weather: 17 & 11 @ visibility 30 miles

"Airport in Sight"
CENTER: "...Cleared For Visual Approach To Runway 9 And Tower Now On 118..."

(Tower Advised by San Juan Center Radar On Aircraft Low Altitude ARTS III)

"900 FPM"

"...Check Your Attitude"

"We've leveled off at 200 feet..."

Glide slope deviation snaps to full fly up

ALTITUDE
- MSL
- FEET

DISTANCE FROM RUNWAY (~NM)

TIME TO CLIMB POINT (~SECONDS)
Off Profile Approach At St. Thomas

On January 4, a 727-221 approached St. Thomas at night in VMC, descended to within 50 ft of the water for approximately 40 seconds between 7 and 5.5 miles north of the airport, then aligned to approximately 400 \(^\circ\) true for approximately 30 seconds then leveled and descended at a constant angle to ocean floor.

The flight departed St. Thomas VOR at 2500 ft and cleared for a short period. A few minutes later, the pilot cleared the flight to descend at 3000 ft to an altitude of 1500 ft. The flight continued on this heading and altitude to the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.

Details of the approach briefing could not be recalled, although the captain recalled that the shortness of the runway was observed. There was no discussion of visual approach descent profilometer or target distance from the runway with regard to either VOR/DME or ILS/DME references.

Visual visibility was poor, and the first officer called the flight's position on the VHF radio. The pilot cleared the flight to descend at 1000 ft to approximately 750 ft, then leveled and continued on this heading to the north-northeast.

At 0145Z, still on the same approximate north-northeast heading, the flight cleared the airport at 1000 ft, then descended to 500 ft and cleared for a short period. A few minutes later, the pilot cleared the flight to descend at 1200 ft to an altitude of 900 ft. The flight continued on this heading and altitude to the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.

As the flight approached the airport, the San Juan Center cleared the flight to descend at 1000 ft to approximately 750 ft, then leveled and continued on this heading to the north-northeast.

The captain reported seeing no visual indications during the approach, but the flight director was not used nor was a radio check accomplished. The descent and approach continued using visual ground lights (VGLs) and the glide path indicator, and the flight cleared the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.

The VOR/DME and ILS/LOC receivers were not functioning properly, and the flight cleared the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.

The flight cleared the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.

The flight cleared the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.

The flight cleared the north-northeast direction about 11 miles southwest of the airport. About 4 miles southwest of the airport, the flight was down to 1300 ft and had begun a turn to the north-northeast.
Flight Path Profile
B727-200 Incident
ST. THOMAS I, VIRGIN ISLANDS
1 January, 1986

Circumstances: During visual night approach to runway 9, the aircraft was incorrectly line up, which was later discovered at 800, whereupon a missed approach was made. Localizer centered but not related to proper visual clues. No flags. No GPWS 'Glideslope' alert. ILS operative.

Configuration: Landing
Incorrect Line Up At St. Thomas

On the night of January 1, a 727 crew mistakenly lined up on an object other than the runway during a visual approach to runway 9 at St. Thomas. The crew discovered their error at about 600 ft and a missed approach was made followed by an uneventful landing.

Weather was VMC. The flight departed St. Croix, tracking out the St. Croix 337 radial and climbed to 5000 ft. About 15 to 20 miles southeast of St. Thomas the flight was descended to 2500 ft by San Juan Center and, upon reporting the field in sight, was cleared for a visual approach.

The first officer was the first to spot what he thought was the runway and provided heading guidance to the captain to turn right onto the final approach leg. The captain reported overshooting the localizer and "never catching the glideslope" during his descent. During the approach, the captain asked for an ILS frequency check several times because of confusing visual cues. The tower was also asked if the ILS was operating properly. The tower responded that it was. No flight instrument flags were visible.

The flight director was not used. Passing about 600 ft and approximately 3.5 miles abeam St. Thomas to the south, the captain realized that, in his words, "the lights just didn't look right" even though the localizer was centered. He then pushed up the power, leveled off, and began a missed approach to the south.

On the next approach a normal localizer and glideslope intercept was made, culminating in a routine landing.
Autopilot Management
Flight Path Profile

MD-80 Incident
GENOA, ITALY
10 November, 1985

Circumstances: Aircraft almost flew into sea during circling to land after ILS approach to Runway 28. Autopilot engaged throughout. Coupled ILS approach with altitude hold to circle. Did not couple into altitude hold continued to descend. At 500 feet timely MK II GPWS warning began.

Configuration: 15° flap, gear up
Weather: 5KM in rain, cloud base 1000 feet
Time: Night

GPWS: "Too Low!...Gear!..."

INSUFFICIENT TERRAIN CLEARANCE

MK II GPWS WARNING 'TOO LOW!--GEAR!--'
It was an ILS approach to runway 29 to be followed by a circling approach to runway 11.

It was night, with a visibility of 5 km in rain, and a cloud base reported at 1000 ft.

Circling is over the sea, to be flown at an altitude of 1000 ft (company minima).

Autopilot was coupled to the ILS (Loc trk/ GS trk), autothrottle ON, speed 170 Kts, flaps 15°/EXT, gear up.

Reaching 1000 ft the altitude hold button was pushed with the intent of leveling the a/c at circling altitude, and the a/c was turned through the use of the heading selector knob to a heading suitable to enter the downwind leg.

Pushing the altitude hold button during an ILS coupled approach caused the autopilot to revert to its basic mode (vertical speed and heading hold); the a/c therefore continued its descent through 1000 ft with the existing rate of descend.

To level the a/c the altitude hold button should have been pressed a second time. The descend went unnoticed to the crew. At 500 ft R.A. the GPWS activated in the mode 4 A (too low-gear).

Autopilot was disengaged and the a/c rotated to a pitch altitude of about 15° nose up, to regain 1000 ft.

The flight was continued to a normal landing.

Finding: autopilot was not properly managed, nor properly monitored by the crew.

The a/c flight path was not properly monitored by the crew.
Flight Path Profile

BE-99

SHENANDOAH VALLEY

23 September, 1985

Conditions: During Approach To ILS Ry 4
The Aircraft Hit A Mountain
6 1/2 NM Past Airport. Probable
Navigation Error Or Problem.
Weather: 10 G Visibility 2 Miles
Wind Calm
Time: 10:20 EDT
Fatalities: 14

"Do You Show Us East Of Course?"
"Center: No Radar Contact"

"PULL UP" WARNING
(GPWS MK II NOT INSTALLED)
Henson Airlines Flight 1517, a Beech B99, N339HA, was cleared for takeoff from Baltimore-Washington International Airport (BWI) at 0922 e.d.t. on September 23, 1985. Two crewmembers and 12 passengers were aboard the scheduled domestic passenger flight (commuter) operating under 14 CFR 135.

1. **FACTUAL INFORMATION**

1.1 **History of Flight**

Henson Airlines (Piedmont Regional) Flight 1517, a Beech B99, N339HA, was cleared for takeoff from Baltimore-Washington International Airport (BWI) at 0922 e.d.t. on September 23, 1985. Two crewmembers and 12 passengers were aboard the scheduled domestic passenger flight (commuter) operating under 14 CFR 135.

17 All times herein are eastern daylight based on the 24-hour clock.
Flight Path Profile
BE-99

LEWISTON, MAINE
25 AUGUST, 1985

Conditions: Hit 3050' Short During ILS Approach To Runway 04
Weather: 200' Overcast
1½ Miles Visibility
Fog
Time: Night 22:00 EDT
Other: 8 Fatalities

'Glide Slope' (4 Times)	'Sinkrate' (4 Times)
13.7 | 13.7

'Pull up' (4 Times)
6.1

'Minimums' (Twice)
5.6

1000
500
400
300
200
100
0

HEIGHT ABOVE
AIRPORT
RUNWAY
~ FEET

DISTANCE ~ NM

30 25 20 15 10 5 0

0 1.0 0.5 1.5 2.0

TIME ~ SECONDS

'Glide Slope' (4 Times)	'Sinkrate' (4 Times)
13.7 | 13.7

'Pull up' (4 Times)
6.1

'Minimums' (Twice)
5.6

1000
500
400
300
200
100
0

HEIGHT ABOVE
AIRPORT
RUNWAY
~ FEET

DISTANCE ~ NM

30 25 20 15 10 5 0

0 1.0 0.5 1.5 2.0

TIME ~ SECONDS

'Glide Slope' (4 Times)	'Sinkrate' (4 Times)
13.7 | 13.7

'Pull up' (4 Times)
6.1

'Minimums' (Twice)
5.6

1000
500
400
300
200
100
0

HEIGHT ABOVE
AIRPORT
RUNWAY
~ FEET

DISTANCE ~ NM

30 25 20 15 10 5 0

0 1.0 0.5 1.5 2.0

TIME ~ SECONDS

'Glide Slope' (4 Times)	'Sinkrate' (4 Times)
13.7 | 13.7

'Pull up' (4 Times)
6.1

'Minimums' (Twice)
5.6
8 Killed in Maine Plane Crash

AUBURN, Maine (UPI) —
Samantha Smith, the girl who visited the Soviet Union after writing a letter to the former Soviet President Yuri Andropov, was on the passenger list of a plane that crashed near Auburn-Lewiston Municipal Airport, killing eight people, sources said.

The Bar Harbor Airlines plane crashed as the pilot was trying to land there, the police said.

Lieut. Norman Guerette of the Auburn police said the crash of the Beechcraft 99 jet occurred at about 10 P.M. about a half-mile from the airport, about 30 miles north of Portland.

"We have eight fatalities," Lieutenant Guerette said. "We have no report that anyone is alive. The report we have is that there were eight fatalities."

The police received a report of a fire and arrived on the scene to find the wreckage in a field off Foss Road, he said. The Auburn Fire Department doused the burning wreckage, he said.

The plane apparently fell to clear a wooded hill directly in the flight path. There was no immediate indication of what caused the crash, Lieutenant Guerette said.

"Details are really sketchy right now," said Gary Linscott, director of airline market planning for Bar Harbor Airlines. "We've never had an incident such as this."

Mr. Linscott said Flight 1008 originated in Boston and was bound for Bangor, with stops in Augusta and Warwick, when the crash occurred.

Investigators from the Federal Aviation Administration were called to the scene and an airline operation team was sent to the crash site shortly before midnight Sunday, Mr. Linscott said.

"Debris was scattered around, but we don't know how wide," Lieutenant Guerette said.

The police were awaiting the arrival of a medical examiner before removing any of the bodies.
CIRCUMSTANCES: While on an ARC DME intercept to VOR runway 14, the aircraft impacted terrain right wing down in a turn to the final approach course at 7.4 NM short of the runway.

OPERATIONS: Part 135 Air Taxi carrying spare parts for pipeline

CONFIGURATIONS: Landing gear up, flaps 10

WEATHER: Wind 170/7 kts, 47° dew point 40° AMOS out of service

TIME: Early morning 02:05 local

FATALITIES: 3

OTHER: Captain had 5000 hours, 200+ in type but very tired from high duty time.

THE LOW APPROACH SLOPE INSTRUMENT PROCEDURE ‘TRAP’

INSTRUMENT PROCEDURE WITH LOW APPROACH SLOPE OF 1-1/2°

Runway lights activated by 5 clicks on 123.6 MHz

Turning right 160 kts, N, 177% flaps 10.

Enhanced GPWS

TIME TO IMPACT - SECONDS POSSIBLE MK VI WARNINGS

(Not Installed)

Too Low! Terrain

Too Low! Flaps!

Don Bateman
GULKANA, ALASKA

VOR Runway 14

VOR Approach:

Climbing RIGHT turn to 3300' outbound on GKN VOR.

Straight-in Landing:

Climbing RIGHT turn to 3300' outbound on GKN VOR.

Missed Approach:

Climbing RIGHT turn to 3300' outbound on GKN VOR.

<table>
<thead>
<tr>
<th>Circle-to-Land</th>
<th>Straight-in Landing Runway 14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Abem</td>
</tr>
<tr>
<td>A</td>
<td>1900' (322°)</td>
</tr>
<tr>
<td>B</td>
<td>1800' (300°)</td>
</tr>
<tr>
<td>C</td>
<td>1700' (280°)</td>
</tr>
<tr>
<td>D</td>
<td>1600' (260°)</td>
</tr>
</tbody>
</table>

Table showing altitude requirements for various approaches and conditions.
Pilot: "...About To descend to FL 175"

ATC: "...Contact Phuket Approach"

Pilot: "...On Initial Approach — Not Sure Of My Exact Position — DME Not Working" (Did Not Report Being Off Airway)

ATC: "...OK — Continue Approach — Report Reaching 3000 Feet And Maintain 3000!"

Pilot: "...We Just Missed Mountain! ...Both Engines Not Responding! ...Please Turn On Runway Lights!"

Tower: "Intensify Increased" — Pilot: "Still Cannot See Lights"

Configuration: Gear down, flaps 5

Time: 18:28

Other: Asked permission to fly direct and deviated from airway. Descended below MORA before 25 NM.

Fatallies: 11

Circumstances: While on initial approach, aircraft flew through tree tops of a 3,400 foot mountain. Damage to engines and right stabilizer prevented aircraft to maintain altitude. Eventually the aircraft impacted a 800 foot mountain, 9½ NM from first impact.

Profile and terrain estimated (Both CVR and FDR data not recovered)
BANGKOK, Thailand (UPI) - A Thai Airways jet slammed into a mountain near the resort island of Phuket in a fiery crash that killed all 11 people on board, officials reported today.

The twin-engine Boeing 737 already had been cleared to land late yesterday at Phuket, 540 miles south of Bangkok, where more than 100 people were waiting after a long holiday weekend to board the jet for a return flight to Bangkok.

Officials said the airport tower received an SOS signal from Capt. Samart Piamsiri shortly before the scheduled landing and lost radio contact with the plane moments later.

The victims, four passengers and seven employees of the Thai domestic airline, all were Thai citizens. The cause of the crash in a rugged area 25 miles north of Phuket was under investigation.
On 19th February 1985, a B727 on a scheduled morning flight from Madrid to Bilbao hit a tower on top of Ola mountain during its outbound procedure turn. The aircraft was configured gear up and was on an approximate heading of 068 degrees and an airspeed of about 210 knots. It was some 800 feet below procedure altitude of 4360 feet. It was daylight and there were light clouds in the area. There were 148 fatalities.

This aircraft was not equipped with GPWS.

Other operators flying into Bilbao have received pilot reports of unwanted 'GPWS warnings, and one operator instructed pilots to disconnect the GPWS for flights into Bilbao. Ola mountain is located directly along the flight path of the outbound procedure turn and is 2266 feet high with 49 meter towers above the peak, probably raising the height to 3456 feet or so. The procedure height is 4360 feet giving only 930 feet of nominal clearance. The mountains and the tower were not shown on the Jeppesen approach plate VOR DME ILS Runway 09L (left below). The same approach procedure used by British Airways (below right) shows the outbound procedure turn initiated at the 'BIL' VOR. The procedure turn then is clear of the terrain, a very significant difference. Another significant difference is the approach plate shows the terrain contours in colour.

Various altimetry errors such as non-standard temperature and pressure errors can create terrain clearance. In this case, a 500 foot terrain clearance error could easily occur, especially in the winter time temperatures.

For Bilbao, the procedure turn used in the approach procedure for VOR DME ILS Runway 09L clearly needs to be changed to begin at the VOR and/or a higher altitude used. As it stands now, the terrain clearance are incompatible with Mark I, II and III GPWS installations and will cause an unwanted warning even when the aircraft is 930 feet clear of the obstacle.

HAD GPW (MARK II) BEEN FITTED IN THE AIRCRAFT INVOLVED IN THE ACCIDENT, A WARNING WOULD HAVE OCCURRED 19 SECONDS BEFORE IMPACT.

From: CATHAY PACIFIC 'KA'
Approved Government Procedure

Non Government Procedure used by some airlines. (Note that procedure turn relates to BIL NDB to ensure that procedure turns clear of terrain)
INITIAL APPROACH — WEATHER AVOIDANCE
OFF TRACK ERROR

F/O: "Passing 'Dacon"
ATC: "Cleared to FL 180"
F/O: "Roger"

/3727 NEVADO ILLIMANI
PAZ

1 JANUARY 1985

Ciarlisskmcax lMrrs Mat approach
cirnmfl devlatd from
Intended track In clouds, (VLF/Omega equipped and In use). Flit mountain.

Time: 20:15 Z
Fatalities: 29 (10 Crew)

Possible VLF/Ω Waypoint Error?

CERRO SILLA PATA

2.1 □ PROBABLE MKI GPWS WARNING (INSTALLED)
3.5 □ MKII GPWS WARNING (NOT INSTALLED)
16.8 □ MK VII GPWS EQUIPMENT (NOT INSTALLED)
LA PAZ, BOLIVIA
KENNEDY INT'L
VOR DME Rwy 09R
VOR 115.7 PAZ 19R
Class VOR/DME

Trans Level By ATC
TRANS ALT: 18000 ft Mean Sea Level

29 Reported Dead in Bolivia Jet Crash

By RICHARD WITKIN

The wreckage of an Eastern Airlines jet was located late yesterday on the side of a mountain southeast of La Paz, Bolivia, 30 hours after it crashed on a flight to La Paz from Asuncion, Paraguay, airline officials said. Reports from the scene said that some of the 29 people on board had survived and that the wreckage was scattered over a large area, making it difficult to locate them.

Among the American passengers reported aboard the Boeing 727 plane was Marshall Davis, wife of Arthur H. Davis, the Ambassador to Paraguay, according to Alan Romberg, a State Department spokesman. Airport officials at El Alto Airport, where the plane had been headed, identified another of the American passengers as William Kelley, director of the Peace Corps in Paraguay. A third American passenger was identified by Eastern as Jonathan Watson. No further information on Mr. Watson was immediately available.

"Officials of the airline" said the wreckage had been positively identified by a company employee who apparently was aboard a plane used in the crash and who had been interviewed by a company executive. The site of the crash was reported to be at an altitude of 10,000 feet, not far below the 31,000-foot crest of Illimani Mountain.

Remark of the 29 victims were passengers. The others included three American pilots and five flight attendants, all of whom were believed to have been South Americans. The remaining people aboard were two American airline employees, identified as J. B. Leach Jr. of Miami, and Haywood H. Hargrove Jr., of Houston, who were riding as nonpaying passengers.

A spokesman for the United States Embassy in Paz said the plane had been sighted above the Illimani Range, about 20 miles southeast of La Paz. The Associated Press reported a Red Cross team was on route to the scene but it was not possible to reach the wreckage by road. The attempt, in any case, was not made until today because it was getting dark when the searches finally sighted the plane. The village closest to the site is La Paz. The last fatal crash involving a major United States airline on a passenger flight occurred two and a half years ago when a Pan American World Airways 727 went down after taking off from the main airport in New Orleans, killing 154 people. The Eastern planes that crashed in Bolivia, Flight 867, had taken off from Asuncion at 5:37 P.M. New York time on New Year's Day and had been due at La Paz at 7:45, according to Eastern spokesmen.

The National Transportation Safety Board sent an accident investigator, John Young, to La Paz as this country's representative in the inquiry. The Bolivian government will participate. The FAA, which promulgates the rules governing operation of this country's aircraft, also sent representatives in case anything turned up that required regulatory action.

One issue expected to arise immedi-
FLIGHT PATH PROFILE
Bandeirante
Inverness, Scotland
19 November, 1984

Circumstances: Aircraft was cleared to fly direct Edinburgh at FL95 after a
departure from runway 24. Aircraft did not climb to attitude
over field, and impacted hill, freight operation.

Time: 2055
Weather: Overcast. Cloud bases 1400 Wind 020/5 kts. +6°C.
Fatalities: 1
Other: Autopilot engaged (Pitch Attitude Hold and Heading Mode)
This is a preliminary report from another carrier.

On January 4, at 1400 local time, a 727-100 on a repositioning ferry flight with six crewmen on board, descended into the runway 16R approach lights at Seattle-Tacoma Airport during a low visibility CAT I ILS approach. The descent through the frangible lights was arrested and the airplane climbed sufficiently to land on the runway with only minor damage.

Weather was: sky obscured, ceiling 200 feet, visibility 1/8 mile, runway 16R RVR 1800 variable 800 to 3000 feet, wind 010° at 3 knots. The captain was at the controls and flew a normal descent profile until decision height. A callout was made at 200 and 100 feet above minimums and decision height. Following the "minimums" callout, the GPWS activated with two "Glideslope" and three "Sink-Rate" warnings. ("Sink Rate" warnings take priority over "Glideslope" warnings when the envelopes overlap.—Ed.) Then, a crewmember called out, "Pull it up," three times. Sounds of impact followed.

The airplane descended into the frangible approach lights near the inner marker, knocking out three rows, then pulled up above the lights. First ground marks from main gear wheels appeared in the berm just short of the runway. The airplane then became airborne and next touched down on the runway at a point which could not be determined. Then, following the rollout, the captain taxied normally to the gate.

None of the operating or deadheading crew were injured. Crew interaction during the approach could not be confirmed since ship's power remained on for an extended period after landing and all portions of the approach were erased before the "two hundred above minimums" callout.

Maintenance found the left main gear tire damaged and flat, the right main gear door separated and extensive damage to trailing edge flaps as well as punctures in the underside of the fuselage.
Flight Path Profile
A-300
KUALA LUMPUR, MALAYSIA
18 DECEMBER, 1983

Circumstances: Aircraft under shot ILS Approach to runway 15 during heavy rain.

Time: Dusk

Weather: 4 KM visibility, 1/8 500, 2/8 LB 1-700
Rain and thunderstorm east to southeast, northwest and southwest. Temperature 25/24
RVR 450 meters.

Aircraft destroyed by fire. All 241 on board escaped.

Capt: "... I have control" (F/O was flying)
(Captain realigns aircraft on localizer; F/O omits 200 and 100 foot callouts.

Below Glideslope Alerting Area

NO MKII 'GLIDESLOPE' ALERT
GLIDESLOPE ALERT PERMANENTLY INHIBITED
BY AIRCRAFT OWNER. COCKPIT SELF TEST STILL GAVE
'GLIDESLOPE' PULLUP! BUT NO GLIDESLOPE FUNCTION,
NO MENTION IN FLIGHT MANUAL.
The following paraphrased summary is excerpted from the Malaysian Department of Civil Aviation accident report:

On March 18, 1984, in evening twilight, a Malaysian Airlines A300B4 undershot runway 15 by 4595 ft in heavy rain showers on approach to Subang Airport near Kuala Lumpur and was destroyed by impact and fire. The approach, initially flown by the copilot, was unstabilized and the captain eventually took control about 30 seconds before impact. The captain continued descending after passing decision height even though visual reference to the approach lights was not established. All 233 passengers and 14 crewmembers evacuated the airplane without serious injury and shortly thereafter the fuselage was destroyed by post-impact fire.

During the flight's arrival in the Kuala Lumpur area the crew was advised of heavy rain showers at the airport and that RVR was 450 meters; company minimums were 800 meters for the ILS to runway 15. The flight continued, the first officer began the approach "fairly high" and right of the centerline. The captain, seeing the first officer's difficulty, advised him several times to "fly the aircraft" but provided no other guidance.

After passing the outer marker, sink rate increased to 1123 ft/min and the airplane went below the glidespath. The company's required "1000 ft flags check" callout normally accomplished by the pilot not flying, was not made. About 30 seconds before impact, with the airplane still not stabilized on the glideslope, the captain took control. Descent was continued (later the captain stated he thought he was on the glideslope and only had to worry about localizer alignment).

A radio altimeter alert tone activated when the airplane passed the preset bug height above touchdown (about 204 ft AGL) but none of the crewmembers responded to the alert. At the time, the report speculated, the flight engineer was somewhat distracted by the act of loosening his seat belt to gain access to the windshield wiper controls on the pilot's overhead panel. The first officer belatedly called out "minimums" about six seconds after the radio altimeter tone. At that point, the captain stated he looked up, saw lights, and continued down. Initial impact with tree tops occurred a few seconds later 1.08 nautical miles from the threshold on the localizer centerline.

The airplane cut a 2000 foot swath on a 4.5 deg angle, banked about 7 to 8 deg right, through rubber, fruit and secondary forest trees, finally skidding to a stop in several feet of water about 4600 feet from runway 15. The main gear and both engines were torn from the aircraft, the nose gear collapsed aft into the fuselage and post-impact fire, fed by fuel from ruptured wing tanks, totally consumed the cabin from the cockpit to the aft pressure bulkhead, burning away the fuselage crown from the nose to the vertical stabilizer. Impact forces were less than 3 g's and all seats remained in place.

The report credited the flight attendant's selective use of cabin doors and slides (LH 1 and 4 and RH 1 and 2) for the prevention of injuries from the post impact fuel fire outside the airplane and the retardation of the fire entering the fuselage until everyone had gotten out. Evacuation took about 5 minutes.

The copilot, who resumed support duties after the captain took control, missed the "200" and "100 above minimums" company-required callouts (he was setting the INS to read wind at the time), but he did call "minimums." No GPWS "glideslope" warning occurred as the airplane descended progressively further below the glideslope because SAS, the airplane's owner (the airplane was on lease to Malasian Airlines), had previously disconnected Mode 5 in accordance with their company policy.
Circumstances: Aircraft undershot near outer marker on ILS approach to runway 33.
Time: Night midnight
Weather: Wind 180/05 - Good visual condition
Fatalities: 181 out of 192 on board.

FLIGHT PATH PROFILE
B747-200
Madrid
27 November 1983

4000' INTERCEPT ALTITUDE
328'
2°38' GLIDESLOPE
OUTER MARKER

Below Glideslope Alerting Area

Flaps 20

~1200 FPM

(GPWS) "Terrain - Terrain!" Whoop-Whoop Pull-Up! Terrain!
Commander: "OK... OK"

F/O: "What does the terrain say, Commander?"

Autopilot disconnected
"OK"

First Impact
Second Impact
Third Impact

DISTANCE ~ NM (FROM THRESHOLD 33)

8.0 7.0 6.0 5.0 4.0

GLIDESLOPE ALERT (WIRES DISCONNECTED)
MK II GPWS WARNING (MODE 2B)

TIME FROM FIRST IMPACT ~ SECONDS

ALTITUDE MSL ~ FEET

3500
3000
2500
2000
Death Toll in the Crash of 747 Jet Near Madrid Airport Rises to 183

MADRID, Nov. 27—(AP)—The known death toll in the crash of a Colombian Boeing 747 here today has risen to 183, officials said. The toll made it one of the 10 worst crashes in aviation history.

Only 11 of the 194 people aboard survived the impact and fire, and four of them were in very serious condition, the officials said.

The plane, Avianca's Paris-Bogotá flight, crashed and exploded in a field near Barajas airport, about five miles east of Madrid. The airport was closed to all flights.

Airport officials said the jumbo jet, which landed at 10:30 a.m., had been scheduled to stop in Madrid and Caracas, Venezuela, and that many of those aboard were French and Germans.

There were no immediate reports of any survivors, and the plane's black box had not been found. It was not immediately known if any United States citizens died in the crash.

Among the dead were two Latin American authors, two Colombian artists and a Colombian senator among those killed.

The plane was on its way to Bogotá for the First Hispano-American Conference on Culture, which was to open Monday. They were Marta Traba, an Argentine-born Colombian citizen; her husband, Angel Rama of Uruguay; Marcello Soares of Peru, and Jorge Barragan Goya of Mexico.

The Colombian Senator killed was Ana Sixto Gonzalez de Cuadros. She was installed in office only two weeks ago, replacing a Senator who was killed in a traffic accident.

The two Colombian artists were Tiberio Varela and Jairo Villalba. Also among the reported dead were five Swedish couples on their way to Colombia to pick up five orphans for adoption, Swedish officials said. They said the children were waiting for their future parents at orphanages in different parts of Colombia.

The plane, which was flying in clear skies at an altitude of 10,000 feet when the pilot, Tito Hernández, and the co-pilot, Edmundo Ramirez, communicated with Avianca officials 20 minutes before the crash...

There were unconfirmed reports one of the four engines caught fire before the plane plunged to earth, but Transportation Minister Enrique Barón said 747's can land with two engines, especially when they are close to an airport.

Rescue parties using searchlights...
CIRCUMSTANCES: Aircraft let down on approach using dual INS. The crew looking for visual contact, but impacted terrain some 32 nm south of the airport. ADF's indicated airport to north but were not trusted over the INS positions. Probable transposition of the Lauda and Dundo latitudes during initialization of the INS's.

TIME: 23:02 GMT Night

WEATHER: Clear, dark, no moon.

CONFIGURATION: Gear down, flaps maneuvering

FATALITIES: 7

OTHER: Cargo, diesel fuel, 14 tons. Aircraft equipped with MK I GPWS. No warning on CVR. GPWS probably disabled. American aircraft, American crew.

Flight Path Profile
L-382
DUNDO, ANGOLA
27 August, 1983

Captain gives the approach briefing and calls for descent checklist at 22:44 GMT

F/O: "... The ADF's show us south..."
Capt: "... I wouldn't trust that damn thing..."
F/O: "Yah!

F/O: "... 1000 above" (radio altitude)

Captain: "... Where is it? I can't see a damn light anywhere..."

Captain: "Let's hold it at 3000..."
(no further F/O call outs)

Aircraft in slow descent, turning left

No GPWS Warning
MK VII GPWS Warning (if installed and operations)
Examination of the wreckage and the voice recorder do not indicate any evidence of mechanical failure or outside influences which might have caused this accident. The CVR conversations indicated that the two (2) Inertial Navigation Systems indicated the aircraft was overhead Dundo Airport when it was actually some thirty (30) nautical miles south of that location. An incorrect entry of the latitude for PGI by entry of the degrees south for PGI (7°S) and the minutes south for LAD (51°S) could produce this navigational error.

If this transposition of numbers actually occurred, the INS would have been programmed to go 31.4 statute miles (27.2 nautical miles) south of PGI. The Angola Operations Manual contains a chart which is used for determining the INS coordinates of various airports. The PGI and LAD coordinates are listed adjacent to one another, i.e.:

\[(\text{PGI/FNGP S 7° 23.8 E 20° 50.1})
\]
\[(\text{LAD/FNLU S 8° 51.0 E 13° 14.1})\]

After the accident site had been located, a Company aircraft entered the coordinates as described above at LAD and flew to a location within a mile or two of the accident site as a test of this theory.

The aircraft left its cruising altitude of FL 190 at 2241GMT. At 2244GMT the approach briefing was given by the Captain, including the airport elevation of 2451 feet and the descent checklist called for. There is no indication on the cockpit voice recorder of any mechanical difficulties whatsoever, or of any outside influences on the flight. At 2252GMT the First Officer reported the aircraft was 1,000 feet above the ground. The ADFs, in the opinion of the crew, were not holding reliably on PGI. At 2253GMT the crew feels they are at Dundo, based on the INS information. The aircraft apparently is descended in VFR conditions to 3000' MSL (which is 350 feet above the ground at the accident site). From that time on, no altitude calls are made and the crew is apparently visually searching for the airport or its environs. Three (3) minutes later, at 2302GMT, the aircraft contacted tall trees and crashed.

The Accident Committee, based on information available to it, believes the accident resulted from the crew's confusion caused by the inconsistent INS and ADF indications and allowing fixation on a visual contact with the ground to disrupt cockpit coordination and altitude awareness, thus flying the aircraft at too low an altitude for the surrounding terrain. The crew apparently considered the ADF bearings they were receiving from the Dundo NDB as being unreliable when it appears the needles were pointing in the direction of Dundo. Over-reliance on the INS led the crew to think they were somewhere where they were not. Being in the wrong location could have resulted from incorrect INS programming.
Flight Path Profile
B-737-200 HC-BIG TAME
CUENCA, ECUADOR 11 JULY, 1983

Capt: "We Haven't Yet Passed The VOR?"
F/O: "No, We're Approaching At 10,000."
Capt: "Do We Maintain There?"
F/O: "Yes, Yes, 10,000 Until Passing The VOR."
GPWS: "Terrain - Terrain - Terrain."
F/O: "Over The VOR, I'll Give It Flaps 30."
Capt: "OK Flaps 30."
F/O: "Let's Not Descend Any Further."
Capt: "Ah?"
F/O: "Very Well -- Let's Go -- Let's Not Descend Below 8,700 Feet." (MDA 9500 Feet)
(Sound Of Stabilization Trim)
Capt: "Did You See That?"
F/O: "We Can't Maintain Level Flight There."
GPWS: "Sinkrate - Sinkrate - Sinkrate."
Captain Pulling Up and Adding Thrust
Impact 15 Feet Below Top

Notes: Aircraft cleared for straight in VOR approach to runway 23.
Weather: 300 M VFR visibility 6 KM some scattered ground fog.
Time: 0737 Daylight.
Fatalities: 119 included 7 crew members and one child.
Estimated Loss: $50 M
On July 11, a TAME Airlines 737-200 owned and operated by the Ecuadorian Air Force, struck a hill during a daylight IMC approach to runway 23 at Mariscal Lamar Airport in Cuenca, fatal injurying all 119 people on board.

Weather at the airport was clear with approximately 6 miles visibility but hills beneath the aircraft's approach path were reportedly obscured by clouds.

The aircraft struck a cloud-shrouded hill, 200 ft above airport elevation, about 2 miles northeast of the airport. Witnesses said that the airplane disappeared into a cloud bank and that they heard the engines spin-up just before the sound of impact. Wreckage indicates that the aircraft struck the hill about 25 ft below the crest in a nose-high attitude with the gear down and flaps set to 40°. The aircraft was equipped with a MK II type GPWS.

The airport is 8302 ft above sea level and has one runway 6234 ft long and 98 ft wide. Neither runway, VASI or approach lights are installed. The approach procedure requires that the crew continue the final three miles of the approach by visual reference to the ground after passing the 2DME missed approach point. Minimum descent altitude at the 2 DME MAP is 1198 ft AFE. This would have required a 400 ft/mi altitude loss from the MAP to the runway. It appears from witness statements, that the airplane descended from the MDA before reaching the MAP.

The airport is 8302 ft above sea level and has one runway 6234 ft long and 98 ft wide. Neither runway, VASI or approach lights are installed. The approach procedure requires that the crew continue the final three miles of the approach by visual reference to the ground after passing the 2DME missed approach point. Minimum descent altitude at the 2 DME MAP is 1198 ft AFE. This would have required a 400 ft/mi altitude loss from the MAP to the runway. It appears from witness statements, that the airplane descended from the MDA before reaching the MAP.

The airport is 8302 ft above sea level and has one runway 6234 ft long and 98 ft wide. Neither runway, VASI or approach lights are installed. The approach procedure requires that the crew continue the final three miles of the approach by visual reference to the ground after passing the 2DME missed approach point. Minimum descent altitude at the 2 DME MAP is 1198 ft AFE. This would have required a 400 ft/mi altitude loss from the MAP to the runway. It appears from witness statements, that the airplane descended from the MDA before reaching the MAP.
RADAR ENVIRONMENT
INCORRECT VORTAC FREQUENCY SETTING

MT. RAINIER
C-1A
21 MARCH 1983

33 NM TO GO

MKII GPWS WARNING (NOT INSTALLED)
Rescuers reach plane on Mt. Rainier

Search-and-rescue crews from two Air Force helicopters were lowered this afternoon to the wreckage of a Navy airplane with five people aboard that crashed on the southeast face of Mount Rainier yesterday afternoon.

It was not immediately known what became of the five men aboard the C-130 cargo plane, but the identification of the people was soon confirmed by the commanding officer of the rescue mission.

The plane, a C-130, was flying at 10,000 feet in scattered clouds but "not bad weather," when it disappeared from radar and radio contact at 2:49 p.m., said Bob Mayo, area manager for the Federal Aviation Administration traffic-control center in Auburn.

"The pilot didn't say anything to us about any problems on board. He just disappeared," said Mayo. Although the flight plan filed with the FAA listed only four people on the plane, Capt. Lyndell Bull, commanding officer of the Constellation, indicated five were aboard.

Two helicopters from the 26th Aviation Battalion at Fort Lewis and two more from the 306th Aerospace Reserve Unit in Portland descended the area until dark without finding the plane.

Mayo said the plane, built by Grumman, is designed to carry up to nine passengers or 3,000 pounds of cargo to and from aircraft carriers at sea.
The Last “Safety Net” -- GPWS
B 767 LA GUARDIA FEBRUARY 1983

BACK UP TO TWO PROFESSIONAL PILOTS
PROCEDURES, CHECK LISTS, ALL DIGITAL CRT
COCKPIT, FMS, AFCS, FWS, PROFESSIONAL ATC,
ARTS III MSAWS

ATC; "Descend To 2700 Feet, Cross Grene At 2700 Feet,
Cleared For ILS Approach To Runway 4, Hurry Out Of 4500 Feet!"
(Altitude Selector Inadvertently Set To 0000)

F/O; “Gear Down
And Flaps 40”

(Gear Recycled)
(Overhead Reading Light
Turned On)
(Final Check List
Begins)

GRENE
R-181 JFK
11 DME LGA VOR

2700’

3.00 GLIDESLOPE

Overcast ~ Night

Overcast ~ Night

MK III GPWS Warning Starts
“Terrain - Terrain” - “Pull Up”
CAPT: “Pull Up! Pull Up!”

MK III WARNING (Actual)
On final approach into LGA with the weather 400 foot overcast the descent was made below the minimum maneuvering altitude. I feel that a dangerous situation existed this time, and I will try to give a history of the events.

Our clearance was "descend to 2700 feet cross GRENE at 2700 feet, cleared for the ILS approach to runway 4, hurry out of 4500 feet". Using the flight level change mode on the mode control panel we descended to 2700 feet. The first officer was flying and asked for flaps 20, gear down. Acting as co-pilot and doing the co-pilot duties put the gear handle down and the flaps at 20°. The gear amber light was on, so it was necessary to recycle the landing gear.

Three green lights appeared after cycling. It was night time so I turned on the overhead reading light and completed landing checklist. As I was replacing the check list to the card holder the GPWS sounded two pull-up warnings and I said "pull-up, pull-up". The auto pilot was disengaged and maximum power was added. At about this point we crossed the LOM. An attempt was then made to get back on the localizer and glide slope but we were not able to do so. A missed approach was made and another approach in landing was uneventful. On the missed approach the altitude selector on the mode control panel indicated 0000. Neither of us know how they got there.

The aircraft was descending below the glide slope all the way down and did not capture, but was going to 0000 as asked for by the altitude selector.

I feel that there was some failure in the system as well as in the coordination of the flight crew, I feel that we all must be more cognizant of the fact that the monitoring of the B-767 instruments must be absolutely primary by both pilots. We may have been saved by the GPWS and I feel that closer monitoring by both pilots would have prevented this situation. The only reason I write this is to once again alert each of us to the many traps these new concepts and the new instrumentation can lead us into. Heads Up is the answer.

The author wants to alert B-767 crew members about the uniqueness of their aircraft and its instrumentation. Flight Safety would like to remind ALL crews, not just the B-767, one pilot must fly the aircraft and continually monitor its progress.
Circumstances: Aircraft hit 150 m short during Cat II ILS runway 03 approach broke into three pieces and caught fire.

Time: 23:57 local

Weather: Ceiling 200 feet. Wind Calm. Visibility 600m, snow

Fatalities: (Fire) 47 out of 60 on board.

Winds:
- FAF: 67 Kt tail wind
- MM: 12 Kt tail wind
- Runway Calm

Windshear:
- 120 Kts
- +0.8 Kts/Sec. for 36 seconds

NOTE: No windshear 'Caution' or 'Warning' for conventional windshear detection systems (set for -2.5 Kts/Sec.)
46 Killed in Ankara
As a Turkish Jetliner Goes Down in Storm

ANKARA, Turkey, Jan. 16 (AP) — A Turkish Airlines jetliner carrying 67 passengers and crew members crashed while landing in a storm at Ankara's airport today and 46 people were killed, the authorities reported.

Fourteen passengers and all seven crew members — a pilot, co-pilot and four flight attendants — survived the crash, officials said. The survivors were taken to hospitals, but their conditions were not known.

The semi-official Anatolia News Agency said the Boeing 737 was arriving from Istanbul. Government officials said two foreign passengers were aboard. One was listed as a Briton and the other as a Rumanian, but further identification was not available.

Earlier reports said the flight originated in Luxembourg or Paris, but officials said it was a domestic flight.

Caught Fire as It Broke Up

The state radio reported that the road to Esenboga Airport was closed to traffic except for ambulances and official cars.

Airport officials said the plane crashed at 10:30 P.M. (2:30 P.M., New York time). They said snow and high winds caused the craft to plunge off the runway and it caught fire as it broke up.

Anatolia News Agency said the three-engine jetliner split in two before catching fire.

It reported that some rescue workers were fighting to extinguish the fire as others pulled the victims from the wreckage.

Most of the survivors were in the front section of the plane, the agency said.

Prime Minister Bulent Ulus and Communications Minister Mustafa Aykan went to the scene to help oversee rescue efforts.

The crash was the sixth involving a Turkish Airlines plane in the last 10 years.
NOTES:

Time: 0910 MST

VLF & RNAV equipped
"Talking Altimeter" Installed
Landing Gear down
25 FLAP - Climb gradient potential
10½% @ 150 KTS

Wx: 100° 30° 90°
20 miles 20°F
30°/4 30°/20° .8

GPWS Warning Time shown for 160 KTS Ground Speed.

Fatalities: 2
APPENDIX D
IMPACT SITE

NATIONAL TRANSPORTATION SAFETY BOARD
WASHINGTON, D.C. 20594

AIRCRAFT ACCIDENT REPORT

About 0910 mountain standard time on January 3, 1983, N805C, a Canadair Challenger CL-600, owned and operated by the A.E. Staley Manufacturing Company, Inc., Decatur, Illinois, crashed into a mountain about 2.2 nmi north of the Friedman Memorial Airport, Hailey, Idaho (Sun Valley Airport). At the time, the airplane was proceeding to land at the airport.

Shortly before the accident, N805C had completed its instrument flight rules (IFR) flight from Decatur to Sun Valley Airport and had descended into visual flight rules (VFR) flight conditions. The weather at the airport was overcast, ceilings were reported to have been between 800 and 1,500 feet overcast, and the visibility was 10 miles. The base of the clouds were below the tops of the surrounding mountains.

N805C missed the airport, flew to the north over the town of Hailey, and into an area of lowering ceilings and worsening visibility. After passing the airport, the pilot attempted to climb above the mountains.

The airplane was destroyed upon impact and the pilot and copilot, the only persons on board, were killed in the crash.

The National Transportation Safety Board determines that the probable cause of the accident was the flightcrew's failure to adhere to the recommended visual arrival procedures for the Sun Valley Airport and its failure to execute terrain avoidance actions. The reasons for the flightcrew's failures could not be established conclusively. Contributing to the accident were meteorological conditions and the obscuration of terrain features and landmarks by snow that made navigation by visual references and terrain avoidance difficult.

1. FACTUAL INFORMATION

1.1 History of the Flight

At 0613 m.s.t. on January 3, 1983, N805C, a Canadair Challenger owned and operated by the A.E. Staley Company departed Decatur, Illinois, on an IFR RNAV 2 flight plan to Friedman Memorial Airport, Hailey, Idaho. The route of flight was

1/ All times herein unless otherwise noted are mountain standard time based on the 24-hour clock.
INITIAL APPROACH
VISUAL PREMATURE DESCENT
FORTALEZA, BRAZIL
B727
8 JUNE 1982

Circumstances: Hit hillside, on night visual initial approach. Mk I installed but circuit breaker clipped because GPWS was not installed on other airline aircraft. (Aircraft was leased from Singapore).

Time: 02:45 Local Time
Configuration: Landing Gear Up
Fatalities: 137 (9 Crew)

Cleared to 5000 feet, but continued to descend to 2000 feet, the pattern height.

Sound Of Altitude Alert
Sound Of Gear Horn

F/O (To Captain): "...Are We Clear Of The Hills...Here?"
Capt: "We're Almost To It..."
137 Said to Die in Crash Of Brazilian Airliner

Fortaleza, Brazil, June 8 (AP) — A Brazilian airliner crashed into a mountaintop in heavy rain outside this northeastern coastal city early today, killing all 137 people on board, air force rescue teams reported.

The VASP airlines Boeing 727, carrying 126 passengers and 9 crew members, was on a regularly scheduled flight to Fortaleza from Rio de Janeiro when it crashed in the Pacatuba Mountains 30 miles south of here.

Major Luis Gonzaga Lopes, coordinator of the rescue operation, said in a television interview that "the helicopters have located the wreckage of the plane and have informed me that, unfortunately, there are no survivors."

An airline spokesman said he was "waiting for the rescue patrols to come back" before making an official statement on casualties.

A report from the air force teams indicated the rescue operation was being hampered by heavy fog and the terrain at the crash site. The cause of the crash was not immediately known.

The aircraft, which was on a night flight from Rio de Janeiro, crashed into a 2500 ft wooded hillside on Pacatuba mountain during an ITC descent to Fortaleza. All 137 on board were killed and the aircraft was destroyed by impact and post-impact explosion and fire.
NIGHT VISUAL APPROACH — PREMATURE DESCENT

SOLLA BAY, CRETE
C-1A
3 APRIL 1982

Notes: Aircraft departed USS Aircraft Carrier Eisenhower
Unlimited Visibility. 11 Fatalities

5 NM TO GO

0 500 1000 1500 2000
ALTITUDE ~ FEET

3 2 1 0 NM

488' AIR FIELD

10 20 30 40 50 60 SECONDS

MKII GPWS WARNING (NOT INSTALLED)
Plane crashes say Greeks.

17 bodies taken from

Flight Path Profile

B737, (122 ON BOARD)
LOCALIZER APPROACH TO RUNWAY 26L AT NIGHT
ONTARIO, CALIFORNIA
15 FEBRUARY, 1982

Similar profile, but 727 missed hi tension electrical tower and wires 15 minutes earlier.

SIMILAR INCIDENT:
8 Sept 1989 Kansas City B737
Tower: ... 'Visibility Now At 700 Meters' (Was 3 KM) ... Ceiling 300 Feet (Was 100 Feet)

Capt: ... Approach Lights In Sight Continue Approach.'

(F/O Looks Up)

'Glide Slope' (GPWS)

Capt: 'Go Around!'

GPWS 'GLIDESLOPE'

GLIDE SLOPE

ALERT AREA

APPROACH LIGHTS

THRESHOLD

ALTITUDE ABOVE GPI ~ FEET

0 100 200 300 400 500

1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 NM

SECONDS

15 10 5 0

GPWS 'GLIDESLOPE'

'GLIDESLOPE'

'GLIDESLOPE'
Radar Into Non-Radar Environment
AJACIO VOR/ILS03
MD-80 CORSICA 1 DECEMBER 1981

Weather: Surface Wind, 280/20 KTS, Overcast
Fatalities: 168

Minimum Altitude for Procedure Hold' Was 6800 Feet.
178 killed as Yugoslav jet hits mountain

AJACCIO, Corsica — (AP) — A chartered DC-9 airliner carrying 172 Yugoslav tourists and six crew members slammed into a fog-shrouded mountain 30 miles from the airport here today, killing all aboard.

Ajaccio police said the wreckage of the Yugoslavian Ilyushin-28 airliner was found by search parties on the slopes above the airport, nearly four hours after radio and radar contact with the plane was lost.

High winds and fog hampered efforts to locate the downed plane.

Africair said the DC-9 crashed on the north face of Mount San Pietro. Bodies were scattered on the sides of the mountain amid the debris of the aircraft, they said.

Civil-defense workers were taken to the scene by police helicopter.

Ajaccio airport is blacklisted by the International Federation of Airline Pilots Associations, which says landing equipment aids are not modern enough to guide jetliners safely through surrounding mountains. The government contends that enough planes use the airport to justify the $8 million new equipment would cost.

Villagers reported seeing an aircraft apparently in trouble and others said they heard one or more explosions, possibly as the aircraft crashed into Mount San Pietro.

The number of people aboard the airliner was announced in Yugoslav news, where the one-day excursion to Corsica was organized by the KOMPA company in Ljubljana. Tour operators said there were 172 passengers, including three infants, and six crew members; all appeared Yugoslavian.

The plane was on final approach to landing at the airport, coast tower officials said. The plane hit the tower and radio contact with the craft was lost.
Flight Path Profile
BE-99 CASCADE AIRWAYS
SPOKANE, WASHINGTON
20 JANUARY, 1981

Circumstances: Aircraft hit hill during an instrument approach
Localizer runway 3.
Configuration: Gear down, approach flaps
Weather: IMC 3 @ visibility 2 miles, fog
Time: 11:27 PST
Fatalities: 7 out of 9 on board
---DME mode selector was probably set to "Hold" position---
(On VORTAC instead of localizer DME)

OLAKE R-115 GEG
OR 4.2 10LJ LOC DME

3500’

0.8 10LJ
LOC DME

2760’

0.2 10LJ
LOC DME

2367’

"Too Low... GPWS Warning Approx 10 Seconds Before Impact.
(Flaps Not In Landing Position) (GPWS Was Not Installed)

Source: NTSB-AAR-81-11
About 1127 P.M., on January 20, 1981, a Cascade Airways, Inc., Beech 99A, operating as Flight 201, crashed during an instrument approach in instrument meteorological conditions at Spokane International Airport. The aircraft hit a hill about 4.3 miles from the runway threshold at an elevation of 2,646 feet. The minimum descent altitude for the instrument approach procedure was 2,760 feet. Of the nine persons aboard Flight 201, seven were killed and two were injured seriously.

The instrument approach procedure the flight crew used required that an altitude of 3,500 feet be maintained until the aircraft passed the final approach fix, located 4.5 miles from the runway threshold. The aircraft impacted the ground near the location of the final approach fix, which was about 1,800 feet southeast of the Spokane VORTAC.

The National Transportation Safety Board determines that the probable cause of the accident was a premature descent to minimum descent altitude (MDA) based on the flight crew's use of an incorrect distance measuring equipment (DME) frequency and the flight crew's subsequent failure to remain at or above MDA. Contributing to the cause of the accident was the design of the DME mode selector which does not depict the frequency selected and the failure of the flight crew to identify the localizer DME facility.

1. FACTUAL INFORMATION

1.1 History of the Flight

The flight crew reported to the Cascade Airways operations facility in Walla Walla, Washington, about 0600 P.M. and conducted the preflight activities according to Cascade Airways procedures. They departed Walla Walla at 0604 as the flight crew of Flight 930 and made one scheduled en route stop at Richland, Washington, before arriving at Seattle at 0730.

1/ All times herein are Pacific standard, based on the 24-hour clock.
Circumstances: Aircraft hit short by 270 feet of runway 14 during ILS approach. Main gear hit 8 feet below runway and separated, with nose gear intact. Fire started destroyed the aircraft. Flight originated at LAX.

Weather: Clear on top, but with fog patches 1000 M visibility at airfield. Temperature 2°C, dew point 2°C. Wind calm.

Time: 0727 Local.

Fatalities: 15 (226 on board)

FLIGHT PATH PROFILE

B747-200
Seoul, Korea
19 November 1980
NOTE: Airport of entry. Refrain as far as possible from excessive engine power check from 1300Z to 2100Z for noise abatement.
Flight Path Profile
C-141A
USAF
CAIRO
12 NOVEMBER, 1980

NOTES:
Transport Operation
While turning downwind at night, aircraft was inadvertently banked and flew into the ground with a high descent rate (>2000 fpm) and velocity (+200 kts, Black Hole) visual turn.
Configuration: Landing
GPWS Installed
Fatalities: 13

Minimum Recovery Time 9.0 Seconds
3900' From 235 KTS
2500' From 275 KTS
9000' lpm
Circumstances: On departure runway 28, the aircraft began an accelerating but shallow climb, towards terrain. The crew was alerted by the tower and departure of the potential terrain problem. There was no GPWS warning, MK II installed.

Weather: 5 miles visibility, but clouds to the west covering hill tops.
NOTES:
Circumstance: Heavy rain showers. Airplane hit short by 203 feet at 14:30 local time on ILS DME Runway 07.
Configuration: Gear down land flap. 134,000 lbs. V th (threshold) V ref 124 Kts
Weather: IMC, wind 8 Kts 240° 3 km visibility, ceiling 130'
Damage: $5 million, 5 injured.

FLIGHT PATH PROFILE
B727-100
San Jose, C.R.
3 September 1980

WINDSHEAR -0.9 Kts/Second for 10 seconds
NOTE: No windshear warning for standard on board windshear detection set at -2.5 Kts/Sec.)

Return to TOC
Flight Path Profile
B 727 TENERIFE 25 APRIL 1980
146 FATALITIES

capt: 'Watch My Eopers . . .
f/o: 'I Suggest A Heading On 122 Actually
and Er Take Us The Overshoot . . .'
f/e: 'Let's Get Out Of Here!'
f/o: 'Approach . . . We've Had A Ground
Proximity Warning'

atc: ' . . . Reclered to 5.000 . . .'
f/o: ' . . . Roger . . .'
capt: 'OK, Overshoot . . .
He's Taking Us Around
To High Ground'

5,000
4,000
3,000
2,000

20
30
40
50
60
5
4
3
2
1
0

ALTITUDE
~ MSL

0
5 4 3 2 1
SECONDS

ACTUAL GPWS WARNING
MARK II GPWS

Circumstances: Charter Flight
Weather: Clear. Solar cloud cover
Wind: 160/10 knot
Time: 13:35 GMT
Both Captain and Flight Engineer
both held 'GPWS Inception'
Certificate' yet.
Captain turned into cloud for
receipt of the GPWS Warning
Fatalities: 146

0
5
10
15
20
25
30
35
40
45
50
55
60

NM

SECONDS
Roger leaving one zero zero for six zero.

Report your DME reading please.

We’re checking DME Tango November and requesting the QFE please.

Nine four three.

Nine four three many thanks.

One zero zero zero right for your information Foxtrot Echo on runway one two is still four one.

Roger nine four one for one two thanks.

Notify one six one, notify completing curve and proceeding.

Notify six one zero one.

Tennis baskets taxis Hysug Lloyd five four two.

Five four two, good afternoon report ready.

Wilco.

Dan one zero Iwo, Tango Foxtrot PAPA is inbound heading one five zero turn to the left call you back shortly.

Roger.

Notify one six one, notify completing curve and proceeding.

Notify one six one, report ready.

Lima six one, report completing curve and proceeding.

Receive, Break.

Dan one zero zero zero eight, cleared to five thousand on the Quebec Paxon Echo and Quebec September Hotel.

Roger cleared down to five thousand feet on the one zero zero three Dan-Air one zero zero zero eight.

Roger.

Hysug Lloyd five four two, see you ready?

Affirmative. Hysug Lloyd five four two is ready.

The wind is one three zero zero zero five for takeoff runway one two.

Hysug Lloyd five four two is cleared for takeoff runway one two.

Cat Dan-Air one zero zero zero eight; we’ve had a ground proximity warning.

Station calling.

Notify one six one, notify completing curve and proceeding.

Notify six one zero one, following the course in final, notify one six one zero one.

Notify six one zero one, fourteen, fifteen, million, one two one zero one.

Notify six one zero one, automatic and maintain plus one, maintain one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, million, one two one zero one.

Dan-Air one zero zero zero eight, your position in the holding.

Ah, Dan-Air one zero zero zero eight, Tenerife, request your position in the holding.
PROCEDURE TURN

FLORIANOPOLIS, BRAZIL
B727
12 APRIL 1980

GEAR DOWN
55 FATALITIES
58 ON BOARD

10 NM TO AIRPORT

185 KTS 195°

ALTIMETER - FEET

~NM

-70

SECONDS

60 50 40 30 20 10 0

MK VII IF INSTALLED

TERRAIN TERRAIN!

NO GPWS INSTALLED

FOLLOW UP BY
During an instrument approach the aircraft struck a hill located outside the normal instrument approach trajectory. (ICAO Summary No 6/80)
Advancing The Warning Time With Speed
DC-10 ANTARTICA 28 NOVEMBER, 1979

F/O: "Yes You're Clear To Turn Right There's No High"...
CAPT: "Is It?"
F/O: "Yes"
CAPT: "No Negative"
F/O: "... No High Ground If You Do A 180"
F/E: "... Five Hundred Feet ...
... Four Hundred ...
... Pull Up"
CAPT: "Go Around Power Please"

NOTES:
Charter Flight
Weather: White out to good visibility conditions under overcast
Fatalities: 257

ALTITUDE MSL ~ FEET
260 KTS

DISTANCE ~ FEET
TIME ~ SECONDS
ACTUAL GPWS WARNING (COLLINS)
MK2/MK3 GPWS

6.3
10.8
It is hard to conceive of a more bizarre way to destroy an aircraft and its occupants than to programme the flight computer to fly straight at an active volcano, and not tell the pilot. According to an inquiry into the Air New Zealand crash on Mount Erebus in Antarctica in November, 1979, in which 257 people died, that is exactly what happened.

The aircraft was on a sightseeing tourist flight to Antarctica when it hit the 12,200ft mountain. An earlier report on the accident blamed the pilot for flying too low "when the crew was not certain of their position", a conclusion strongly endorsed by the airline. But the inquiry by Mr Justice Mahon, in a report issued on Monday, cleared the crew and blamed the airline.

The judge found that the computerised route for the flight, which was fed into the aircraft's automatic pilot, had been altered shortly before take-off because of an error in the original data. But the pilot was not told of the change, which sent the aircraft on a direct path over the volcano. When the pilot obtained clearance from the American research base at McMurdo to descend below the clouds so that the tourists could get a better view, he had no idea that he was flying straight at the mountain.

The Mahon report denounced the airline's "incompetent administrative procedures" and the "haphazard, informal" planning of Antarctic flights generally. But its fiercest criticism was directed at the airline's senior executives, including its chief executive, Mr Morrie Davis, who, said the judge, tried to fix the blame on the crew through an "orchestrated litany of lies". Mr Davis was also criticised for his "extraordinary" action in destroying many relevant documents.

Coming at a time when Air New Zealand faces a £12m loss, the Mahon report has raised questions about the airline's survival. But Air New Zealand is owned by the government and, in addition to high marks for safety and service, it is regarded (quite wrongly since its stranglehold on fares in fact keeps people away) as essential to the country's drive for trade, tourism and foreign exchange. The airline is to appeal against the judge's findings.

THE ECONOMIST
2-8 MAY 1981
P.44
Radar Vectors
INITIAL APPROACH PANAMA ILS 03R
B707 5 OCTOBER, 1979

AFC: "...Descent To 3600 Feet".

F/O: "...Is That Descent Clearance To 3600? The MSA Is 4100 Feet"

ATC: "Affirmative - You Are Radar Identified And Cleared Down To 3600 Feet!"

<table>
<thead>
<tr>
<th>5000</th>
<th>4000</th>
<th>3000</th>
<th>2000</th>
<th>1000</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTITUDE FEET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 5 | 4 | 3 | 2 | 1 | 0 |
| 6 |
| NM |

<table>
<thead>
<tr>
<th>SECONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

□ MKI WARNING
MKII WARNING (NOT INSTALLED)
PANAMA CITY, PANAMA

GEN. OMAR TORRIJOS INTL.

ILS Rwy 03R

LOC 110.7 INAT B

MIA TUM VOR ...

Alt. Elev 135'

CLIMB STRAIGHT AHEAD to 4400'.

Immediately turn RIGHT

to 130° heading climbing to 2100', immediately turn RIGHT to TUM VOR.
VISUAL APPROACH
RADAR CONTACT

CAGLIARI, SARDINIA
DC-9
14 SEPTEMBER 1979

31 FATALITIES

NOTES:
During approach with radar, pilot reported visual ground contact and elected to not follow NDB approach procedure. He let down to the West to avoid weather.
Fatalities: 31 (4 crew)
Radar Vectors
MISSED APPROACH CHITOSE PAR 18
B747 JAPAN 1 AUGUST, 1979

ATC: "Heading 090 Maintain 2,000"
F/O: "Maintain 2,000 Heading 090"

ATC: "Turn Left Heading 360, 4,000 Over"
F/O: "Left Heading 360, 2,000"

ATC: "Turn Left Heading 300"
"Maintain 2,000 Over"

ATC: "Turn Left Heading 300"
Climb And Maintain 4,000 Over"
ATC: "Heading 300, 4,000"
How Do You Read?
F/O: "Heading 300, we Are Now Pull Up!"

Terrain - (GPWS)

AIRCRAFT CLIMBS TO 6,000 FEET

25 Times For 2½ Minutes

MISSED APPROACH INITIATED

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 NM

130 120 110 100 90 80 70 60 50 40 30 20 10 0 TIME ~ SECONDS

3,000 2,000 1,000 ALTITUDE MSL ~ FEET

MSA 5400' MRVA 4000'

ATC: "Heading 090 Maintain 2,000"
F/O: "Maintain 2,000 Heading 090"

Terrain - (GPWS) Pull Up! Pull Up! ...
"(GPWS Starts)"

Ground Proximity Warning System (GPWS)
Capt. ‘So We Are Under Radar -
That Means Theoretically
Nothing Can Happen To Us’—
(ATC busy with other aircraft communications)

Capt. ‘Well, Caxias Is 20 To 33 Miles, 2,000 Feet’

Capt. ...‘2,000 Feet’

Capt. ... ‘And Is Rising Up To 4,000’

ATC: “LH--Turn Right, Turn Right heading 140, Just Now Over”

F/O ‘Pretty High - These Mountains Here’

ATC: “---Hansa 527,---Turn Right, Heading 140 and climb without restrictions---”

2½ G PULL-UP

GPWS WARNING STARTS

NOTES:
Freight, Night Departure
ATC told to maintain heading and speed up.
Weather: Overcast - drizzle
Fatalities: 3
Flight Path Profile
DHC-6
ROCKLAND, MAINE
30 MAY, 1979

Circumstances: Aircraft hit short by 1.0 NM during NDB LOC Rwy 3 approach. F/O flying.
Time: 2055 Night
Configuration: Flaps 20 (normally 10 until field insight)
Weather: 3/4 mile visibility fog, calm winds
Fatalities: 17 out of 18 on board

\[100 \text{ KTS MAP, } 0611\]

\[1400'\]

\[320°\]

\[032°\]

\[010°\]

\[MDA 540'\]

\[MAP 2'06'' \times 100 \text{ KTS}\]

\[1500\]

\[0\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]

\[0\]

\[50\]

\[100\]

\[500\]

\[1000\]

\[1500\]
Flight Path Profile
DC-8-63F
COLOMBO, SRI LANKA
15 NOVEMBER, 1978

Summary: During An ILS Approach To Runway 22, The Aircraft Hit Short By 1.16 NM
Weather: Heavy Rain At 1 To 2 NM From Runway, Possible Windshear.
Time: 23:28 Local
Fatalities: 183 Out Of 249 On Board
Possible Problems With Glide Slope Transmitter Deviation Sensitivity Or/And Inoperative GPWS Computer. (No GPWS Warnings Or Alert)

F/E: "Landing Flaps"
F/O: "Landing Flaps"
F/O: "They Are Down"
F/O: "Do You Want The Landing Lights?"
...
F/E: "Then We Have Flag Scan"
F/O: "...No Flags"

F/O: "Runway In Sight"
Capt: "The Lights On Now"
F/O: "The Lights Are Coming On"

Sound Of Heavy Rain
...
"There Is Lightning"
Capt: "Ani-Skid Is On Here"
Capt: "Let's Have The Windshield Wipers On"
F/O: "Yes"
F/O: "You Are Red On The VLSI Lights"
Capt: "Max..Power...Climb!"

[= = = = = = =] MK I (COLLINS) CALCULATED WARNINGS
GPWS Incident - Initial Descent

30 MILES WEST OF WEST OF SAN FRANCISCO B 747 OCTOBER 1978
398 PASSENGERS & CREW - NIGHT WITH LOW CLOUDS

ATC: ... Radar Identified...
 Cleared Down To 9000 At Pilot's Discretion
F/O: 'O.K. ... Down To 9'
Capt: (Reselects Autopilot - Altitude Selector)
ATC: ... 'Can You Reset Your Transponder?'
F/O: 'O.K.'

(Captain involved in interesting but non-aviation related conversation with two other 'dead heading' captains -- F/O and F/E distracted while discussing subject of checklists and fuel burn.)

Capt: (To F/E) #... 'Get That Thing (GPWS) Off!'
F/O: (Mentally - 'What's Wrong With The Radio Altimeter?')
 [Barometric Altimeters Reading 00,500 Feet]
F/O: Disconnects Autopilot
Initiates Pull Up
F/E: Sets Climb Power
Capt: 'What Are You Doing?'
F/O: 'Something's Wrong With Our Altitude'
Capt(s): 'Oh! My God!'

CONTINUOUS GPWS 'PULL UP' STARTS

TIME ~ SECONDS

MARK I WARNING
MARK II
(If installed)

'PULL UP'
'TOO LOW - TERRAIN'
A COCKPIT MYSTERY
and a Request for Information

An engineer and designer of GPWS equipment has requested that we ask your opinion about a puzzling crew activity which nearly caused three jet transport controlled flight into terrain accidents. More than likely, based on his statistical analysis, many more incidents of this type occur but are not reported.

The engineer writes:

"Buried in the multitude of commercial air carrier incidents, a cockpit mystery exists that needs examination by the industry.

"It appears that every million flight hours or so, the Altitude Selector in the glareshield is set to '0000' on approach with the Autopilot engaged. In most cases the pilots detected their error before getting too low, but in at least two separate incidents (one a 767 and the other a 747), the error went undetected until the GPWS activated. In another 747 incident, a Minimum Safe Altitude Warning (MSAW) activated and an alert air traffic controller saved the day.

"The 767 captain is to be highly commended for his report, but unfortunately most incidents go unreported. What is missing from these rarely reported incidents, is an explanation or suggestion on why the Altitude Selector was set to '0000' with the Autopilot engaged or engaged at a later time.

"Two thoughtful people have independently suggested that it may be related to the Altitude Alert function. Their theory is that some pilots may habitually or subconsciously be setting the Altitude Selector to '0000' or some high altitude value that will eliminate the distraction of a possible Chord 'C' tone during final approach. The Altitude Alert, a descendant of the "Altitude Reminder" is now integral in most cockpit designs to the Flight Director/Autopilot Altitude Selector and it is possible that this is the making of a common mode error. However, the reason or reasons may be more subtle or complex than an altitude alert theory. But whatever the reason, we solicit your help in identifying the reason for this crew error. For certain, with no action, it will be only a matter of time until there is an accident.

Can you help solve the mystery? If you have any thoughts on this, please let us know.
Circumstances: Aircraft hit short, during ASR approach to runway 25.
Weather: 400 feet overcast, 4 mile visibility, fog and haze wind 190
degrees at 7 Kts.
Configuration: Landing.
Time: 21:20 CDT Night
Other: F/E turned off GPWS
Fatalities: 3 out of 58 on board.
Circumstances: While departing Runway 27 at right, Captain lost control of aircraft and it crashed. Faulty ADI suspected.

Time: 14h41'30" GMT (20:11 IST)

Fatalities: 213 (23 crew)
GPWS Accident - Radar Control
SALT LAKE CITY DC-8 18 DECEMBER, 1977

+9 Minutes:
Cpt: "O.K. We'll Hold North Of The VOR (SLC) 6000 - Right Turns O.K."
ATC: "That's Correct Northwest Of The VOR At 6000 Right Turns"
Cpt: "O.K. Now Can We Go Ah Leave You For A Little Minute?"
... We Want Call San Francisco A Minute"
ATC: "Frequency Change Approved"
Cpt: "O.K. Now Can We Go A/I Leave You For A Little Minute?"

FWC: "O.K."
Left Turn Initiated

ATC: "Climb Immediately - Maintain 8000"
Cpt: "Out Of 8 For 8"

Probable Pull Up by F/O To 30° Nose Up
Probable Push Over To 15° Nose Up At 230 KTS by Cpt.

GPWS Pull Up! Starts

Keyville

SECONDS
MKI GPWS WARNING (INSTALLED)
MKVII GPWS WARNING

60 50 40 30 20 10 0
45 EOS ADVANCE
'Vermont - Terrain'
Pull Up
Pull Up...

ALTITUDE MSL
~FEET
8000
7000
6000
5000
4000
3000
2000
1000
0

NM

6 5 4 3 2 1 0

FREQUENCY
7500 ALTITUDE
M Blvd
- FEET
5000
4000
3000
2000
1000
0
WASP 125.6
SALT LAKE CITY INT'L
VOR RwY 16R
VOR 116.8 SLC VOR
CLASS AERODROME
SLC VOR
Ant. Elev 4226'

OGDEN VOR (14)
KAYE 160 DME

NOTE: ARC approaches require radar.

MIXED APPROACH: Climbing RIGHT turn heading 300° to 9000', intercept outbound SLC VOR R-249 to STANBURY INT.
Circumstances: During a VOR/NDB approach to runway 1, the aircraft impacted short of the threshold by about 4 NM.

Time: Dusk, 1113 GMT (1843 Local)

Weather: Heavy rain, wind 140/6 kts, visibility 4 KM, 24/23 C

Configuration: Landing, 35 flaps

Fatalities: 34 out of 90 on board. 42 seriously hurt.

Other: Very shallow descent angle of 1.44 degrees from FAF, and 1.48 from MAP which was 4 NM from runway.

"VBA" VOR

FAF @ 12.5 NM

→ 2000' FAF CROSSING ALTITUDE

F/O: "One thousand"

F/O: "Approaching Minimums"

Capt: "Can we see?"

Capt: "Let Us Descend A Little More"

F/O: "Roger"

F/O: "Seven Miles (from VBA VOR)"

Capt: "This isn't getting well"

F/O: "Six hundred"

F/O: "Five hundred"

Capt: "I cannot see"

F/O: "Four hundred --- One fifty"

Capt: "I still cannot see"

Capt: "After passing this, we will be able to see"

R/A Tone

Power Reduced by Captain --- Rad Alt Read 200'

MINIMUM DESCENT ALTITUDE

750 FEET MSL

MAP

"NM"

NDB

2000

ALTITUDE

MSL

~FEET

1000

0

DISTANCE TO RUNWAY THRESHOLD

~NM

TIME TO IMPACT

~SECONDS

NO GPWS INSTALLED

Dor Batsman

FLIGHT PATH PROFILE
DC-8/62
Kuala Lumpur, Malaysia
27 September, 1977
Calculated Flight Path Profile

DC-8-62 N 1810 INCIDENT
DADE-COLLIER, FLA., 10 MAY, 1977

Notes:
Circumstances:

Weather:
1115 EDT E15° 3 T 76
36/02 29.8 +
1121 EDT E15° 1 TRW 74
29/08 293 +

Damage:
$190,000

Check Capt: "Airspeed -" "You're 10 KTS Above Vref."
Check Capt: "Runway In Sight." "Let's Land"
Check Capt: -- "Watch It"

Autopilot Disengaged

MK1 INSTALLED BUT NO MK1/MK2 WARNING

Sinkrate
RADAR VECTORS

INITIAL APPROACH

QNH BAROMETRIC PRESSURE/TEMPERATURE ERROR
(1400 TO 1500 FEET) DEEP LOW PRESSURE TROUGH ALOFT

B727 SALT LAKE CITY - FEBRUARY 1977 IMC

ALTIMETRY ERRORS - WINTER 1984 - 1985
B757 DATA (GPWS WARNINGS)

<table>
<thead>
<tr>
<th>AIRPORT</th>
<th>MINIMUM ERROR</th>
<th>DISTANCE FROM TOUCHDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABERDEEN</td>
<td>-331 FEET</td>
<td>16 NM</td>
</tr>
<tr>
<td></td>
<td>-411 FEET</td>
<td>17 NM</td>
</tr>
<tr>
<td>GENEVA</td>
<td>-252 FEET</td>
<td>19 NM</td>
</tr>
<tr>
<td></td>
<td>-258 FEET</td>
<td>20 NM</td>
</tr>
<tr>
<td>NEW CASTLE</td>
<td>-237 FEET</td>
<td>21 NM</td>
</tr>
</tbody>
</table>

Radar Vectors
QNH Barometric Pressure/Temperature Error (1400 to 1500 Feet)
Deep Low Pressure Through ALOFT - B727 Salt Lake City
(February 1977 IMC)
One occurrence report presented convincing evidence that the NWA in one locale was not adequate. In fact, the NWA has been raised since the reported incident occurred. There can be little doubt, but that the GPWS prevented a catastrophe in this incident:

"...on a radar vector to (name) the GPWS actuated with a red light and 'Whoop-Whoop Pull Up'. At this time we were...at an assigned altitude of 11,000 feet. ...radio altimeter was observed to pass 2400 feet rapidly and power was initiated, climb attitude established. The radio altimeter passed through 800 feet and gradually ascended up during the climb. ...there was a deep low (crouch) aloft, and...the aircraft was 1400 feet lower than indicated..."

At the time of the occurrence, the NWA was intended to provide a 1000-foot margin. In the reporter's opinion, even a revised 2000-foot margin was not entirely adequate.
Radar Vectors
INITIAL DEPARTURE PALM SPRINGS 30
LEAR 24 6 JANUARY 1977

"N 12MK At 20 DME"

"N 12MK 34 Climbing To 17"

"OK N 12MK Climb To Maintain 17 Thousand".

"... maintain 9000 - -
I'll Keep You Advised".

"... You Can Expect Further Clearance Crossing The 20 DME Sir".

MKII GPWS WARNING (NOT INSTALLED)
Capt: "Ladies and Gentlemen...sorry about that...but we had to take an evasive maneuver to miss a lost little airplane out here."

F/O: ...'How About? ...'

ATC 'Standby One!'

Capt: 'What's he doing to us?'

F/O: 'Hell He's Putting Us In The Toolies!'

Capt: 'Let's Get The Hell Out Of Here!'

F/O: 'Power?'

Capt: 'Damn! Climb! Climb!'

F/O: 'Climbing To 14,000'

GPWS WARNING STARTS

STOPS

DO-161 MARK I GPWS WARNING

MARK II GPWS WARNING (NOT INSTALLED)

13,000

12,000

11,000

10,000

9,000

ALTITUDE MSL ~FEET

TIME—SECONDS

DO-161 MARK I GPWS WARNING

MARK II GPWS WARNING (NOT INSTALLED)
Radar Vector
INITIAL APPROACH
PREMATURE ALTITUDE CLEARANCE
PORTLAND OREGON 20 JULY 1976

"Cleared Down To 5000 Feet."

7500' MSA
7000' MRVA

GPWS MKI WARNING

ALTITUDE MSL
\sim FEET

DISTANCE FROM RUNWAY
\sim NM
This Page is Missing

Sorry, the FAA website gave me some errors when I tried to complete this document.

-- Robert Chapin

http://captainslog.aero/?p=1395
FLIGHT PATH PROFILE
B747-100
Kuala Lumpur, Malaysia
11 May, 1976

Circumstances: During a VOR/NDB approach to runway 15, the aircraft flew through trees short of the threshold by about 2 NM.

Time: Night, 1220 GMT (19:20 Local)

Weather: Clear, 15 KM visibility, calm wind, 25/22 c

Configuration: Landing, flap 25

Injury: None to 122 on board.

Damage: Damage to hydraulic and electrical systems on all main landing gear legs. Strike marks on fuselage, landing gear and engine intact.

Other: This incident preceded 27 Sept. 1977 accident using the same VOR/NDB approach procedure. (Very shallow descent gradients and MAP 4 NM from runway).

F/E: "No flags ----" 10 flag set
Capt: "Flap 20" (Not heard by F/O or F/E because of Rad A/t continuous tone.

Capt: "Flaps 25"
F/O: "25 from 10?"
F/O: "---100 feet above ground level"
Capt: advances thrust levers and rotates.

Capt makes heading change to 152°, reduces thrust and slows ---

Flaps at 25
900 fpm

MAP
NM
NDB

Landing gear down

MINIMUM DESCENT ALTITUDE 860' MSL

Capt advances thrust levers and rotates.

No GPWS Installed

Radio Altimeter Tone (~40. Seconds Duration)
Flight Path Profile
EAL FLT 576, B727-225
RALEIGH, N.C., 12 NOV 1975

F/O: "Five Hundred Feet-Ground Contact"
F/O: "There's The Uh, Flashers Just Ahead"
Capt: "Wipers On High"
F/O: "OK - There's The Runway"
F/O: "Looks a Bit Too Low"
F/O: "Rate Of Descent Too High"
S/O - "Number 3 Won't Reverse"
F/O: "Rate Of Descent Too High"

Notes:
Circumstances: Heavy rain, possible wind shear
Airplane hit short by 282 feet of runway at 20:02 EST
Configuration: Gear down, 30° flap
Weather: 10/20/4 mile visibility 160°/5 KTS
Damage: $1.1 Million, 8 injured out of 139 on board.

F/A LT 738 B727-225 landed 14 minutes ahead of EAL. It was equipped with a MK1 GPWS. The Captain said the plane was pulled up a descent below the glide slope by VASI and the GPWS. He took control from the F/O and completed the approach-lading.

ALTITUDE ABOVE FIELD ~ FEET
DISTANCE ~ NM
AIRCRAFT ~ KTS
TIME ~ SECONDS

NO GPWS INSTALLED
NOTES: Charter Flight
During initial descent aircraft's right wing tip clipped mountain top. Number 4 engine casing damaged. During recovery, a Dutch Roll developed and three engines came off. Aircraft impacted some 3 miles or so.

Weather: Unlimited Visibility, No Moon.
Time: 04:30 Local
Fatalities: 188 (7 crew)

ATC: "Cleared down to 4400 feet... continue your descent... report when established on ILS."
CAPT: "— ROGER"
Radar Control
INITIAL APPROACH MCCHORD AFB (SEATTLE)
FAA Controller Cleared Wrong Aircraft To Descend
C-141 20 MARCH, 1975
ARTS III RADAR

NOTES: Aircraft hit 100 feet below ridge at night in IMC.
Fatalities: 16

ATC: "Cleared From 1000 Down To 60".
AF C-141: "OK, Leaving For 6 Thousand"
NAVIGATION ERROR INITIAL APPROACH

COLOMBO, SRI LANKA
DC-8
4 DECEMBER 1974

NOTES: Charter Non-scheduled
Hit mountain during Initial Approach
Reported incorrect position to ATC.
Possibly misinterpreted range marks on Weather Radar apparently to determine aircraft's position. Also possible large Doppler error.

Time: Night 16:40 GMT
Fatalities: 191 (9 crew)

F/O: "WE'RE 14 NM, OUT OF 7000 FOR 6000."
ATC: "... DESCEND TO 2000 FEET ... REPORT RUNWAY IN SIGHT"
F/O: "ROGER — WE ARE CLEARED TO 2000 FEET ONE ZERO ONE ZERO FOR RUNWAY 04 KILO ALPHA TANGO OR FIELD IN SIGHT."
ATC: "... ONE THREE EIGHT."

Diagram showing flight path and altitude changes.
Radar Vectors
INITIAL APPROACH DULLES VOR/DME 12
B727 1 DECEMBER, 1974

"...Terrain Clearance During Radar Vectoring Is The Responsibility Of The Pilot In Command."
FAA Policy Pre 1975

ATC: "...Cleared For The Approach".
Capt. 'Get Some Power On'

500' Rad. Alt. Tone

DO-161 GPWS (NOT INSTALLED)
MARK II OR III GPWS (NOT INSTALLED)
CIRCUMSTANCES: During a straight in VOR/DME Runway 33 approach after 4 hr 12 minutes flight from Edmonton, the aircraft impacted 2-1/2 NM short. Gear down 100% flap

TIME: 0016 MST

WEATHER: Initial ceiling thin obscured, visibility 1 mile, blowing snow. 312°/23 kts, later 1/8 mile -11°F

FATALITIES: 32 out of 34 on board

NOTE: Very low approach slope procedure ~1.7° which introduces possible visual misperception. Refraction error 20' to 1° 10' making the pilot believe he was higher than he was.

Flight Path Profile
L-188
REA POINT, NWT
30 October, 1974

NOTE: Very low approach slope procedure ~1.7° which introduces possible visual misperception. Refraction error 20' to 1° 10' making the pilot believe he was higher than he was.
CIRCUMSTANCES: VOR/DME non-precision approach to Runway 36. Airplane hit 2.9 nm short. Airplane equipped with QFE/QNE Altimeters (4) 2 Radio Altimeters and "EAL" terrain warning system set to sound if at 1000 feet and not on glideslope. Gear down - Landing flap
WEATHER: x - 40 0 120 0 Patches of fog.
TIME: 07:34 EDT
FATALITIES: 70 out of 82

NOTE: Very low approach slope of 1.7° for approach procedure

NO GPWS INSTALLED

"Glideslope not captured" Alerting tone/light Altitude/Terrain Warning Alert
Non-pertinent "conversation"
"---Now all we got to do is find the runway---"
INITIAL APPROACH — WEATHER AVOIDANCE

LA PAZ
C-141
18 AUGUST 1974

ATC: "...CLEARED TO FL 180..."
NAVIGATION ERROR-
INITIAL APPROACH

BALI
B707
APRIL 1974

F/O: "I'M GONNA HOLD MY ALTITUDE - 1000
6 5 4 3 2 1 0
F/E: "BOY, THAT ADF IS A DOGF"...
"NOW IT'S BROKEN"...
"NOW IT'S POINTING UP!"
F/O: "I'M GONNA HOLD MY ALTITUDE HERE UNTIL I SEE SOMETHING."
CAPT: "YEAH, GOOD IDEA, WE'RE STILL NORTH OF THE VOR."

37 NM FROM AIRPORT
F/E: "... HIGHEST POINT TO THE SOUTH IS 719 FEET"
CAPT: "HEY TOWER... WHAT'S YOUR VISIBILITY NOW?"

RADIO ALTIMETER TONE (520 FEET)

ALTITUDE - FEET

0 1000 2000 3000

-NM

-60 -50 -40 -30 -20 -10 0

-SECONDS
Flight Path Profile
PAN AM FLT 806, B707-321B N45PA
PAGO PAGO, 30 JAN 1974

Capt: "Let Me Know When You Got The Runway"
F/O: "Now You Have The Runway"
F/O: "You're A Little High" (VASI)
(Sound Of Electric Stabilizer Trim)
F/O: "150 KTS"
F/O: "You're At Minimum"
F/O: "Field In Sight"
F/O: "Turn To Your Right"
F/O: "140 KTS"

Notes: Heavy rain, night ILS approach, possible wind shear
Configuration: Gear down 50° flaps
Weather: Windshield wipers on
Weather: 23:39 Local time
Weather: E16@40' DV 1 mile
Weather: RW 040/22 KTS
Lost: 97 fatalities, 101 on board
Lost: $35 million

ALTITUDE
MSL ~ FEET

3° GLIDESLOPE

GLIDESLOPE'

GRIND RATE'

GLIDESLOPE'

NO GPWS INSTALLED

PULL UP'

AIRSPEED ~ KTS

TIME ~ SECONDS

WINDSHIELD WIPERS ON

MK2/MK3

3° GLIDESLOPE

GRIND RATE'

NO GPWS INSTALLED

PULL UP'

RETURN TO TOC
NOTES:
Circumstances: Flight 933 scheduled flight
Auto-coupled ILS approach to 175 feet with tail to headwind shear.
Autothrottles left engaged.
Visual transition at 175 feet in moderate rain.
Weather: 3/4 mile visibility, fog, moderate rain
Time: 15:43 EST
Loss: Aircraft Destroyed $21.5 million
3 seriously hurt, 13 injured out of 168

11.8 KTS TAILWIND

NOTE:
NO WINDSHEAR CAUTION OR WARNING FOR CONVENTIONAL WINDSHEAR DETECTION SYSTEMS (~2.5 KTS/SECOND)
Flight Path Profile
DELTA DC-9-30 FLT 516 N3323L
CHATTANOOGA, TENN. 27 NOVEMBER, 1973

Notes:
Circumstances: Hit short in heavy rain, possible wind shear after ILS coupled approach to runway 20.
Weather: 4-11-18 2 Miles visibility, thunderstorms calls nearby wind 160/30 KTS at 5000 feet. Heavy rain.
Configuration: Landing
Loss: Hull destroyed 2.5 million 10 injured out of 77 on board

(Heavy Rain begins at 2.2 N.M.)
Capt: "Put 'Em (Wipers) On Fast"
Capt: (Radio) "Kill The Rabbits Please"

F/O: "Two Hundred Feet"
A/P Disconnected
F/O: "One Hundred Feet Above Minimums."
F/O: "I Gotta Plus 5, Sinking To Nine"
F/O: Plus 5, Sinking To Ten"

ALTITUDE ABOVE
M.D. FEET

DISTANCE ~ NM

AIRSPEED ~ KTS

NO GPWS INSTALLED

MK3/MK3 'SINKRATE' x 1
'PULLUP' x 1
INITIAL APPROACH

COLD BAY, ALASKA
DC-8
8 SEPTEMBER 1973

NOTES: Military Cargo Flight Contract
Improvised approach procedure.
Hit mountain slope while using
VOR/LOC DME for Runway 27.

Time: 14:33 GMT Night
Weather: M 5+ 45/45
300/25 G33
Fatals: 6

F/O: "WE SHOULD BE A LITTLE HIGHER
THAN THAT OUT HERE, SHOULDN'T WE?"
CAPT: "NO, . . . FORTY DME . . . YOU'RE ALRIGHT."
F/O: "RADIO ALTIMETER ALIVE . . ."
F/O: "FOUR HUNDRED FEET
FROM SOMETHING!"
M A D E A P P R O C H C l i m b t o 3 0 0 0' o n N O R T H W E S T c o u r s e I C D B I L S l o c a l i z e r w i t h i n 1 5 N M .

WEATHER: 400 overcast 1/2 mile visibility fog 130°/4 kts R0 4 VR 14 0 6

TIME: 11:08 AM EST

FATALITIES: 90

Flight Path Profile
DC-9-31
BOSTON, MASS.
31 July, 1973

Return to TOC

NO GPWS INSTALLED
PROCEDURE TURN

PUERTO VALLARTA
DC-9
20 JUNE 1973

CONDITIONS:
Scheduled Flight.
VOR runway 4. Fast and high outbound with procedure turn-off approach plate hit ridge.
Time: 22:00 Local
Configuration: Landing gear down 15° flap
Fatalities: 27

17 NM TO GO

- 0
- 1000
- 2000
- 3000

ALTIMETER: FEET

[Diagram showing the procedure turn with altitude and distance markers]
CIRCUMSTANCES: Flight from Madras to Delhi. ILS inoperative (reported just as approach approved) NDB approach Runway 28. Gear down, 40° flap. Struck power lines, boulders. Tore right wing off and right engine off... fire.

WEATHER: 3/8 1000 ft, 2/8 4000 ft, 800 meters visibility (a change from 5000 meters just before outer marker) Wind 220/20 kts dust storm

TIME: 21:57 IST (16:26 GMT)

FATALITIES: 48, 17 survivors

Radio Altimeters installed and working

Probable Cause: Inadvertent descent below minimums and a combination of circumstance weather, and pressure to complete approach on pilots.

Return to TOC
CIRCUMSTANCES: On a non-scheduled freight flight (horses), the airplane hit short of runway 89 by 1.8 nm. Minimums were 400' - 1 mile. Weather was blowing snow. Possible shear.

CONFIGURATION: Configuration was gear down flap 50°, CVR/DFR U.S. Back course approach with low intensity lights and strobed runway and lights.

TIME: 01:07 AM local

FATALITIES: 5

NOTE: Very low approach slope procedure ~ 1.59°! This is a good example where terps/PAN OPS should be improved - there should be a minimum approach slope gradient. A nominal would help give consistency.

NO GPWS INSTALLED
Circumstances: During GCA approach to runway 18, aircraft hit 1/2 NM short. Daylight 11:36 local time.
Weather: Calling 1500 feet, visibility 10 miles. Wind 360/8 Kts 29.83 inches, light rain showers. Scattered Q, broken Q at 1500 feet, visibility to north 1.5 miles.
Fatalities: 4

FLIGHT PATH PROFILE
DC-8-63F
Naha, Okinawa
27 July 1970

WINDSHEAR +1.2 Kts/Second for 12 seconds
NOTE: No windshear warning for standard windshear detection systems (~2.5 Kts/Sec.)

15 KI TAIL WIND WASHES OUT

F/O: 'hundred feet'

(company): 'all minimum altitude going well below glide path, too low...'

F/O: 'seventy feet'

F/O: 'It's fifty feet'

1600 fpm

8 KI

ALTITUDE
FEET
800
700
600
500
400
300
200
100
0

DISTANCE FROM GPI - NM
NO GPWS INSTALLED
ADVANCED WARNING MK V & MK VII ADVANCED WARNING

20 - SECONDS
0

'CAUTION - SHEAR'
'SINKRATE'
'SINKRATE'
'SINKRATE: PULL UP'

'SINKRATE'
'SINKRATE: PULL UP'

'SINKRATE'
'SINKRATE: PULL UP'

'SINKRATE'
'SINKRATE: PULL UP'

Company 300' Minimums
CIRCUMSTANCES: FLT 810 returning to Vancouver after No. 2 engine fire light. No other reported problems. No. 2 engine stowed. Only one buckled seat belt. All others unbuckled.

WEATHER: Trowal -- some icing, winds 70 kts at 15000 feet, 85 kts at 19,000

TIME: Night 19:23 PST

FATALITIES: 62

Flight Path Profile
DC-4-M2
MOUNT SLESSE
9 December, 1956

Data Source:
DOT REPORT #56-16
AirCanada Archives
27 Jan, 87 Don Bateman

Return to TOC
CIRCUMSTANCES: While on a 'Contact Flight Rule' approach to Morgantown, the aircraft struck a mountain approx. 6NM ENE of the airport. Flight was from Pittsburg to Birmingham with a stop at Morgantown.

WEATHER: 1000 foot ceiling, one mile visibility.
CONFIGURATIONS: Landing gear and flap retracted.
TIME: 17:00 EWT
FATALITIES: 20
OTHER: 50 watt radio homing beacon inoperative.

It is most probable the pilots mistook the Cheat River (east of the airport) for the Monongohala River (west of the airport) while visually trying to locate the airport.

Minimum Instrument flight altitude - 3300 feet south bound

"... be advised it's OK to go in... but if it doesn't look good proceed on to Clarksburg..."

"... we will take a look and advise"
From Pittsburg radio range

Impact on Cheat Mountain

Morgantown
W. VA

Airport

Cheat River

Monongahela River

~ NM
CFIT Accidents/Incidents Indexed by Region

Organized by Robert Chapin, http://captainslog.aero/?p=1395

Note the original pages are in reverse chronological order.

<table>
<thead>
<tr>
<th>City</th>
<th>Region</th>
<th>Date</th>
<th>Type</th>
<th>Orig Page</th>
<th>PDF Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchorage</td>
<td>Alaska</td>
<td>11/1/1993</td>
<td>B-747-200</td>
<td>339</td>
<td>492</td>
</tr>
<tr>
<td>Cold Bay</td>
<td>Alaska</td>
<td>9/1/1973</td>
<td>DC-8</td>
<td>712</td>
<td>865</td>
</tr>
<tr>
<td>Juneau</td>
<td>Alaska</td>
<td>11/12/1992</td>
<td>C-12F</td>
<td>387</td>
<td>540</td>
</tr>
<tr>
<td>Kodiak</td>
<td>Alaska</td>
<td>11/1/1993</td>
<td>Bae JS-31</td>
<td>341</td>
<td>494</td>
</tr>
<tr>
<td>Unalakleet</td>
<td>Alaska</td>
<td>6/2/1990</td>
<td>B-737</td>
<td>476</td>
<td>629</td>
</tr>
<tr>
<td>Edmonton</td>
<td>Alberta</td>
<td>4/2/1993</td>
<td>A-320</td>
<td>367</td>
<td>520</td>
</tr>
<tr>
<td>Edmonton</td>
<td>Alberta</td>
<td>1/2/1973</td>
<td>B-707-321</td>
<td>718</td>
<td>871</td>
</tr>
<tr>
<td>Tamanrasset</td>
<td>Algeria</td>
<td>9/18/1994</td>
<td>BAC1-11</td>
<td>287</td>
<td>440</td>
</tr>
<tr>
<td>Pago Pago</td>
<td>American Samoa</td>
<td>1/30/1974</td>
<td>B-707</td>
<td>709</td>
<td>862</td>
</tr>
<tr>
<td>Dundo</td>
<td>Angola</td>
<td>8/27/1983</td>
<td>L-382</td>
<td>629</td>
<td>782</td>
</tr>
<tr>
<td>Luanda</td>
<td>Angola</td>
<td>2/8/1988</td>
<td>B-707</td>
<td>570</td>
<td>723</td>
</tr>
<tr>
<td>Antarctica</td>
<td>Antarctic</td>
<td>11/28/1979</td>
<td>DC-10</td>
<td>661</td>
<td>814</td>
</tr>
<tr>
<td>Posadas</td>
<td>Argentina</td>
<td>6/12/1988</td>
<td>MD-81</td>
<td>558</td>
<td>711</td>
</tr>
<tr>
<td>Little Rock</td>
<td>Arkansas</td>
<td>1/29/1990</td>
<td>G-II</td>
<td>492</td>
<td>645</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>Australia</td>
<td>4/17/1995</td>
<td>IAI-1124</td>
<td>257</td>
<td>410</td>
</tr>
<tr>
<td>Cairns</td>
<td>Australia</td>
<td>5/11/1990</td>
<td>Citation-II</td>
<td>479</td>
<td>632</td>
</tr>
<tr>
<td>Young</td>
<td>Australia</td>
<td>6/11/1993</td>
<td>PA-31-350</td>
<td>361</td>
<td>514</td>
</tr>
<tr>
<td>Santa Maria</td>
<td>Azores</td>
<td>2/8/1989</td>
<td>B-707</td>
<td>541</td>
<td>694</td>
</tr>
<tr>
<td>La Paz</td>
<td>Bolivia</td>
<td>1/1/1985</td>
<td>B-727</td>
<td>620</td>
<td>773</td>
</tr>
<tr>
<td>La Paz</td>
<td>Bolivia</td>
<td>8/18/1974</td>
<td>C-141</td>
<td>706</td>
<td>859</td>
</tr>
<tr>
<td>Cruzeiro Do Sul</td>
<td>Brazil</td>
<td>6/22/1992</td>
<td>B-737-200C</td>
<td>399</td>
<td>552</td>
</tr>
<tr>
<td>Florianopolis</td>
<td>Brazil</td>
<td>4/12/1980</td>
<td>B-727</td>
<td>658</td>
<td>811</td>
</tr>
<tr>
<td>Fortaleza</td>
<td>Brazil</td>
<td>6/8/1982</td>
<td>B-727</td>
<td>641</td>
<td>794</td>
</tr>
<tr>
<td>Manaus</td>
<td>Brazil</td>
<td>1/29/1995</td>
<td>DC-8-62</td>
<td>267</td>
<td>420</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Brazil</td>
<td>12/31/1987</td>
<td>B-747</td>
<td>576</td>
<td>729</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Brazil</td>
<td>7/26/1979</td>
<td>B-707</td>
<td>669</td>
<td>822</td>
</tr>
<tr>
<td>Sao Jose Dos Campos</td>
<td>Brazil</td>
<td>9/19/1986</td>
<td>EMB-120</td>
<td>591</td>
<td>744</td>
</tr>
<tr>
<td>Sao Paulo</td>
<td>Brazil</td>
<td>3/2/1996</td>
<td>LJ-25D</td>
<td>241</td>
<td>394</td>
</tr>
<tr>
<td>Fort St. John</td>
<td>British Columbia</td>
<td>1/1/1994</td>
<td>DHC-8</td>
<td>321</td>
<td>474</td>
</tr>
<tr>
<td>Prince George</td>
<td>British Columbia</td>
<td>11/1/1987</td>
<td>B-737</td>
<td>580</td>
<td>733</td>
</tr>
<tr>
<td>Terrace</td>
<td>British Columbia</td>
<td>9/26/1989</td>
<td>SA-227</td>
<td>514</td>
<td>667</td>
</tr>
<tr>
<td>Vancouver</td>
<td>British Columbia</td>
<td>12/9/1956</td>
<td>DC-4-M2</td>
<td>720</td>
<td>873</td>
</tr>
<tr>
<td>Brown Field</td>
<td>California</td>
<td>3/15/1991</td>
<td>HS-125</td>
<td>457</td>
<td>610</td>
</tr>
<tr>
<td>Long Beach</td>
<td>California</td>
<td>10/1/1988</td>
<td>MD-80</td>
<td>548</td>
<td>701</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>California</td>
<td>6/1/1994</td>
<td>Merlin III</td>
<td>297</td>
<td>450</td>
</tr>
<tr>
<td>Ontario</td>
<td>California</td>
<td>11/16/1990</td>
<td>B-737-300</td>
<td>468</td>
<td>621</td>
</tr>
<tr>
<td>Ontario</td>
<td>California</td>
<td>2/15/1982</td>
<td>B-737</td>
<td>645</td>
<td>798</td>
</tr>
<tr>
<td>Orange County</td>
<td>California</td>
<td>2/19/1989</td>
<td>Ce-404</td>
<td>537</td>
<td>690</td>
</tr>
<tr>
<td>City</td>
<td>Region</td>
<td>Date</td>
<td>Type</td>
<td>Orig Page</td>
<td>PDF Page</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Palm Springs</td>
<td>California</td>
<td>4/13/1995</td>
<td>A-320</td>
<td>259</td>
<td>412</td>
</tr>
<tr>
<td>Palm Springs</td>
<td>California</td>
<td>1/6/1977</td>
<td>L-24</td>
<td>686</td>
<td>839</td>
</tr>
<tr>
<td>San Diego</td>
<td>California</td>
<td>6/1/1990</td>
<td>A-320</td>
<td>472</td>
<td>625</td>
</tr>
<tr>
<td>San Diego</td>
<td>California</td>
<td>6/1/1990</td>
<td>A-320</td>
<td>474</td>
<td>627</td>
</tr>
<tr>
<td>San Francisco</td>
<td>California</td>
<td>1/1/1995</td>
<td>B-737-300</td>
<td>648</td>
<td>607</td>
</tr>
<tr>
<td>San Francisco</td>
<td>California</td>
<td>10/1/1980</td>
<td>B-737</td>
<td>675</td>
<td>828</td>
</tr>
<tr>
<td>San Jose</td>
<td>California</td>
<td>5/1/1994</td>
<td>B-737-400</td>
<td>311</td>
<td>464</td>
</tr>
<tr>
<td>Urumqi</td>
<td>China</td>
<td>11/14/1993</td>
<td>MD-82</td>
<td>335</td>
<td>488</td>
</tr>
<tr>
<td>Denver</td>
<td>Colorado</td>
<td>5/1/1992</td>
<td>DHC-7</td>
<td>407</td>
<td>560</td>
</tr>
<tr>
<td>Denver</td>
<td>Colorado</td>
<td>5/16/1986</td>
<td>B-727</td>
<td>596</td>
<td>749</td>
</tr>
<tr>
<td>Durango</td>
<td>Colorado</td>
<td>5/16/1986</td>
<td>FH-23</td>
<td>572</td>
<td>725</td>
</tr>
<tr>
<td>Grand Junction</td>
<td>Colorado</td>
<td>2/1/1994</td>
<td>Bae JS-31</td>
<td>313</td>
<td>466</td>
</tr>
<tr>
<td>Gunniston</td>
<td>Colorado</td>
<td>10/1/1993</td>
<td>B-737</td>
<td>349</td>
<td>Missing</td>
</tr>
<tr>
<td>Bogota</td>
<td>Columbia</td>
<td>3/10/1993</td>
<td>MD-80</td>
<td>371</td>
<td>524</td>
</tr>
<tr>
<td>Cali</td>
<td>Columbia</td>
<td>12/20/1995</td>
<td>B-757</td>
<td>245</td>
<td>398</td>
</tr>
<tr>
<td>Cartagena</td>
<td>Columbia</td>
<td>1/11/1995</td>
<td>DC-9-10</td>
<td>273</td>
<td>426</td>
</tr>
<tr>
<td>Cucuta</td>
<td>Columbia</td>
<td>3/17/1988</td>
<td>B-727</td>
<td>565</td>
<td>718</td>
</tr>
<tr>
<td>Medellin</td>
<td>Columbia</td>
<td>5/19/1993</td>
<td>B-727-100</td>
<td>363</td>
<td>516</td>
</tr>
<tr>
<td>Windsor Locks</td>
<td>Connecticut</td>
<td>11/12/1995</td>
<td>MD-80</td>
<td>247</td>
<td>400</td>
</tr>
<tr>
<td>Ajaccio</td>
<td>Corsica</td>
<td>12/1/1981</td>
<td>MD-80</td>
<td>647</td>
<td>800</td>
</tr>
<tr>
<td>San Jose</td>
<td>Costa Rica</td>
<td>1/15/1990</td>
<td>C-212</td>
<td>494</td>
<td>647</td>
</tr>
<tr>
<td>San Jose</td>
<td>Costa Rica</td>
<td>9/3/1980</td>
<td>B-727</td>
<td>655</td>
<td>808</td>
</tr>
<tr>
<td>Soula Bay</td>
<td>Crete</td>
<td>8/3/1982</td>
<td>C-1A</td>
<td>643</td>
<td>796</td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>Croatia</td>
<td>4/3/1996</td>
<td>B-737-200</td>
<td>237</td>
<td>390</td>
</tr>
<tr>
<td>Ercan</td>
<td>Cyprus</td>
<td>2/27/1988</td>
<td>B-727</td>
<td>567</td>
<td>720</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>Denmark</td>
<td>7/1/1989</td>
<td>DC-10</td>
<td>523</td>
<td>676</td>
</tr>
<tr>
<td>Djibouti</td>
<td>Djibouti</td>
<td>9/17/1991</td>
<td>L-100</td>
<td>443</td>
<td>596</td>
</tr>
<tr>
<td>Cuenca</td>
<td>Ecuador</td>
<td>7/11/1983</td>
<td>B-737</td>
<td>631</td>
<td>784</td>
</tr>
<tr>
<td>Quito</td>
<td>Ecuador</td>
<td>3/5/1996</td>
<td>MD-11</td>
<td>239</td>
<td>392</td>
</tr>
<tr>
<td>Quito</td>
<td>Ecuador</td>
<td>5/4/1995</td>
<td>G-II</td>
<td>255</td>
<td>408</td>
</tr>
<tr>
<td>Quito</td>
<td>Ecuador</td>
<td>12/10/1992</td>
<td>Sabre</td>
<td>383</td>
<td>536</td>
</tr>
<tr>
<td>Quito</td>
<td>Ecuador</td>
<td>3/1/1992</td>
<td>DC-8</td>
<td>417</td>
<td>570</td>
</tr>
<tr>
<td>Cairo</td>
<td>Egypt</td>
<td>11/12/1980</td>
<td>C-141</td>
<td>653</td>
<td>806</td>
</tr>
<tr>
<td>San Salvador</td>
<td>El Salvador</td>
<td>8/9/1995</td>
<td>B-737</td>
<td>249</td>
<td>402</td>
</tr>
<tr>
<td>Leeds-Bradford</td>
<td>England</td>
<td>10/19/1987</td>
<td>Be-200</td>
<td>582</td>
<td>735</td>
</tr>
<tr>
<td>London</td>
<td>England</td>
<td>7/1/1987</td>
<td>B-747</td>
<td>584</td>
<td>737</td>
</tr>
<tr>
<td>Gambela</td>
<td>Ethiopia</td>
<td>8/7/1989</td>
<td>DHC-6</td>
<td>519</td>
<td>672</td>
</tr>
<tr>
<td>Ft. Lauderdale</td>
<td>Florida</td>
<td>5/1/1992</td>
<td>B-737-200</td>
<td>405</td>
<td>558</td>
</tr>
<tr>
<td>Hurlburt</td>
<td>Florida</td>
<td>2/20/1989</td>
<td>C-141B</td>
<td>535</td>
<td>688</td>
</tr>
<tr>
<td>Miami</td>
<td>Florida</td>
<td>5/10/1977</td>
<td>DC-8</td>
<td>683</td>
<td>836</td>
</tr>
<tr>
<td>Pensacola</td>
<td>Florida</td>
<td>11/1/1993</td>
<td>DC-8-72F</td>
<td>343</td>
<td>496</td>
</tr>
<tr>
<td>Pensacola</td>
<td>Florida</td>
<td>5/8/1978</td>
<td>B-727</td>
<td>677</td>
<td>830</td>
</tr>
<tr>
<td>Basle-Mulhouse</td>
<td>France</td>
<td>12/1/1991</td>
<td>MD-80</td>
<td>431</td>
<td>584</td>
</tr>
<tr>
<td>City</td>
<td>Region</td>
<td>Date</td>
<td>Type</td>
<td>Orig Page</td>
<td>PDF Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>France</td>
<td>12/21/1987</td>
<td>EMB-120</td>
<td>578</td>
<td>731</td>
</tr>
<tr>
<td>Paris</td>
<td>France</td>
<td>1/6/1993</td>
<td>DHC-8</td>
<td>379</td>
<td>532</td>
</tr>
<tr>
<td>Strasbourg</td>
<td>France</td>
<td>1/20/1992</td>
<td>A-320</td>
<td>425</td>
<td>578</td>
</tr>
<tr>
<td>Valence</td>
<td>France</td>
<td>4/10/1989</td>
<td>FH-227</td>
<td>533</td>
<td>686</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Georgia</td>
<td>1/1/1995</td>
<td>B-727</td>
<td>263</td>
<td>416</td>
</tr>
<tr>
<td>Athens</td>
<td>Greece</td>
<td>1/9/1994</td>
<td>DO-228</td>
<td>319</td>
<td>472</td>
</tr>
<tr>
<td>Athens</td>
<td>Greece</td>
<td>3/24/1992</td>
<td>B-707</td>
<td>415</td>
<td>568</td>
</tr>
<tr>
<td>Nea Anghialos</td>
<td>Greece</td>
<td>2/5/1991</td>
<td>C-130</td>
<td>461</td>
<td>614</td>
</tr>
<tr>
<td>Samos</td>
<td>Greece</td>
<td>8/3/1989</td>
<td>SD-330</td>
<td>521</td>
<td>674</td>
</tr>
<tr>
<td>Point-A-Pitre</td>
<td>Guadaloupe</td>
<td>12/1/1989</td>
<td>B-747</td>
<td>500</td>
<td>653</td>
</tr>
<tr>
<td>Maui</td>
<td>Hawaii</td>
<td>4/22/1992</td>
<td>Be-19</td>
<td>413</td>
<td>566</td>
</tr>
<tr>
<td>Molokai</td>
<td>Hawaii</td>
<td>10/28/1989</td>
<td>DHC-6</td>
<td>506</td>
<td>659</td>
</tr>
<tr>
<td>Tegucigalpa</td>
<td>Honduras</td>
<td>10/21/1989</td>
<td>B-727</td>
<td>512</td>
<td>665</td>
</tr>
<tr>
<td>Boise</td>
<td>Idaho</td>
<td>2/17/1990</td>
<td>B-737</td>
<td>485</td>
<td>638</td>
</tr>
<tr>
<td>Hailey</td>
<td>Idaho</td>
<td>1/3/1983</td>
<td>CL-600</td>
<td>639</td>
<td>792</td>
</tr>
<tr>
<td>Chicago</td>
<td>Illinois</td>
<td>11/15/1993</td>
<td>B-727</td>
<td>333</td>
<td>486</td>
</tr>
<tr>
<td>Ahmedabad</td>
<td>India</td>
<td>10/19/1988</td>
<td>B-737</td>
<td>546</td>
<td>699</td>
</tr>
<tr>
<td>Bangalore</td>
<td>India</td>
<td>2/14/1990</td>
<td>A-320</td>
<td>487</td>
<td>640</td>
</tr>
<tr>
<td>Bhuntar</td>
<td>India</td>
<td>7/9/1994</td>
<td>Be-200</td>
<td>293</td>
<td>446</td>
</tr>
<tr>
<td>Bombay</td>
<td>India</td>
<td>1/1/1978</td>
<td>B-747</td>
<td>678</td>
<td>831</td>
</tr>
<tr>
<td>Delhi</td>
<td>India</td>
<td>5/31/1973</td>
<td>B-737-200</td>
<td>717</td>
<td>870</td>
</tr>
<tr>
<td>Imphal</td>
<td>India</td>
<td>8/16/1991</td>
<td>B-737</td>
<td>449</td>
<td>602</td>
</tr>
<tr>
<td>Ambon</td>
<td>Indonesia</td>
<td>7/24/1992</td>
<td>Vickers</td>
<td>395</td>
<td>548</td>
</tr>
<tr>
<td>Bali</td>
<td>Indonesia</td>
<td>4/1/1974</td>
<td>B-707</td>
<td>708</td>
<td>861</td>
</tr>
<tr>
<td>Palu</td>
<td>Indonesia</td>
<td>6/18/1994</td>
<td>F-27</td>
<td>303</td>
<td>456</td>
</tr>
<tr>
<td>Sorong</td>
<td>Indonesia</td>
<td>7/1/1993</td>
<td>F-28</td>
<td>359</td>
<td>512</td>
</tr>
<tr>
<td>Genoa</td>
<td>Italy</td>
<td>11/10/1985</td>
<td>MD-80</td>
<td>608</td>
<td>761</td>
</tr>
<tr>
<td>Rome</td>
<td>Italy</td>
<td>10/17/1988</td>
<td>B-707</td>
<td>552</td>
<td>705</td>
</tr>
<tr>
<td>Abidjan</td>
<td>Ivory Coast</td>
<td>6/26/1994</td>
<td>F-27</td>
<td>299</td>
<td>452</td>
</tr>
<tr>
<td>Abidjan</td>
<td>Ivory Coast</td>
<td>1/15/1993</td>
<td>B-707</td>
<td>375</td>
<td>528</td>
</tr>
<tr>
<td>Chitose</td>
<td>Japan</td>
<td>8/1/1979</td>
<td>B-747</td>
<td>667</td>
<td>820</td>
</tr>
<tr>
<td>Nairobi</td>
<td>Kenya</td>
<td>12/4/1990</td>
<td>B-707</td>
<td>463</td>
<td>616</td>
</tr>
<tr>
<td>Mokpo</td>
<td>Korea</td>
<td>7/26/1993</td>
<td>B-737-500</td>
<td>355</td>
<td>508</td>
</tr>
<tr>
<td>Seoul</td>
<td>Korea</td>
<td>11/19/1980</td>
<td>B-747</td>
<td>651</td>
<td>804</td>
</tr>
<tr>
<td>Taegu AB</td>
<td>Korea</td>
<td>6/13/1991</td>
<td>B-727-200</td>
<td>453</td>
<td>606</td>
</tr>
<tr>
<td>Tripoli</td>
<td>Libya</td>
<td>7/29/1989</td>
<td>DC-10</td>
<td>527</td>
<td>680</td>
</tr>
<tr>
<td>Baton Rouge</td>
<td>Louisiana</td>
<td>2/1/1994</td>
<td>B-737-400</td>
<td>315</td>
<td>468</td>
</tr>
<tr>
<td>Ohrid</td>
<td>Macedonia</td>
<td>11/20/1993</td>
<td>Y-42</td>
<td>331</td>
<td>484</td>
</tr>
<tr>
<td>Rockland</td>
<td>Maine</td>
<td>5/30/1979</td>
<td>DHC-6</td>
<td>671</td>
<td>824</td>
</tr>
<tr>
<td>Koto Kinabalu</td>
<td>Malaysia</td>
<td>9/4/1991</td>
<td>G-II</td>
<td>447</td>
<td>600</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>Malaysia</td>
<td>2/19/1989</td>
<td>B-747</td>
<td>539</td>
<td>692</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>Malaysia</td>
<td>12/18/1983</td>
<td>A-300</td>
<td>625</td>
<td>778</td>
</tr>
<tr>
<td>City</td>
<td>Region</td>
<td>Date</td>
<td>Type</td>
<td>Orig Page</td>
<td>PDF Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>Malaysia</td>
<td>9/27/1977</td>
<td>DC-8</td>
<td>681</td>
<td>834</td>
</tr>
<tr>
<td>Thompson</td>
<td>Manitoba</td>
<td>5/31/1994</td>
<td>Merlin II</td>
<td>309</td>
<td>462</td>
</tr>
<tr>
<td>Fort De-France</td>
<td>Martinique</td>
<td>7/17/1994</td>
<td>BN 2B</td>
<td>291</td>
<td>444</td>
</tr>
<tr>
<td>Boston</td>
<td>Massachusetts</td>
<td>6/8/1989</td>
<td>B-767</td>
<td>531</td>
<td>684</td>
</tr>
<tr>
<td>Boston</td>
<td>Massachusetts</td>
<td>12/17/1973</td>
<td>DC-10</td>
<td>710</td>
<td>863</td>
</tr>
<tr>
<td>Boston</td>
<td>Massachusetts</td>
<td>7/31/1973</td>
<td>DC-9-31</td>
<td>714</td>
<td>867</td>
</tr>
<tr>
<td>Pittsfield</td>
<td>Massachusetts</td>
<td>12/10/1986</td>
<td>Be-100</td>
<td>589</td>
<td>742</td>
</tr>
<tr>
<td>Hermosilla</td>
<td>Mexico</td>
<td>1/8/1993</td>
<td>L-35A</td>
<td>377</td>
<td>530</td>
</tr>
<tr>
<td>Mexico City</td>
<td>Mexico</td>
<td>9/1/1991</td>
<td>A-300</td>
<td>439</td>
<td>592</td>
</tr>
<tr>
<td>Mexico City</td>
<td>Mexico</td>
<td>10/17/1976</td>
<td>DC-9</td>
<td>688</td>
<td>841</td>
</tr>
<tr>
<td>Puerto Vallarta</td>
<td>Mexico</td>
<td>6/20/1973</td>
<td>DC-9</td>
<td>715</td>
<td>868</td>
</tr>
<tr>
<td>Uruapan</td>
<td>Mexico</td>
<td>6/13/1994</td>
<td>Metro II</td>
<td>305</td>
<td>458</td>
</tr>
<tr>
<td>Alpena</td>
<td>Michigan</td>
<td>3/13/1986</td>
<td>EMB-110</td>
<td>600</td>
<td>753</td>
</tr>
<tr>
<td>Hibbing</td>
<td>Minnesota</td>
<td>12/1/1993</td>
<td>BAe JS-31</td>
<td>329</td>
<td>482</td>
</tr>
<tr>
<td>Kansas City</td>
<td>Missouri</td>
<td>9/8/1989</td>
<td>B-737</td>
<td>516</td>
<td>669</td>
</tr>
<tr>
<td>Kansas City</td>
<td>Missouri</td>
<td>4/13/1987</td>
<td>B-707</td>
<td>586</td>
<td>739</td>
</tr>
<tr>
<td>Helena</td>
<td>Montana</td>
<td>9/1/1993</td>
<td>B-727</td>
<td>351</td>
<td>Missing</td>
</tr>
<tr>
<td>Agadir</td>
<td>Morocco</td>
<td>8/3/1975</td>
<td>B-707</td>
<td>696</td>
<td>849</td>
</tr>
<tr>
<td>Tangiers</td>
<td>Morocco</td>
<td>12/1/1988</td>
<td>B-737-300</td>
<td>545</td>
<td>698</td>
</tr>
<tr>
<td>Bharatpur</td>
<td>Nepal</td>
<td>7/31/1993</td>
<td>DO-228</td>
<td>353</td>
<td>Missing</td>
</tr>
<tr>
<td>Kathmandu</td>
<td>Nepal</td>
<td>7/31/1992</td>
<td>A-310-300</td>
<td>393</td>
<td>546</td>
</tr>
<tr>
<td>Elko</td>
<td>Nevada</td>
<td>1/15/1990</td>
<td>SA-227</td>
<td>496</td>
<td>649</td>
</tr>
<tr>
<td>Fallon</td>
<td>Nevada</td>
<td>3/15/1986</td>
<td>C-98</td>
<td>598</td>
<td>751</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>Nevada</td>
<td>12/1/1994</td>
<td>EMB-110</td>
<td>281</td>
<td>434</td>
</tr>
<tr>
<td>Reno</td>
<td>Nevada</td>
<td>3/22/1995</td>
<td>Ce-208B</td>
<td>261</td>
<td>414</td>
</tr>
<tr>
<td>Buffalo</td>
<td>New York</td>
<td>5/1/1976</td>
<td>DC-10</td>
<td>694</td>
<td>847</td>
</tr>
<tr>
<td>New York</td>
<td>New York</td>
<td>2/1/1983</td>
<td>B-767</td>
<td>635</td>
<td>788</td>
</tr>
<tr>
<td>Auckland</td>
<td>New Zealand</td>
<td>7/31/1989</td>
<td>CV-580</td>
<td>525</td>
<td>678</td>
</tr>
<tr>
<td>Palmerston North</td>
<td>New Zealand</td>
<td>6/9/1995</td>
<td>DHC-8</td>
<td>251</td>
<td>404</td>
</tr>
<tr>
<td>Gander</td>
<td>New Zealand</td>
<td>10/1/1993</td>
<td>DC-8-73F</td>
<td>347</td>
<td>Missing</td>
</tr>
<tr>
<td>Abuja</td>
<td>Nigeria</td>
<td>9/13/1994</td>
<td>DHC-6</td>
<td>289</td>
<td>442</td>
</tr>
<tr>
<td>Kano</td>
<td>Nigeria</td>
<td>2/15/1992</td>
<td>DC-8</td>
<td>421</td>
<td>574</td>
</tr>
<tr>
<td>Lagos</td>
<td>Nigeria</td>
<td>7/21/1988</td>
<td>B-707</td>
<td>554</td>
<td>707</td>
</tr>
<tr>
<td>Raleigh-Durham</td>
<td>North Carolina</td>
<td>2/19/1988</td>
<td>SA 227</td>
<td>568</td>
<td>721</td>
</tr>
<tr>
<td>Raleigh-Durham</td>
<td>North Carolina</td>
<td>11/12/1975</td>
<td>B-727</td>
<td>695</td>
<td>848</td>
</tr>
<tr>
<td>Bardufoss</td>
<td>Norway</td>
<td>11/14/1989</td>
<td>Ce-551</td>
<td>502</td>
<td>655</td>
</tr>
<tr>
<td>Bronnoysund</td>
<td>Norway</td>
<td>5/6/1988</td>
<td>DHC-7</td>
<td>563</td>
<td>716</td>
</tr>
<tr>
<td>Dagali</td>
<td>Norway</td>
<td>3/19/1993</td>
<td>Be-200</td>
<td>369</td>
<td>522</td>
</tr>
<tr>
<td>Oslo</td>
<td>Norway</td>
<td>5/20/1995</td>
<td>TU-204</td>
<td>253</td>
<td>406</td>
</tr>
<tr>
<td>City</td>
<td>Region</td>
<td>Date</td>
<td>Type</td>
<td>Orig Page</td>
<td>PDF Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Tromso</td>
<td>Norway</td>
<td>10/27/1989</td>
<td>DC-9-30</td>
<td>508</td>
<td>661</td>
</tr>
<tr>
<td>Alert</td>
<td>Nunavut</td>
<td>10/30/1991</td>
<td>C-130</td>
<td>437</td>
<td>590</td>
</tr>
<tr>
<td>Rae Point</td>
<td>Nunavut</td>
<td>10/30/1974</td>
<td>L-188</td>
<td>704</td>
<td>857</td>
</tr>
<tr>
<td>Columbus</td>
<td>Ohio</td>
<td>1/7/1994</td>
<td>BAe-JS-41</td>
<td>323</td>
<td>476</td>
</tr>
<tr>
<td>Dayton</td>
<td>Ohio</td>
<td>1/12/1989</td>
<td>HS-748</td>
<td>543</td>
<td>696</td>
</tr>
<tr>
<td>Toledo</td>
<td>Ohio</td>
<td>2/15/1991</td>
<td>DC-8</td>
<td>419</td>
<td>572</td>
</tr>
<tr>
<td>Naha</td>
<td>Okinawa</td>
<td>7/27/1970</td>
<td>DC-8</td>
<td>719</td>
<td>872</td>
</tr>
<tr>
<td>Kingston</td>
<td>Ontario</td>
<td>1/20/1995</td>
<td>Be-E90</td>
<td>269</td>
<td>422</td>
</tr>
<tr>
<td>Moosonee</td>
<td>Ontario</td>
<td>4/30/1990</td>
<td>Be-C99</td>
<td>481</td>
<td>634</td>
</tr>
<tr>
<td>Sandy Lake</td>
<td>Ontario</td>
<td>11/10/1993</td>
<td>HS-748</td>
<td>337</td>
<td>490</td>
</tr>
<tr>
<td>Gold Beach</td>
<td>Oregon</td>
<td>8/21/1989</td>
<td>Be-90</td>
<td>518</td>
<td>671</td>
</tr>
<tr>
<td>Medford</td>
<td>Oregon</td>
<td>1/1/1992</td>
<td>B-737</td>
<td>243</td>
<td>396</td>
</tr>
<tr>
<td>Portland</td>
<td>Oregon</td>
<td>6/1/1994</td>
<td>A-320</td>
<td>295</td>
<td>448</td>
</tr>
<tr>
<td>Portland</td>
<td>Oregon</td>
<td>4/1/1993</td>
<td>L-1011</td>
<td>365</td>
<td>518</td>
</tr>
<tr>
<td>Portland</td>
<td>Oregon</td>
<td>4/1/1992</td>
<td>DC-10</td>
<td>409</td>
<td>562</td>
</tr>
<tr>
<td>Portland</td>
<td>Oregon</td>
<td>4/1/1992</td>
<td>B-727-200</td>
<td>411</td>
<td>564</td>
</tr>
<tr>
<td>Portland</td>
<td>Oregon</td>
<td>6/28/1986</td>
<td>DC-10</td>
<td>592</td>
<td>745</td>
</tr>
<tr>
<td>Portland</td>
<td>Oregon</td>
<td>7/20/1976</td>
<td>B-727</td>
<td>690</td>
<td>843</td>
</tr>
<tr>
<td>Panama City</td>
<td>Panama</td>
<td>10/5/1979</td>
<td>B-707</td>
<td>663</td>
<td>816</td>
</tr>
<tr>
<td>Arequipa</td>
<td>Peru</td>
<td>2/29/1996</td>
<td>B-737-200</td>
<td>243</td>
<td>396</td>
</tr>
<tr>
<td>Ilaiolo</td>
<td>Philippines</td>
<td>5/18/1990</td>
<td>B-737-300</td>
<td>478</td>
<td>631</td>
</tr>
<tr>
<td>Naga</td>
<td>Philippines</td>
<td>12/16/1993</td>
<td>C-130</td>
<td>325</td>
<td>478</td>
</tr>
<tr>
<td>Warsaw</td>
<td>Poland</td>
<td>12/17/1991</td>
<td>DC-9/30</td>
<td>429</td>
<td>582</td>
</tr>
<tr>
<td>Ivanovo</td>
<td>Russia</td>
<td>8/27/1992</td>
<td>TU-134</td>
<td>391</td>
<td>544</td>
</tr>
<tr>
<td>Petropavlovsk-Kamchatsky</td>
<td>Russia</td>
<td>4/5/1996</td>
<td>IL-76</td>
<td>235</td>
<td>388</td>
</tr>
<tr>
<td>Cagliari</td>
<td>Sardinia</td>
<td>9/14/1979</td>
<td>DC-9</td>
<td>665</td>
<td>818</td>
</tr>
<tr>
<td>Inverness</td>
<td>Scotland</td>
<td>11/19/1984</td>
<td>EMB-110</td>
<td>622</td>
<td>775</td>
</tr>
<tr>
<td>Isle of Harris</td>
<td>Scotland</td>
<td>4/30/1990</td>
<td>Shackleton</td>
<td>483</td>
<td>636</td>
</tr>
<tr>
<td>Mull of Kintyre</td>
<td>Scotland</td>
<td>6/2/1994</td>
<td>Chinook</td>
<td>307</td>
<td>460</td>
</tr>
<tr>
<td>Port Ellen</td>
<td>Scotland</td>
<td>6/12/1986</td>
<td>DHC-6</td>
<td>594</td>
<td>747</td>
</tr>
<tr>
<td>Guadalcanal</td>
<td>Solomon Islands</td>
<td>9/27/1991</td>
<td>DHC-6</td>
<td>441</td>
<td>594</td>
</tr>
<tr>
<td>Capetown</td>
<td>South Africa</td>
<td>7/1/1993</td>
<td>B-737-200</td>
<td>357</td>
<td>510</td>
</tr>
<tr>
<td>Bilbao</td>
<td>Spain</td>
<td>2/19/1985</td>
<td>B-727</td>
<td>618</td>
<td>771</td>
</tr>
<tr>
<td>Madrid</td>
<td>Spain</td>
<td>11/27/1983</td>
<td>B-747</td>
<td>627</td>
<td>780</td>
</tr>
<tr>
<td>Tenerife</td>
<td>Spain</td>
<td>4/25/1980</td>
<td>B-727</td>
<td>656</td>
<td>809</td>
</tr>
<tr>
<td>Colombo</td>
<td>Sri Lanka</td>
<td>11/15/1978</td>
<td>DC-8</td>
<td>673</td>
<td>826</td>
</tr>
<tr>
<td>Colombo</td>
<td>Sri Lanka</td>
<td>12/4/1974</td>
<td>DC-8</td>
<td>700</td>
<td>853</td>
</tr>
<tr>
<td>Paramaribo</td>
<td>Suriname</td>
<td>7/7/1989</td>
<td>DC-8</td>
<td>529</td>
<td>682</td>
</tr>
<tr>
<td>Zurich</td>
<td>Switzerland</td>
<td>11/14/1990</td>
<td>DC-9</td>
<td>470</td>
<td>623</td>
</tr>
<tr>
<td>Hualien</td>
<td>Taiwan</td>
<td>10/26/1989</td>
<td>B-737</td>
<td>510</td>
<td>663</td>
</tr>
<tr>
<td>Taipei</td>
<td>Taiwan</td>
<td>1/30/1995</td>
<td>ATR-72</td>
<td>265</td>
<td>418</td>
</tr>
<tr>
<td>Chattanooga</td>
<td>Tennessee</td>
<td>11/27/1973</td>
<td>DC-9</td>
<td>711</td>
<td>864</td>
</tr>
<tr>
<td>Nashville</td>
<td>Tennessee</td>
<td>5/15/1991</td>
<td>B-727</td>
<td>455</td>
<td>608</td>
</tr>
<tr>
<td>Dallas/Fort Worth</td>
<td>Texas</td>
<td>12/8/1993</td>
<td>B-737</td>
<td>327</td>
<td>480</td>
</tr>
<tr>
<td>El Paso</td>
<td>Texas</td>
<td>10/1/1988</td>
<td>B-737-200</td>
<td>550</td>
<td>703</td>
</tr>
<tr>
<td>City</td>
<td>Region</td>
<td>Date</td>
<td>Type</td>
<td>Orig Page</td>
<td>PDF Page</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Koh Samui</td>
<td>Thailand</td>
<td>11/21/1990</td>
<td>DHC-8</td>
<td>466</td>
<td>619</td>
</tr>
<tr>
<td>Phuket</td>
<td>Thailand</td>
<td>4/15/1985</td>
<td>B-737</td>
<td>616</td>
<td>769</td>
</tr>
<tr>
<td>Ankara</td>
<td>Turkey</td>
<td>1/16/1983</td>
<td>B-727</td>
<td>637</td>
<td>790</td>
</tr>
<tr>
<td>Ankara</td>
<td>Turkey</td>
<td>12/23/1979</td>
<td>F-28</td>
<td>660</td>
<td>813</td>
</tr>
<tr>
<td>Izmir</td>
<td>Turkey</td>
<td>1/2/1988</td>
<td>B-737</td>
<td>574</td>
<td>727</td>
</tr>
<tr>
<td>Van</td>
<td>Turkey</td>
<td>12/29/1994</td>
<td>B-737-400</td>
<td>283</td>
<td>436</td>
</tr>
<tr>
<td>St. Thomas</td>
<td>USVI</td>
<td>1/4/1986</td>
<td>B-727</td>
<td>604</td>
<td>757</td>
</tr>
<tr>
<td>St. Thomas</td>
<td>USVI</td>
<td>1/1/1986</td>
<td>B-727</td>
<td>606</td>
<td>759</td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>Utah</td>
<td>12/18/1977</td>
<td>DC-8</td>
<td>679</td>
<td>832</td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>Utah</td>
<td>2/1/1977</td>
<td>B-727</td>
<td>684</td>
<td>837</td>
</tr>
<tr>
<td>Caracas</td>
<td>Venezuela</td>
<td>6/17/1991</td>
<td>G-II</td>
<td>451</td>
<td>604</td>
</tr>
<tr>
<td>Charlottesville</td>
<td>Virginia</td>
<td>1/1/1995</td>
<td>BAe JS-31</td>
<td>277</td>
<td>430</td>
</tr>
<tr>
<td>Dulles</td>
<td>Virginia</td>
<td>6/18/1994</td>
<td>LJ-25D</td>
<td>301</td>
<td>454</td>
</tr>
<tr>
<td>Dulles</td>
<td>Virginia</td>
<td>5/1/1992</td>
<td>MD-80</td>
<td>403</td>
<td>556</td>
</tr>
<tr>
<td>Dulles</td>
<td>Virginia</td>
<td>12/1/1974</td>
<td>B-727</td>
<td>702</td>
<td>855</td>
</tr>
<tr>
<td>Winchester</td>
<td>Virginia</td>
<td>10/26/1993</td>
<td>Be-90</td>
<td>345</td>
<td>498</td>
</tr>
<tr>
<td>Kelso</td>
<td>Washington</td>
<td>11/30/1990</td>
<td>AC-690</td>
<td>464</td>
<td>617</td>
</tr>
<tr>
<td>Mt. Rainier</td>
<td>Washington</td>
<td>3/21/1983</td>
<td>C-1A</td>
<td>633</td>
<td>786</td>
</tr>
<tr>
<td>Pasco</td>
<td>Washington</td>
<td>12/26/1989</td>
<td>BAe-31</td>
<td>498</td>
<td>651</td>
</tr>
<tr>
<td>Pullman</td>
<td>Washington</td>
<td>1/1/1993</td>
<td>DHC-8</td>
<td>373</td>
<td>526</td>
</tr>
<tr>
<td>Seattle</td>
<td>Washington</td>
<td>1/4/1984</td>
<td>B-727</td>
<td>624</td>
<td>777</td>
</tr>
<tr>
<td>Seattle</td>
<td>Washington</td>
<td>3/20/1975</td>
<td>C-141</td>
<td>698</td>
<td>851</td>
</tr>
<tr>
<td>Spokane</td>
<td>Washington</td>
<td>1/27/1990</td>
<td>B-727</td>
<td>488</td>
<td>641</td>
</tr>
<tr>
<td>Spokane</td>
<td>Washington</td>
<td>11/9/1989</td>
<td>B-737</td>
<td>504</td>
<td>657</td>
</tr>
<tr>
<td>Spokane</td>
<td>Washington</td>
<td>12/14/1986</td>
<td>B-727</td>
<td>588</td>
<td>741</td>
</tr>
<tr>
<td>Spokane</td>
<td>Washington</td>
<td>1/20/1981</td>
<td>Be-99</td>
<td>649</td>
<td>802</td>
</tr>
<tr>
<td>Huntington</td>
<td>West Virginia</td>
<td>1/1/1995</td>
<td>BAe JS-31</td>
<td>271</td>
<td>424</td>
</tr>
<tr>
<td>Morigntown</td>
<td>West Virginia</td>
<td>4/14/1945</td>
<td>DC-3</td>
<td>721</td>
<td>874</td>
</tr>
<tr>
<td>Goma</td>
<td>Zaire</td>
<td>12/13/1992</td>
<td>F-27</td>
<td>381</td>
<td>534</td>
</tr>
</tbody>
</table>
APPENDIX

A-1 CFIT Losses & GPWS
 • Chart: World Civil CFIT Accidents Turbine Powered Aircraft (Graph)
 • Commercial Jet Aircraft (39 Losses)
 8 Years 1988 thru 1995
 • Same with GPWS - Pie Chart
 • Corporate, Regional, Air Taxi (148 Losses)
 6 Years 1989 thru 1995

A-2 North American CFIT Losses & GPWS
 20 Years 1975 thru 1995 Airline Jet Aircraft

A-3 CFIT Accidents and Risk for U.S. Airlines - Large Commercial Jets
 Pre 1975 0.85 Accidents per million flights
 Post 1975 0.09 Accidents per millions flights

A-4 U.S.A. Part 135 Turbine Powered CFIT Losses 1982 thru 1995 (Graph)
 Partial List (Table) of Part 135 CFIT Losses

A-5 Characteristics for Various Models of GPWS Equipment
 and Bank Angle Description and Table of Accidents/Incidents

A-6 The Development of Ground Proximity Warning Systems
WORLD CIVIL CFIT ACCIDENTS
TURBINE POWERED AIRCRAFT

YEAR ENDING

CFIT ACCIDENTS PER YEAR

Regional Corporate Air Taxil
Large Commercial Jets

YEAR ENDING

88 89 90 91 92 93 94 95

35
30
25
20
15
10
5
0

7
6
3
2
7
19
16
21
21
28
35
26
4
5
5

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Aircraft</th>
<th>Year</th>
<th>Location</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Cali, Colombia</td>
<td>B757</td>
<td>1991</td>
<td>Imphal, India</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Windsor Locks, CT</td>
<td>MD-80</td>
<td></td>
<td>Santa Barbara, Venezuela</td>
<td>DC-9/30</td>
</tr>
<tr>
<td></td>
<td>San Salvador</td>
<td>B737-200</td>
<td></td>
<td>Nairobi, Kenya</td>
<td>B707-320</td>
</tr>
<tr>
<td></td>
<td>Monrovia, Liberia</td>
<td>DC-9-31</td>
<td></td>
<td>Zurich, Switzerland</td>
<td>DC-9/30</td>
</tr>
<tr>
<td></td>
<td>Cartagena, Colombia</td>
<td>DC-9-16</td>
<td>1990</td>
<td>Unakleet, Alaska</td>
<td>B737-200</td>
</tr>
<tr>
<td>1994</td>
<td>Van, Turkey</td>
<td>B737-400</td>
<td></td>
<td>Hulien, Taiwan</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Coventry, U.K.</td>
<td>B737-200</td>
<td></td>
<td>Tegucigalpa, Honduras</td>
<td>B727-200</td>
</tr>
<tr>
<td></td>
<td>Tamanrasset, Algeria</td>
<td>BAC1-11</td>
<td>1989</td>
<td>Tripoli, Libya</td>
<td>DC-10/30</td>
</tr>
<tr>
<td></td>
<td>Vigo, Spain</td>
<td>DC-9/32</td>
<td></td>
<td>Paramaribo, Surinam</td>
<td>DC-8/62</td>
</tr>
<tr>
<td>1993</td>
<td>Urumqi, China</td>
<td>MD-82</td>
<td></td>
<td>Kuala Lumpur, Malasia</td>
<td>B747</td>
</tr>
<tr>
<td></td>
<td>Mokpo, Korea</td>
<td>B737-500</td>
<td></td>
<td>Santa Maria, Azores</td>
<td>B707-320</td>
</tr>
<tr>
<td></td>
<td>Sorong, Indonesia</td>
<td>F-28</td>
<td></td>
<td>Ahmedabad, India</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Medellin, Colombia</td>
<td>B727-100</td>
<td></td>
<td>Rome, Italy</td>
<td>B707-300</td>
</tr>
<tr>
<td></td>
<td>Abijian, Ivory Coast</td>
<td>B707-320</td>
<td>1988</td>
<td>Lagos, Nigeria</td>
<td>B707-320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Posadas, Argentina</td>
<td>MD-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cucuta, Colombia</td>
<td>B727-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ercan, Cyprus</td>
<td>B727-200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Izmir, Turkey</td>
<td>B737-200</td>
</tr>
<tr>
<td>1992</td>
<td>Kano, Nigeria</td>
<td>B707-320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kathmandu, Nepal</td>
<td>A300-B4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kathmandu, Nepal</td>
<td>A310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cruzeiro do Sol, Brazil</td>
<td>B737-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Athens, Greece</td>
<td>B707-320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kano, Nigeria</td>
<td>DC-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strasbourg, France</td>
<td>A320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION</td>
<td>DATE</td>
<td>PLACE</td>
<td>AIRCRAFT TYPE</td>
<td>COMMENTS</td>
<td>FATALITIES</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Scheduled</td>
<td>20 December</td>
<td>Cali, Colombia</td>
<td>B757</td>
<td>Hit Mtn 22 NM short of VOR DME Rwy 19. MKV GPWS installed and pilot pullup. Clipped top of mtn.</td>
<td>160 of 164; 5 rescues</td>
</tr>
<tr>
<td>Scheduled</td>
<td>12 November</td>
<td>Windsor Locks, CT</td>
<td>MD-80</td>
<td>Hit trees 2-3/4 NM from VOR Rwy 15. MK II GPWS.</td>
<td>of 72</td>
</tr>
<tr>
<td>Scheduled</td>
<td>9 August</td>
<td>San Salvador, G.S.</td>
<td>B737-200</td>
<td>Hit precipitous volcano on initial approach, VOR DME 25; 12 second MK II GPWS Warning; Late pilot pull up.</td>
<td>65</td>
</tr>
<tr>
<td>Scheduled</td>
<td>26 July</td>
<td>Monrovia, Liberia</td>
<td>DC-9-31</td>
<td>Hit short of runway, tore off landing gear and burned.</td>
<td>12 S of 82</td>
</tr>
<tr>
<td>Scheduled</td>
<td>11 January</td>
<td>Cartagena, Colombia</td>
<td>DC-9-15</td>
<td>Premature descent 27 NM short of VOR-DME 36. MK I GPWS installed, but inoperative.</td>
<td>52</td>
</tr>
</tbody>
</table>
1994 Commercial Jet Aircraft CFIT Accidents

<table>
<thead>
<tr>
<th>Operation</th>
<th>Date</th>
<th>Place</th>
<th>Aircraft Type</th>
<th>Comments</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled</td>
<td>29 December</td>
<td>Van, Turkey</td>
<td>B737-400</td>
<td>Improvised 2nd approach to runway 03 using autoflight. MKV GPWS installed (GPWS not applicable). IMC. 4 NM short</td>
<td>58 of 76</td>
</tr>
<tr>
<td>Freight</td>
<td>21 December</td>
<td>Coventry, England</td>
<td>B737-200</td>
<td>Surveillance Approach - 1 NM short, hit H.V. tower at 65' AGL. IMC. Crew very tired.</td>
<td>5</td>
</tr>
<tr>
<td>Charter</td>
<td>18 September</td>
<td>Tamanrasset, Algeria</td>
<td>BAC1-11/500</td>
<td>After holding for 2 hours and low on fuel, VOR DME 03 approach made. Hit short by 1-1/2 NM. IMC. MKI installed but no warning.</td>
<td>4</td>
</tr>
<tr>
<td>Scheduled</td>
<td>21 March</td>
<td>Vigo, Spain</td>
<td>DC-9/30</td>
<td>Hit into approach lights, MKII GPWS installed.</td>
<td>--</td>
</tr>
</tbody>
</table>

1993 Commercial Jet Aircraft CFIT Accidents

<table>
<thead>
<tr>
<th>Operation</th>
<th>Date</th>
<th>Place</th>
<th>Aircraft Type</th>
<th>Comments</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled</td>
<td>13 November</td>
<td>Urumgi, China</td>
<td>MD-82</td>
<td>During ILS 25 approach, autopilot decoupled from glideslope. Aircraft hit into power line some 1-1/4 NM short of the runway. MKII GPWS operating.</td>
<td>12 of 92</td>
</tr>
<tr>
<td>Scheduled</td>
<td>26 July</td>
<td>Mokop, Korea</td>
<td>B737-500</td>
<td>During 3rd approach VOR-DME 06, the aircraft hit 4-1/2 NM short into 500' MSL ridge, MKV GPWS installed, no warning (No GPWS altitude callouts).</td>
<td>68 of 110</td>
</tr>
<tr>
<td>Scheduled</td>
<td>1 July</td>
<td>Sorong, Indonesia</td>
<td>F-28</td>
<td>During an NDB 26 approach, the aircraft impacted into the sea 0.6 short of the runway. No GPWS installed.</td>
<td>41 of 43</td>
</tr>
<tr>
<td>Scheduled</td>
<td>19 May</td>
<td>Medellin, Colombia</td>
<td>B727-100</td>
<td>During initial approach, the aircraft mistook NDB passage and turned away before reaching the NDB, and hit a mountain 30 NM from airport. No GPWS installed. IMC</td>
<td>132</td>
</tr>
<tr>
<td>Freight</td>
<td>15 January</td>
<td>Abidjan, Ivory Coast</td>
<td>B707-321</td>
<td>During an ILS approach to runway 21, the aircraft hit short by 10 feet. MKI GPWS installed. Glideslope function operative.</td>
<td>--</td>
</tr>
</tbody>
</table>
1992 COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight</td>
<td>25 November</td>
<td>Kano, Nigeria</td>
<td>B707-320C</td>
<td>During VOR DME 06 approach, aircraft impacted 8-1/2 NM short. No GPWS installed. Night.</td>
<td>--</td>
</tr>
<tr>
<td>Scheduled</td>
<td>28 September</td>
<td>Kathmandu, Nepal</td>
<td>A300-B4</td>
<td>During a VOR DME 02 approach, the aircraft prematurely descended, impacted a mountain 9-1/2 NM short of runway 02. MKII installed.</td>
<td>167</td>
</tr>
<tr>
<td>Scheduled</td>
<td>31 July</td>
<td>Kathmandu, Nepal</td>
<td>A310-300</td>
<td>During a missed approach, the pilot became unaware of high terrain, impacting some 24 NM past the airport. MKIII GPWS installed, 17-second warning.</td>
<td>113</td>
</tr>
<tr>
<td>Freight</td>
<td>22 June</td>
<td>Cruzeiro Do Sol, Brazil</td>
<td>B737-200C</td>
<td>During a VOR approach to runway 10, aircraft hit short by 7-1/3 NM. Crew distracted by cargo smoke alert. Night. No GPWS.</td>
<td>3</td>
</tr>
<tr>
<td>Freight</td>
<td>24 March</td>
<td>Athens, Greece</td>
<td>B707-320</td>
<td>During an ASR radar approach to runway 33R, aircraft hit a mountain 4 NM from the runway. MKI.</td>
<td>7</td>
</tr>
<tr>
<td>Freight</td>
<td>15 February</td>
<td>Kano, Nigeria</td>
<td>DC-8</td>
<td>During a VOR DME approach to runway 06, the aircraft impacted some 9 NM short at night. No GPWS.</td>
<td>--</td>
</tr>
<tr>
<td>Scheduled</td>
<td>20 January</td>
<td>Strasbourg, France</td>
<td>A320</td>
<td>During a VOR TAC approach to runway 05, the aircraft prematurely descended, impacting some 10-1/2 NM short at night. No GPWS.</td>
<td>87 of 96</td>
</tr>
</tbody>
</table>

1991 COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled</td>
<td>16 August</td>
<td>Imphal, India</td>
<td>B737-200</td>
<td>During initial approach and procedure turn to ILS/VOR runway 04, the aircraft hit a mountain 19 NM from the runway. IMC. MKI GPWS installed. 6-1/3 second warning (would have been 16 seconds with MKII).</td>
<td>69</td>
</tr>
<tr>
<td>Scheduled</td>
<td>5 March</td>
<td>Santa Barbara, Venezuela</td>
<td>DC-9/30</td>
<td>Enroute, the aircraft hit a 10,000 foot mountain. IMC. MKI GPWS working, but aircraft some 1700 feet below top. Pilot attempted recovery (almost made it). MKII would have given 4 seconds more warning time.</td>
<td>43</td>
</tr>
</tbody>
</table>
1990 COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight-Charter</td>
<td>4 December</td>
<td>Nairobi, Kenya</td>
<td>B-707-320</td>
<td>During a second ILS approach, the aircraft impacted short of runway 06. No GPWS.</td>
<td>10</td>
</tr>
<tr>
<td>Scheduled</td>
<td>14 November</td>
<td>Zurich, Switzerland</td>
<td>DC-9/30</td>
<td>During an ILS approach to runway 14, the aircraft impacted 6-1/4 NM short into a hill at night. A glideslope failure, zero deviation, no flag, is a possible cause. MKII GPWS installed, no warning.</td>
<td>46</td>
</tr>
<tr>
<td>Positioning</td>
<td>2 June</td>
<td>Unalaskaet, Alaska</td>
<td>B737-200</td>
<td>During an LOC/DME approach to runway 10, the aircraft prematurely descended and impacted a hill 6-2/3 NM short.</td>
<td></td>
</tr>
</tbody>
</table>

1989 COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled</td>
<td>26 October</td>
<td>Hualien, Taiwan</td>
<td>B737-200</td>
<td>During a night departure, the aircraft was turned the wrong direction toward terrain. During a turn back to the correct course, the aircraft hit a mountain. MKII GPWS installed and a warning given. Pilot tried to increase turn rate instead of pulling straight ahead.</td>
<td>54</td>
</tr>
<tr>
<td>Scheduled</td>
<td>21 October</td>
<td>Tegucigalpa, Honduras</td>
<td>B727-200</td>
<td>During a VOR DME approach to runway 01, the aircraft prematurely descended and impacted a mountain some 5-3/4 NM short. No GPWS.</td>
<td>131 of 146</td>
</tr>
<tr>
<td>Scheduled</td>
<td>27 July</td>
<td>Tripoli, Libya</td>
<td>DC-10/30</td>
<td>During a locator approach to runway 27, the aircraft hit short by 0.6 NM. IMC. Primitive GPWS (tone - MK1/2) installed, 7-1/2 seconds (MKII would have given 18 seconds).</td>
<td>75 of 199</td>
</tr>
<tr>
<td>Scheduled</td>
<td>7 July</td>
<td>Paramaribo, Suriname</td>
<td>DC-8/62</td>
<td>During a VOR DME (ILS up) to runway 10, the aircraft was being flown by Flight Director but locked in vertical speed with no glideslope capture. MKI GPWS installed. Six “Glideslope!” alerts given but F/O canceled alert. IMC.</td>
<td>175 of 183</td>
</tr>
<tr>
<td>Freight</td>
<td>19 February</td>
<td>Kuala Lumpur, Malaysia</td>
<td>B747-200</td>
<td>During an NDB DME approach to runway 33, the aircraft prematurely descended, impacting a hill 8-1/2 NM from the runway. MKI GPWS installed and warnings given some 16 seconds from impact.</td>
<td>4</td>
</tr>
<tr>
<td>Charter</td>
<td>8 February</td>
<td>Santa Maria, Azores</td>
<td>B-707-300</td>
<td>During an initial approach ILS 19, the aircraft hit a mountain some 6 NM from the airport. An MKI GPWS installed and gave a 6-1/2 second warning. MKII would have given 27-1/2 seconds of warning.</td>
<td>144</td>
</tr>
</tbody>
</table>
1988 COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled</td>
<td>10 October</td>
<td>Ahmedabad, India</td>
<td>B737-200</td>
<td>During an LOC DME approach to runway 23, the aircraft hit short by 1.4 NM. IMC. MKI GPWS installed. No warning.</td>
<td>139 of 141</td>
</tr>
<tr>
<td>Scheduled</td>
<td>17 October</td>
<td>Rome, Italy</td>
<td>B707-300</td>
<td>During a VOR/DME approach to runway 34L, the aircraft hit short by 2-1/2 NM. IMC. No GPWS.</td>
<td>32 of 52</td>
</tr>
<tr>
<td>Scheduled</td>
<td>21 July</td>
<td>Lagos, Nigeria</td>
<td>B707-320</td>
<td>During an ILS DME approach to runway 19R, the aircraft impacted short by 8-1/2 NM from the runway. Night. IMC. No GPWS.</td>
<td>6</td>
</tr>
<tr>
<td>Freight</td>
<td>12 June</td>
<td>Posadas, Argentina</td>
<td>MD-81</td>
<td>During a VOR DME Locator approach to runway 01, the aircraft hit short of the runway by 1.7 NM. IMC. MKII GPWS installed.</td>
<td>23</td>
</tr>
<tr>
<td>Scheduled</td>
<td>17 March</td>
<td>Cucuta, Colombia</td>
<td>B727-100</td>
<td>During departure from runway 32, the aircraft diverted from the normal departure course because of traffic and impacted a mountain some 12-1/2 NM from liftoff. No GPWS.</td>
<td>143</td>
</tr>
<tr>
<td>Positioning</td>
<td>27 February</td>
<td>Ercan, Cyprus</td>
<td>B727-200</td>
<td>During a VOR approach to runway 16, the aircraft left the approach course and hit a mountain some 8 NM from the runway. MKII installed, timely alert, and pilot almost recovered.</td>
<td>15</td>
</tr>
<tr>
<td>Positioning</td>
<td>2 January</td>
<td>Izmir, Turkey</td>
<td>B737-200</td>
<td>During an ILS approach to runway 35, the aircraft impacted into a mountain some 19 NW west of the airport. MKI GPWS installed, but no warning.</td>
<td>16</td>
</tr>
</tbody>
</table>

1987 COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight</td>
<td>13 April</td>
<td>Kansas City, Missouri</td>
<td>B707</td>
<td>During a night ILS approach to runway 01, the aircraft impacted some 3-1/2 NM short of the runway. MKI GPWS installed but no alert or warning given. Failure of glideslope receiver to zero deviation and no flag suspected.</td>
<td>4</td>
</tr>
</tbody>
</table>
COMMERCIAL JET AIRCRAFT CFIT ACCIDENTS

EIGHT YEARS - 1988 THROUGH 1995

- NO GPWS: 12
- NO WARNING: 11
- LATE WARNING OR IMPROPER PILOT RESPONSE: 16
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medevac</td>
<td>11 January</td>
<td>Massat, BC</td>
<td>LJ-25</td>
<td>Hit 4 NM short on NDB-A approach</td>
<td>5</td>
</tr>
<tr>
<td>Corporate</td>
<td>20 January</td>
<td>Kingston, Ontario</td>
<td>Be-90</td>
<td>Hit ground 10 NM outbound on front course of runway 01</td>
<td>--</td>
</tr>
<tr>
<td>Corporate</td>
<td>25 January</td>
<td>Allendorf, Germany</td>
<td>Cessna Citation II</td>
<td>Hit short into trees</td>
<td>--</td>
</tr>
<tr>
<td>Cargo</td>
<td>29 January</td>
<td>Manaus, Brazil</td>
<td>Dornier 828</td>
<td>Hit NIM short on ILS 10, managed a missed approach</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Repositioning</td>
<td>30 January</td>
<td>Taipei, Taiwan</td>
<td>ATR-72</td>
<td>Hit short 9 NM following a false glideslope lobe ILS 10 night. MK II GPWS inoperative.</td>
<td>4</td>
</tr>
<tr>
<td>Air taxi</td>
<td>21 February</td>
<td>Big Trout Lake, Ontario</td>
<td>Be-A100</td>
<td>Hit 3 NM short on approach</td>
<td>8 of 11</td>
</tr>
<tr>
<td>Private</td>
<td>3 March</td>
<td>Gainesville, Georgia</td>
<td>Cessna 208B</td>
<td>Hit 1/4 NM short on NDB04 - Night - Poor visibility</td>
<td>(2)</td>
</tr>
<tr>
<td>Cargo</td>
<td>22 March</td>
<td>Reno, Nevada</td>
<td>Cessna 208B</td>
<td>Hit mountain 9-1/4 NM short of rwy 16R</td>
<td>1</td>
</tr>
<tr>
<td>Cargo</td>
<td>27 April</td>
<td>Alice Springs, Australia</td>
<td>IA1-1124</td>
<td>Hit ridge 5-1/4 NM short ILS/LOC DME 7</td>
<td>3</td>
</tr>
<tr>
<td>Corporate</td>
<td>4 May</td>
<td>Quito, Ecuador</td>
<td>G-III</td>
<td>Hit mountain 23 NM short at night - Possible misinterpretation of procedure</td>
<td>7</td>
</tr>
<tr>
<td>Scheduled Regional</td>
<td>25 May</td>
<td>Leeds, Bradford</td>
<td>EMB-110</td>
<td>During initial climb to 3600 feet, the captain's ADI failed with no flag. The aircraft entered a left turn overbanked, spiral.</td>
<td>12</td>
</tr>
<tr>
<td>Scheduled</td>
<td>3 June</td>
<td>Panama City</td>
<td>B747-200</td>
<td>Undershot ILS 03 by 230 feet (major damage) ragged weather</td>
<td>--</td>
</tr>
<tr>
<td>Private</td>
<td>7 June</td>
<td>Gainesville, Florida</td>
<td>PA-32</td>
<td>Circling at night</td>
<td>6</td>
</tr>
<tr>
<td>Scheduled Regional</td>
<td>8 June</td>
<td>Palmerston North, NZ</td>
<td>DHC-8</td>
<td>Hit hill 7 NM short VOR DME 25. Landing gear distraction. Short MK II GPWS warning. Radio Altimeter problem?</td>
<td>3 of 21</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>17 June</td>
<td>Catumbela, Angola</td>
<td>CASA 212</td>
<td>Hit 9-1/2 NM short of Rwy 27</td>
<td>49</td>
</tr>
<tr>
<td>Corporate Air Taxi</td>
<td>22 June</td>
<td>Tepico, Mexico</td>
<td>Li-35</td>
<td>Hit short 4-1/2 NM on approach at night</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Charter</td>
<td>9 August</td>
<td>West New Guinea, Indonesia</td>
<td>HS-748</td>
<td>Hit at 9200 foot level of 9500 foot mountain enroute.</td>
<td>10</td>
</tr>
<tr>
<td>Scheduled</td>
<td>14 August</td>
<td>Near, Cl. Colombia</td>
<td>EMB-110</td>
<td>Hit mountain enroute</td>
<td>7</td>
</tr>
<tr>
<td>Ferry</td>
<td>1 September</td>
<td>Farewell, Alaska</td>
<td>SC-7</td>
<td>Hit mountain at 4800 feet during departure</td>
<td>1</td>
</tr>
<tr>
<td>Corporate</td>
<td>16 September</td>
<td>Chiapas, Colombia</td>
<td>SA-228T</td>
<td>Hit short by 0.15NM for ILS runway 26</td>
<td>--</td>
</tr>
<tr>
<td>Corporate</td>
<td>21 September</td>
<td>Smyrna, Tennessee</td>
<td>MU-28</td>
<td>Descent in turn on departure from 600 feet</td>
<td>2 S</td>
</tr>
<tr>
<td>Scheduled</td>
<td>2 September</td>
<td>La Macarena, Colombia</td>
<td>Casa-300</td>
<td>Hit short by 5 NM from the runway in fog.</td>
<td>20 of 21</td>
</tr>
<tr>
<td>Scheduled</td>
<td>21 September</td>
<td>Moson, Mongolia</td>
<td>An-24</td>
<td>Hit mountain 12 NM from airport</td>
<td>43</td>
</tr>
<tr>
<td>Medevac</td>
<td>21 September</td>
<td>Ammasi D.Z.</td>
<td>Li-36</td>
<td>Visual night circuit from Rwy 23 to Rwy 05, Hit 1.8 NM short</td>
<td>1 of 3</td>
</tr>
<tr>
<td>Regional</td>
<td>31 October</td>
<td>Pindras Negras Mexio</td>
<td>Cessna-208B</td>
<td>Hit 7 NM short of runway</td>
<td>9/2 "S" of 11</td>
</tr>
<tr>
<td>Civil Military</td>
<td>9 November</td>
<td>Cordoba, Argentina</td>
<td>F-27</td>
<td>Hit mountain 48 NM from airport on initial approach</td>
<td>53</td>
</tr>
<tr>
<td>Corporate</td>
<td>30 December</td>
<td>Eagle River, WI</td>
<td>Cessna-560</td>
<td>Hit 4 NM short on VOR/DME Rwy 4, IMC</td>
<td>2</td>
</tr>
<tr>
<td>Corporate</td>
<td>31 December</td>
<td>Naples, FL</td>
<td>Cessna-550</td>
<td>Hit cables at 2NM on VOR/DME Rwy 4, IMC</td>
<td>2</td>
</tr>
</tbody>
</table>

5) Large Turbo Prop
6) ≤ 10 Seat Turbo Prop
7) ≥ 10 Seat Jet
8) No GPWS installed on above aircraft unless noted.

db95056
1994 CORPORATE, REGIONAL, AIR TAXI CFIT ACCIDENTS (35)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>9 Jan</td>
<td>Athens, Greece</td>
<td>DO-228</td>
<td>Hit ridge-powerlines 7 NM from runway, VOR-DME 18L.</td>
<td>--</td>
</tr>
<tr>
<td>Freight</td>
<td>14 Jan</td>
<td>Sydney, Australia</td>
<td>AC 690</td>
<td>Flew into sea 10 NM short at night, rwy 34.</td>
<td>1</td>
</tr>
<tr>
<td>Positioning Air Taxi</td>
<td>18 Jan</td>
<td>Kinshasa, Zaire</td>
<td>LJ-24D</td>
<td>Hit short 10 NM at night, visual 24.</td>
<td>2</td>
</tr>
<tr>
<td>Charter</td>
<td>24 Jan</td>
<td>Atttenhein, Switzerland</td>
<td>Ce-425</td>
<td>Flew into lake - 2 NM, final 10.</td>
<td>5</td>
</tr>
<tr>
<td>Positioning</td>
<td>27 Jan</td>
<td>Meadow Lake, Sask.</td>
<td>IAI-1124</td>
<td>Hit 2 NM SE - stall?, circling 26.</td>
<td>2</td>
</tr>
<tr>
<td>Scheduled</td>
<td>23 Feb</td>
<td>Tingo Maria, Peru</td>
<td>Yak-40</td>
<td>Flew into mountain FL131, NDB departure.</td>
<td>31</td>
</tr>
<tr>
<td>Sales Demo</td>
<td>24 Feb</td>
<td>Cleveland, Ohio</td>
<td>Be-400</td>
<td>Hit off runway ILS 23</td>
<td>0 of 5</td>
</tr>
<tr>
<td>Positioning Air Taxi/Cargo</td>
<td>7 March</td>
<td>Hayden, CO</td>
<td>AC-690</td>
<td>Hit trees on approach</td>
<td>1</td>
</tr>
<tr>
<td>Freight</td>
<td>9 March</td>
<td>Australia</td>
<td>SA-226</td>
<td>Hit short on approach</td>
<td>1</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>23 March</td>
<td>Bogota, Colombia</td>
<td>Ca-VI-650</td>
<td>Hit hillside, initial approach 25 NM NW.</td>
<td>4</td>
</tr>
<tr>
<td>Scheduled</td>
<td>6 April</td>
<td>Latacunga, Ecuador</td>
<td>DHC-6</td>
<td>Hit 13,400 mtn 300' below crest, premature descent.</td>
<td>17</td>
</tr>
<tr>
<td>Regional</td>
<td>25 April</td>
<td>Nangapinoh, Indonesia</td>
<td>BN-2A</td>
<td>Hit mtn at 5400' level, initial descent.</td>
<td>10</td>
</tr>
<tr>
<td>Regional</td>
<td>27 April</td>
<td>Stratford, CT</td>
<td>PA-31T</td>
<td>Hit 3 NM short, final 06.</td>
<td>8</td>
</tr>
<tr>
<td>Corporate</td>
<td>7 May</td>
<td>Zaïre, Kinshasa</td>
<td>Be-200</td>
<td>Hit short of runway</td>
<td>9</td>
</tr>
<tr>
<td>Medevac Air Taxi</td>
<td>27 May</td>
<td>Papeete, Tahiti</td>
<td>Mu 2B</td>
<td>Hit short by 4 NM on ILS Rwy 04 approach</td>
<td>5</td>
</tr>
<tr>
<td>Medevac</td>
<td>31 May</td>
<td>Thompson, Manitoba</td>
<td>Merlin II</td>
<td>Hit FAF NB 3.4 short, B/C LOC, rwy 33.</td>
<td>2</td>
</tr>
<tr>
<td>Regional</td>
<td>13 June</td>
<td>Uruapan, Mexico</td>
<td>Metro II</td>
<td>Hit terrain while maneuvering for 3rd approach.</td>
<td>9</td>
</tr>
<tr>
<td>Scheduled</td>
<td>18 June</td>
<td>Palu, Indonesia</td>
<td>F-27</td>
<td>Hit mtn 3-1/2 NM short, initial approach.</td>
<td>12</td>
</tr>
<tr>
<td>Charter</td>
<td>19 June</td>
<td>Washington DC-Dulles</td>
<td>LJ-25D</td>
<td>Hit 1-1/2 NM short, ILS 1R.</td>
<td>12</td>
</tr>
<tr>
<td>Charter</td>
<td>26 June</td>
<td>Abidjan, Ivory Coast</td>
<td>F-27</td>
<td>Hit 2-1/4 NM short, VOR/DME 21</td>
<td>17</td>
</tr>
<tr>
<td>Government</td>
<td>9 July</td>
<td>Kulu, India</td>
<td>Be-200</td>
<td>Hit mtn 7 NM SW of airport, NDB.</td>
<td>13</td>
</tr>
<tr>
<td>Charter</td>
<td>17 July</td>
<td>Fort de France</td>
<td>BN-2B</td>
<td>Hit at 2780' mtn, 15' below crest, 6 NM, VOR/DME.</td>
<td>6</td>
</tr>
<tr>
<td>Private</td>
<td>24 July</td>
<td>Portsmouth, OH</td>
<td>PA-32T</td>
<td>Hit trees on rising terrain, departure rwy 18.</td>
<td>5 of 6</td>
</tr>
<tr>
<td>Gov't (Drug Enforce)</td>
<td>27 Aug</td>
<td>Pucapla, Peru</td>
<td>CASA-212</td>
<td>Hit hill, NDB/VOR.</td>
<td>5</td>
</tr>
<tr>
<td>Charter</td>
<td>13 Sept</td>
<td>Abuja, Nigeria</td>
<td>DHC-6</td>
<td>Hit 5 NM short, VOR-DME 22.</td>
<td>2 of 5</td>
</tr>
<tr>
<td>Corporate</td>
<td>17 Sept</td>
<td>Texas</td>
<td>HS-125</td>
<td>Hit Trees on approach</td>
<td>--</td>
</tr>
<tr>
<td>Private</td>
<td>10 Oct</td>
<td>Missouri</td>
<td>AC 690</td>
<td>Hit into ground in initial climb</td>
<td>1</td>
</tr>
<tr>
<td>Freight</td>
<td>29 Oct</td>
<td>Ust-Ilimsk, Russa</td>
<td>AN-12</td>
<td>Hit short on approach by 1-2 NM at night.</td>
<td>21</td>
</tr>
<tr>
<td>Charter, Freight</td>
<td>4 Nov</td>
<td>Kebu, Nabi, New Guinea</td>
<td>DHC-6</td>
<td>Hit hill, approach</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>19 Nov</td>
<td>Sauner, France</td>
<td>Be-C90</td>
<td>Hit ground while circling after successful locator; (NDB) approach.</td>
<td>7</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>22 Nov</td>
<td>Bolovog, New Guinea</td>
<td>BN2A-2D</td>
<td>Hit hillside on initial approach.</td>
<td>7</td>
</tr>
<tr>
<td>Scheduled</td>
<td>10 Dec</td>
<td>Koyuk, Alaska</td>
<td>Ca-402</td>
<td>Hit short on approach</td>
<td>5</td>
</tr>
<tr>
<td>Business</td>
<td>16 Dec</td>
<td>Michigan</td>
<td>Ca-501</td>
<td>Hit short into approach lights</td>
<td>--</td>
</tr>
<tr>
<td>Scheduled</td>
<td>17 Dec</td>
<td>Tabubil, Papua N. Guinea</td>
<td>DHC-6</td>
<td>Hit ridge enroute to Selbang (25 miles east) on initial climb. 28</td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>30 Dec</td>
<td>Melbourne, Australia</td>
<td>MU-2</td>
<td>Hit short on ILS - Poor visibility</td>
<td>1</td>
</tr>
</tbody>
</table>

(3) Large Turbo-prop
(6) 10 to 30 Seat Turbo-Prop
(8) ≤ 10 Seat Turbo Prop
(5) ≥ 6 Seat Jet

No GPWS equipment on any of the above aircraft
1993 CORPORATE, REGIONAL, AIR TAXI CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional-Schd</td>
<td>6 Jan</td>
<td>Paris, France</td>
<td>DHC-8</td>
<td>Hit short while repositioning ILS 27 to ILS 28</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>8 Jan</td>
<td>Hermosillo, Mexico</td>
<td>L-35A</td>
<td>Hit Mountain on approach to VOR 23</td>
<td>9</td>
</tr>
<tr>
<td>Private</td>
<td>29 Jan</td>
<td>Marfa, TX</td>
<td>Be-90</td>
<td>Circling to runway 12, IMC after VOR 30</td>
<td>0 of 8</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>30 Jan</td>
<td>Achk, Inur, Malaysia</td>
<td>SC-7</td>
<td>Hit terrain en route</td>
<td>16</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>7 Feb</td>
<td>Iquacu, Brazil</td>
<td>Be-90</td>
<td>Hit 0.6 NM short - IMC; heavy rain</td>
<td>6</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>8 Feb</td>
<td>Lima, Peru</td>
<td>PA-42-720</td>
<td>Hit mountain initial descent</td>
<td>6</td>
</tr>
<tr>
<td>AT-Non Sched</td>
<td>27 Feb</td>
<td>Rio de Janeiro</td>
<td>L-31</td>
<td>Hit short by 300 feet</td>
<td>--</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>18 Mar</td>
<td>Trijillo, Peru</td>
<td>Be-90E</td>
<td>Hit mountain initial descent 50 NM short</td>
<td>4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>19 Mar</td>
<td>Dagali, Norway</td>
<td>Be-200</td>
<td>Hit 3 NM short LOC/DME 26, night</td>
<td>3 of 7</td>
</tr>
<tr>
<td>Reg't-NonSchd</td>
<td>23 Mar</td>
<td>Cuiaba, Brazil</td>
<td>EMB 110</td>
<td>Hit terrain on climb out</td>
<td>6</td>
</tr>
<tr>
<td>Air Taxi-Med.</td>
<td>6 April</td>
<td>Casper, WY</td>
<td>MU-2B-35</td>
<td>Hit terrain on DME Arc ILS 8, night</td>
<td>4</td>
</tr>
<tr>
<td>Private</td>
<td>1 May</td>
<td>Mount Ida, AR</td>
<td>Be-90</td>
<td>Hit Mt. Ida (3 NM short), Climb IMC</td>
<td></td>
</tr>
<tr>
<td>Air Taxi-Trng</td>
<td>25 May</td>
<td>Sante Fe, NM</td>
<td>SA-226T</td>
<td>Hit hill while circling to Rwy 15 short 5 NM at night</td>
<td>4</td>
</tr>
<tr>
<td>Reg' Cargo NS</td>
<td>5 June</td>
<td>El Yo Pal, Colombia</td>
<td>DHC-6</td>
<td>Hit short while circling</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>11 June</td>
<td>Young, Australia</td>
<td>PA-31</td>
<td>Hit rising ground while circling after ND approach</td>
<td>7</td>
</tr>
<tr>
<td>Reg-Garg-Sch</td>
<td>25 June</td>
<td>Atinues, Namibia</td>
<td>Be-200</td>
<td>Hit terrain on missed approach</td>
<td>3</td>
</tr>
<tr>
<td>Government</td>
<td>15 July</td>
<td>Bombay, India</td>
<td>Be-90</td>
<td>Hit hill on approach IMC</td>
<td>4</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>31 July</td>
<td>Bharatpur, Nepal</td>
<td>DO-228</td>
<td>Hit mountain on initial approach</td>
<td>19</td>
</tr>
<tr>
<td>Air Taxi-Med.</td>
<td>7 Aug</td>
<td>Augusta, GA</td>
<td>Be-90</td>
<td>Hit 1-1/2 NM short on approach IMC to ILS 17</td>
<td>4</td>
</tr>
<tr>
<td>AT-Positioning</td>
<td>17 Aug</td>
<td>Hartford, CT</td>
<td>SA-226T</td>
<td>Hit 1/3 NM short IMC to Rwy 02</td>
<td>2</td>
</tr>
<tr>
<td>AT-Positioning</td>
<td>27 Sept</td>
<td>Lansing, MI</td>
<td>Be-300</td>
<td>Hit 2 NM after 7.0 IMC turning</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>19 Oct</td>
<td>Orchid Is., Taiwan</td>
<td>DO-228</td>
<td>Undershoot</td>
<td>--</td>
</tr>
<tr>
<td>Regional-NS</td>
<td>25 Oct</td>
<td>Franz Josef Glacier, NZ</td>
<td>Nomad</td>
<td>Hit Glacier VMC into IMC</td>
<td>9</td>
</tr>
<tr>
<td>Gov't-FAA</td>
<td>26 Oct</td>
<td>Winchester, VA</td>
<td>Be-300</td>
<td>Hit terrain while awaiting IFR clearance</td>
<td>3</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>27 Oct</td>
<td>Namos, Norway</td>
<td>DHC-6</td>
<td>Hit 3 NM short on NDB approach</td>
<td>12</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>1 Dec</td>
<td>Hibbing, MN</td>
<td>BAe JS-31</td>
<td>Hit 3 NM short on LOC (B/C) Rwy 13</td>
<td>18</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>10 Dec</td>
<td>Sandy Lake, Ontario</td>
<td>HS 748</td>
<td>Climbing turn, back into terrain</td>
<td>7</td>
</tr>
<tr>
<td>AT-Positioning</td>
<td>30 Dec</td>
<td>Dijon, France</td>
<td>Be-90</td>
<td>Hit short on approach IMC</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) Large Turbo-prop (16) ≤ 10 Seat Prop (9) 10 to 30 Seat Turbo-prop (2) ≥ 6 Seat Jet

Except for DHC-8, there was no GPWS on any of the above aircraft.
1992 CORPORATE, REGIONAL, AIR TAXI CFIT ACCIDENTS

Don Bateman

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional-Schd</td>
<td>3 Jan</td>
<td>Sarnac Lake, NY</td>
<td>Be-1900</td>
<td>Hit short at FAF on ILS 23 IMC.</td>
<td>2F/2S</td>
</tr>
<tr>
<td>Private</td>
<td>11 Feb</td>
<td>Lakeland, FL</td>
<td>Ce-425</td>
<td>Hit short of runway 05 IMC.</td>
<td>1</td>
</tr>
<tr>
<td>Charter</td>
<td>16 Feb</td>
<td>Big Bear, CA</td>
<td>PA-31T</td>
<td>Hit terrain at 6740' 7 NM east of airport.</td>
<td>7</td>
</tr>
<tr>
<td>Private</td>
<td>5 Mar</td>
<td>New Castle, CO</td>
<td>MU-2B</td>
<td>Hit mtn - LOC/DME "A" Gear Down; Approach flaps 10-1/2 NM short.</td>
<td>6</td>
</tr>
<tr>
<td>Private</td>
<td>29 Mar</td>
<td>Taos, NM</td>
<td>AC-390</td>
<td>Hit rising terrain on climb out; IMC night 3940' (visual); radio altimeter installed.</td>
<td>1, 5S</td>
</tr>
<tr>
<td>State Aircraft</td>
<td>9 April</td>
<td>St. Augustine, FL</td>
<td>Be-90</td>
<td>Hit short on VOR approach 007: 10 EDT IMC.</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Tour</td>
<td>22 April</td>
<td>Maui, Hawaii</td>
<td>Be-18</td>
<td>Hit mtn enroute.</td>
<td>9</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>8 June</td>
<td>Anniston, AL</td>
<td>Be-99</td>
<td>Hit terrain during LOC 5 approach.</td>
<td>3F/2S</td>
</tr>
<tr>
<td>Personal</td>
<td>24 June</td>
<td>Alamagordo, NM</td>
<td>MU-2B</td>
<td>Hit mtn VMC during climbout 23:21 MDT - Night.</td>
<td>6</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>24 July</td>
<td>Ambu, Indonesia</td>
<td>Vickers Viscount</td>
<td>Hit mtn during initial approach ILS/04.</td>
<td>71</td>
</tr>
<tr>
<td>Personal</td>
<td>13 Aug</td>
<td>Osway, MO</td>
<td>PA-31</td>
<td>Hit short rwy 32-IMC.</td>
<td>--</td>
</tr>
<tr>
<td>Personal</td>
<td>4 Sept</td>
<td>Longton, KS</td>
<td>PA-42</td>
<td>Hit wires on approach.</td>
<td>--</td>
</tr>
<tr>
<td>Government</td>
<td>19 Oct</td>
<td>Pesqueria, Mex (Monterey)</td>
<td>AC-680T</td>
<td>Hit terrain during climbout IMC.</td>
<td>6</td>
</tr>
<tr>
<td>Comm/Air Taxi</td>
<td>31 Oct</td>
<td>Grand Junction, CO</td>
<td>PA-42</td>
<td>Hit mtn 10 NM north RNAV-Cleared to ILS rwy 11. “Macks” int. eastbound 9400'-7800' cliff; IMC day 0315.</td>
<td>3</td>
</tr>
<tr>
<td>National Guard</td>
<td>11 Nov</td>
<td>Juneau, AK</td>
<td>Be-200</td>
<td>Hit mtn LOC/DME 20+ NM from runway.</td>
<td>8</td>
</tr>
<tr>
<td>Government</td>
<td>10 Dec</td>
<td>Quito, Ecuador</td>
<td>Sabreliner</td>
<td>Hit 3 NM short during VOR/ILS 35 approach.</td>
<td>12</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>13 Dec</td>
<td>Goma, Zaire</td>
<td>F-27</td>
<td>Hit short into terrain during initial approach VOR/DME 36.</td>
<td>37</td>
</tr>
<tr>
<td>Government</td>
<td>22 Dec</td>
<td>Quito, Ecuador</td>
<td>PA-31</td>
<td>Hit 3 NM short during VOR/ILS 35 approach.</td>
<td>5</td>
</tr>
</tbody>
</table>

(2) Large Turbo Prop (13) ≤ 10 Seat Prop
(2) 10 to 30 Seat Turbo Prop (1) ≥ 6 Seat Jet

No GPWS installed on any of the above aircraft.
1991 CORPORATE, REGIONAL, AIR TAXI CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate</td>
<td>11 Jan</td>
<td>Belo Horizontes, Brazil</td>
<td>LJ-25</td>
<td>Hit 2 NM short.</td>
<td>5</td>
</tr>
<tr>
<td>Air Taxi-Ferry</td>
<td>8 Feb</td>
<td>Stansted, UK</td>
<td>Be-200</td>
<td>Hit 2-1/2 NM short of the runway; possible altimeter error.</td>
<td>2</td>
</tr>
<tr>
<td>Corporate</td>
<td>12 Feb</td>
<td>Uganda, Kenya</td>
<td>HS-125</td>
<td>Hit mtn on initial approach.</td>
<td>3</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>15 Mar</td>
<td>Brown Fld, CA</td>
<td>HS-125</td>
<td>Hit mtn on departure 8L.</td>
<td>10</td>
</tr>
<tr>
<td>Corporate</td>
<td>18 Mar</td>
<td>Brasilia, Brazil</td>
<td>LJ-25</td>
<td>Hit short.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>21 May</td>
<td>Bauchi, Nigeria</td>
<td>Ce-550</td>
<td>Hit short.</td>
<td>3</td>
</tr>
<tr>
<td>Corporate</td>
<td>17 June</td>
<td>Caracas, Venezuela</td>
<td>G-II</td>
<td>Hit 5 NM short to rwy 10.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>18 June</td>
<td>Kota Kinabalu, Malaysia</td>
<td>G-II</td>
<td>Hit mtn during missed approach.</td>
<td>12</td>
</tr>
<tr>
<td>Charter</td>
<td>17 Sept</td>
<td>Djibouti</td>
<td>L-100</td>
<td>Hit mtn VMC during initial approach.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>25 Sept</td>
<td>Holtenou Kiel, Germany</td>
<td>DS-20</td>
<td>Missed approach.</td>
<td>1</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>27 Sept</td>
<td>Guadalcanal, Sol.</td>
<td>DHC-6</td>
<td>Hit mtn enroute.</td>
<td>15</td>
</tr>
<tr>
<td>Corporate</td>
<td>8 Oct</td>
<td>Hanover, Germany</td>
<td>Ce-425</td>
<td>Hit short on ILS 27R.</td>
<td>7</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>22 Nov</td>
<td>Romeo, MI</td>
<td>Be-100</td>
<td>Hit 3 NM short on VOR/DME approach, IMC-fog.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>27 Nov</td>
<td>Paloma, Majorca</td>
<td>Be-400</td>
<td>Hit 1/4 NM short.</td>
<td>--</td>
</tr>
<tr>
<td>Corporate</td>
<td>30 Nov</td>
<td>Kelso, WA</td>
<td>AC 690</td>
<td>Hit mtn 13 NM short.</td>
<td>5/1S</td>
</tr>
<tr>
<td>Corporate</td>
<td>11 Dec</td>
<td>Rome, GA</td>
<td>Be-400</td>
<td>Hit mtn on departure.</td>
<td>9</td>
</tr>
</tbody>
</table>

(1) Large Turbo Prop (5) ≤ 10 Seat Prop (6) ≥ 6 Seat Jet (2) 10 to 30 Seat Turbo Prop (8) ≥ 6 Seat Jet

No GPWS installed on any of the above aircraft.
1990 CORPORATE, REGIONAL, AIR TAXI CFIT ACCIDENTS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional-Schd</td>
<td>15 Jan</td>
<td>Elko, Nevada</td>
<td>Metro III</td>
<td>Hit mtn at FAF VOR-A.</td>
<td>4-5/16</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>16 Jan</td>
<td>San Jose, Costa Rica</td>
<td>CASA</td>
<td>Hit mtn on departure.</td>
<td>23</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>17 Jan</td>
<td>Denver to Montrose, CO</td>
<td>Be-208A</td>
<td>Hit 50' below Mt. Massive (14,221') near Leadville, CO.</td>
<td>1</td>
</tr>
<tr>
<td>Corporate</td>
<td>17 Jan</td>
<td>West Point, MS</td>
<td>Be-400</td>
<td>Undershoot.</td>
<td>--</td>
</tr>
<tr>
<td>Corporate</td>
<td>19 Jan</td>
<td>Little Rock, AR</td>
<td>G-II</td>
<td>Hit short on ILS.</td>
<td>7</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>29 Jan</td>
<td>Williston, VT</td>
<td>Ce-208B</td>
<td>Hit trees, power lines on climb out at major IMC.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>29 Jan</td>
<td>Schuyler Falls, NY</td>
<td>Ce-208B</td>
<td>Hit 1-1/2 NM beyond rwy 19 during climb out IMC, night.</td>
<td>1</td>
</tr>
<tr>
<td>Schd-Freight</td>
<td>21 Mar</td>
<td>Tegucigalpa, Honduras</td>
<td>L-188</td>
<td>Hit mtn 6 NM short VOR/DME rwy 1.</td>
<td>3</td>
</tr>
<tr>
<td>Business</td>
<td>27 Mar</td>
<td>Uvalde, TX</td>
<td>Be-100</td>
<td>Hit terrain 4 NM south of field on approach in IMC-night.</td>
<td>--</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>20 Apr</td>
<td>Moosonee, Ontario</td>
<td>Be-99</td>
<td>Hit 7 NM short on VOR rwy 24.</td>
<td>1 of 4</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>28 Apr</td>
<td>Tamanaresset, Algeria</td>
<td>Be-90A</td>
<td>Hit 4 NM short on approach.</td>
<td>6</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>4 May</td>
<td>Wilmington, NC</td>
<td>GN-24</td>
<td>Hit short on B/C Loc 16.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>11 May</td>
<td>Cairns, Australia</td>
<td>Ce-500</td>
<td>Hit mtn on initial approach.</td>
<td>11</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>13 Aug</td>
<td>Cozumel, Mexico</td>
<td>AC 1121</td>
<td>Undershoot.</td>
<td>1</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>11 Sept</td>
<td>New Mexico</td>
<td>MS-760?</td>
<td>Hit mtn on departure.</td>
<td>2</td>
</tr>
<tr>
<td>Business</td>
<td>22 Sept</td>
<td>White Plains, NY</td>
<td>AC 690B</td>
<td>Hit short by 3 NM in IMC.</td>
<td>0 of 6</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>24 Sept</td>
<td>San Luis Obispo, CA</td>
<td>Ce-500</td>
<td>Hit short on approach LOC 11.</td>
<td>4</td>
</tr>
<tr>
<td>Corporate</td>
<td>21 Nov</td>
<td>Keller Jock, Australia</td>
<td>Be-200</td>
<td>Initial approach.</td>
<td>3</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>29 Nov</td>
<td>Sebring, FL</td>
<td>Ce-550</td>
<td>Undershot on approach rwy 11.</td>
<td>--</td>
</tr>
<tr>
<td>Business</td>
<td>30 Nov</td>
<td>Kelso, WA</td>
<td>AC-690A</td>
<td>Hit short by 8 NM night on initial approach into mountain.</td>
<td>5 of 6</td>
</tr>
<tr>
<td>Air Taxi-Cargo</td>
<td>21 Dec</td>
<td>Cold Bay, AK</td>
<td>Ce-208</td>
<td>Hit mountain enroute.</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) Large Turbo Prop (12) ≤ 10 Seat Prop No GPWS installed on any of the above aircraft.
(3) 10 to 30 Seat Turbo-Prop (5) ≥ 6 Seat Jet
(4) 6 to 10 Seat Turbo-Prop
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>COMMENTS</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private</td>
<td>2 Jan</td>
<td>Mansfield, OH</td>
<td>MU-2B</td>
<td>Hit 8 NM short during an ILS 24 approach circle for 23. Night, IMC.</td>
<td>4</td>
</tr>
<tr>
<td>Private</td>
<td>7 Jan</td>
<td>Paducah, KY</td>
<td>Be-90</td>
<td>Hit mtn on departure.</td>
<td>3 of 15</td>
</tr>
<tr>
<td>Schd Freight</td>
<td>12 Jan</td>
<td>Dayton, OH</td>
<td>HS-748</td>
<td>Initial climb.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>12 Jan</td>
<td>Caracas, Venezuela</td>
<td>Be-200</td>
<td>Hit terrain while diverting in low cloud.</td>
<td>2</td>
</tr>
<tr>
<td>Charter</td>
<td>19 Feb</td>
<td>Orange County, CA</td>
<td>Ce-404</td>
<td>Hit mtn 20 NM short.</td>
<td>10</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>23 Feb</td>
<td>Altenshein, Lake</td>
<td>AC-690</td>
<td>Hit short to rwy 10. VMC into IMC.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contance, Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Taxi</td>
<td>24 Feb</td>
<td>Helsinki, Finland</td>
<td>SA-226T</td>
<td>Hit short on ILS approach IMC.</td>
<td>6 of 7</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>10 Apr</td>
<td>Valence, France</td>
<td>FH-27T</td>
<td>Hit mtn, initial approach.</td>
<td>22</td>
</tr>
<tr>
<td>Air Taxi-Ferry</td>
<td>10 May</td>
<td>Azusa, CA</td>
<td>Be-200</td>
<td>Hit San Gabriel Mountain at 7300' level (departed Santa Monica).</td>
<td>1</td>
</tr>
<tr>
<td>Corporate</td>
<td>29 Jun</td>
<td>Cartersville, GA</td>
<td>DA-20</td>
<td>Initial climb, shallow into terrain.</td>
<td>2</td>
</tr>
<tr>
<td>Regional</td>
<td>31 Jul</td>
<td>Auckland, New Zealand</td>
<td>CV-580</td>
<td>Hit during initial climb.</td>
<td>34</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>3 Aug</td>
<td>Samos, Greece</td>
<td>SD-330</td>
<td>Hit mtn enroute.</td>
<td>16</td>
</tr>
<tr>
<td>Charter</td>
<td>7 Aug</td>
<td>Gambella, Ethiopia</td>
<td>DHC-6</td>
<td>Hit power lines - fog.</td>
<td>3 of 7</td>
</tr>
<tr>
<td>Air Taxi-Med</td>
<td>21 Aug</td>
<td>Mayfield, NY</td>
<td>Be-100</td>
<td>Hit 1/4 NM short at night IMC.</td>
<td>6</td>
</tr>
<tr>
<td>Business</td>
<td>15 Sep</td>
<td>Terrace, BC</td>
<td>Metro III</td>
<td>Missed approach LDA/DME.</td>
<td>7</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>26 Sep</td>
<td>Hurdle Mills, NC</td>
<td>Ce-550</td>
<td>Hit 2-1/2 NM short on approach.</td>
<td>2</td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>28 Oct</td>
<td>Molokal, Hawaii</td>
<td>DHC-6</td>
<td>Hit mtn enroute.</td>
<td>20</td>
</tr>
<tr>
<td>Corporate</td>
<td>7 Nov</td>
<td>Ribeiro Das, Nevez</td>
<td>LJ</td>
<td>Hit hill on approach.</td>
<td>5</td>
</tr>
<tr>
<td>Private</td>
<td>2 Dec</td>
<td>Ruidoso, NM</td>
<td>Be-90</td>
<td>Hit short in procedure turn NDB approach IMC.</td>
<td>2</td>
</tr>
<tr>
<td>Air Taxi-</td>
<td>22 Dec</td>
<td>Beluga River, Alaska</td>
<td>PA-31T</td>
<td>Hit 8 NM short.</td>
<td></td>
</tr>
<tr>
<td>Positioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional-Schd</td>
<td>26 Dec</td>
<td>Pasco, WA</td>
<td>BAe JS-31</td>
<td>Hit short on ILS 21R.</td>
<td>4</td>
</tr>
</tbody>
</table>

(3) Large Turbo Prop
(10) ≤ 10 Seat Prop
(6) 10 to 30 Seat Turbo-Prop
(2) ≥ 6 Seat Jet

No GPWS installed on any of the above aircraft.
NORTH AMERICAN CFIT ACCIDENTS - CANADA, MEXICO, USA
20 YEARS - 1976 THROUGH 1996
LARGE COMMERCIAL JET AIRCRAFT
1995: 6000 Aircraft ~ 9.0 x 10 Flights/Year
1976: 3200 Aircraft ~ 5.0 x 10 Flights/Year

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CFIT ACCIDENTS</th>
<th>AIRCRAFT TYPE</th>
<th>U.S. LOCATION</th>
<th>OUTSIDE U.S.</th>
<th>TYPE OF APPROACH</th>
<th>TYPE OF OPERATION</th>
<th>ARTS III MSAW COVERAGE</th>
<th>GPWS TYPE</th>
<th>GPWS WARNING TIME</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>2</td>
<td>B757</td>
<td>Windsor</td>
<td>Call, Colombia</td>
<td>VOR DME 19</td>
<td>Scheduled</td>
<td>No</td>
<td>MK V</td>
<td>11 sec</td>
<td>160 of 164</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>MD-80</td>
<td></td>
<td></td>
<td>VOR 15</td>
<td>Scheduled</td>
<td>Yes</td>
<td>MK II</td>
<td>3 sec</td>
<td>5 rescued of 72</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>1</td>
<td>B737-200</td>
<td>Unakaste</td>
<td>LOC/DME</td>
<td>Repositioning</td>
<td>No</td>
<td>MK I</td>
<td>None</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>2</td>
<td>B747-100</td>
<td></td>
<td>Kuala Lumpur</td>
<td>NDB</td>
<td>Freight</td>
<td>No</td>
<td>MK I</td>
<td>11 sec</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B747-300</td>
<td></td>
<td>Santa Maria</td>
<td>VOR</td>
<td>Charter</td>
<td>No</td>
<td>MK I</td>
<td>6-1/3 sec</td>
<td>144</td>
</tr>
<tr>
<td>1988</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>1</td>
<td>B707-300</td>
<td>Kansas City</td>
<td>ILS</td>
<td>Freight</td>
<td>Yes</td>
<td>MK I</td>
<td>Inoperative*</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>1</td>
<td>B727-200</td>
<td>Lapaz</td>
<td>Initial VLF</td>
<td>Scheduled</td>
<td>No</td>
<td>MK I</td>
<td><2 Sec</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>1</td>
<td>B727-200</td>
<td>Pensacola</td>
<td>B/C LOC</td>
<td>Scheduled</td>
<td>No</td>
<td>MK I</td>
<td>9 Sec</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>2</td>
<td>DC-8</td>
<td>Salt Lake City</td>
<td>Radar Vector</td>
<td>Freight</td>
<td>Masked</td>
<td>MK I</td>
<td>9 Sec</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC-8</td>
<td></td>
<td>Niamey, Africa</td>
<td>VOR Freight</td>
<td>No</td>
<td>MK I</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>2</td>
<td>B-720</td>
<td></td>
<td>Berenquil</td>
<td>VOR Freight</td>
<td>No</td>
<td>MK I</td>
<td>None</td>
<td>0 (Hi Descent)</td>
<td>0</td>
</tr>
</tbody>
</table>

*Glideslope Failure (Zero deviation no flag)
CFIT ACCIDENTS AND RISK FOR U.S. AIRLINES
Large Commercial Jets

<table>
<thead>
<tr>
<th>Type of CFIT Loss</th>
<th>CFIT Accidents and Risk per Million Flights</th>
<th>Reduction (-) or Increase (+) (Times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Climb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerating Descent</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>INTO MOUNTAINOUS TERRAIN</td>
<td>6</td>
<td>0.17</td>
</tr>
<tr>
<td>-Climb Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Initial Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Missed Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING SHORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Not Configured to Land</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>-Configured to Land/No Glideslope</td>
<td>5</td>
<td>0.14</td>
</tr>
<tr>
<td>-Below Glideslope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Excessive Descent Rate</td>
<td>8</td>
<td>0.22</td>
</tr>
<tr>
<td>TOTAL CFIT ACCIDENTS & RISK</td>
<td>30</td>
<td>0.85 x 10^-3</td>
</tr>
</tbody>
</table>

- Flight Segments: 35 x 10^3 in 1976, 108 x 10^3 in 1994 (+3.1)
- Aircraft Numbers: 2800 in 1976, 4800 in 1994 (+1.7)

CFIT Risk 1990 thru 1994 (5 years): 0.028 x 10^-3 flights
CFIT Risk 1985 thru 1994 (10 years): 0.074 x 10^-3 flights
In USA (2): 0.033 x 10^-3 flights
Outside USA (3): 0.44 x 10^-3 flights

10 CFIT Accidents
1. Loss with NO GPWS installed
2. Loss with glideslope receiver failure
3. All lost equipped with MK I GPWS
 - If aircraft had been fitted with MK II or better, losses would have been reduced probably to 6 (0.055 x 10^-4).
 - If aircraft has been fitted with MK VII/VII system with "smart" altitude callouts, the losses would have probably been reduced to 3 (0.03 x 10^-4).
U.S.A. PART 135 CFIT ACCIDENTS
TURBINE POWERED AIRCRAFT

REGIONAL
≥ 10 PASSENGER SEATS

AIR TAXI
≥ 6 PASSENGER SEATS

MAY 1994
FAR 135.153 GPWS INSTALLATION FOR ≥ 10 PASSENGER SEATS

CFIT ACCIDENTS PER YEAR

YEAR
<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Aircraft</th>
<th>Approach</th>
<th>Fatality</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dec 1993</td>
<td>Hibbing, MN</td>
<td>BAe 31</td>
<td>LOC B/C 13</td>
<td>18</td>
<td>18 Fatalities</td>
</tr>
<tr>
<td>25 May 1993</td>
<td>Sante Fe, NM</td>
<td>SA-227</td>
<td>Circle 15</td>
<td>4</td>
<td>4 Fatalities</td>
</tr>
<tr>
<td>8 June 1992</td>
<td>Anniston, AL</td>
<td>Be-C99</td>
<td>LOC 5</td>
<td>3</td>
<td>3 Fatalities</td>
</tr>
<tr>
<td>January 1992</td>
<td>Samac Lake, NY</td>
<td>Be-1900C</td>
<td>ILS 23</td>
<td>2</td>
<td>2 Fatalities</td>
</tr>
<tr>
<td>15 March 1991</td>
<td>Brown Field, CA</td>
<td>HS-125</td>
<td>Departure 8L</td>
<td>10</td>
<td>10 Fatalities</td>
</tr>
<tr>
<td>4 May 1990</td>
<td>Wilmington, NC</td>
<td>GN-24</td>
<td>B/C Loc 16</td>
<td>2</td>
<td>2 Fatalities</td>
</tr>
<tr>
<td>15 January 1990</td>
<td>Elko, NV</td>
<td>Metro III</td>
<td>VOR-A</td>
<td>4</td>
<td>4 Serious Injury out of 16</td>
</tr>
<tr>
<td>15 January 1990</td>
<td>Elko, NV</td>
<td>Metro III</td>
<td>ILS 21R</td>
<td>4</td>
<td>4 Fatalities</td>
</tr>
<tr>
<td>26 December 1989</td>
<td>Pasco, WA</td>
<td>Be-31</td>
<td>34</td>
<td>3</td>
<td>3 Fatalities</td>
</tr>
<tr>
<td>21 August 1989</td>
<td>Gold Beach, OR</td>
<td>Be-C90</td>
<td>I. Wheels Up</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>26 April 1989</td>
<td>Jacksonville, FL</td>
<td>SA-226</td>
<td>Enroute</td>
<td>20</td>
<td>20 Fatalities</td>
</tr>
<tr>
<td>28 October 1989</td>
<td>Molokai, HI</td>
<td>DHC-6</td>
<td>Departure</td>
<td>--</td>
<td>Out of 4</td>
</tr>
<tr>
<td>4 October 1988</td>
<td>East Sound, WA</td>
<td>Be-99</td>
<td>Visual 22</td>
<td>1</td>
<td>1 Fatality</td>
</tr>
<tr>
<td>17 May 1988</td>
<td>Little Rock, AK</td>
<td>AC 690</td>
<td>Departure 23</td>
<td>12</td>
<td>12 Fatalities</td>
</tr>
<tr>
<td>19 February 1988</td>
<td>Raleigh-Durham, NC</td>
<td>Metro III</td>
<td>Departure 23</td>
<td>8</td>
<td>8 Fatalities</td>
</tr>
<tr>
<td>19 January 1988</td>
<td>Durango, CO</td>
<td>Metro III</td>
<td>VOR-DME 20</td>
<td>2</td>
<td>2 Fatalities</td>
</tr>
<tr>
<td>8 January 1988</td>
<td>Monroe, LA</td>
<td>GLS-36</td>
<td>ILS 04</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5 February 1987</td>
<td>Florence, SC</td>
<td>SA-226</td>
<td>I. Wheels Up 36</td>
<td>7</td>
<td>7 Fatalities</td>
</tr>
<tr>
<td>28 August 1986</td>
<td>Lander, WY</td>
<td>Ce-441</td>
<td>Departure 21</td>
<td>3</td>
<td>3 Fatalities</td>
</tr>
<tr>
<td>13 March 1986</td>
<td>Alpena, MI</td>
<td>EMB-110</td>
<td>ILS 1</td>
<td>3</td>
<td>3 Fatalities</td>
</tr>
<tr>
<td>22 October 1985</td>
<td>Juneau, AS</td>
<td>LJ-24</td>
<td>LDA 8</td>
<td>4</td>
<td>4 Fatalities</td>
</tr>
<tr>
<td>16 October 1985</td>
<td>El Paso, TX</td>
<td>MU-2</td>
<td>Enroute</td>
<td>1</td>
<td>1 Fatality</td>
</tr>
<tr>
<td>11 October 1985</td>
<td>Homer City, PA</td>
<td>DHC-6</td>
<td>Enroute</td>
<td>1</td>
<td>1 Fatality</td>
</tr>
<tr>
<td>23 September 1985</td>
<td>Shenandoah Valley VA</td>
<td>Be-99</td>
<td>ILS 4</td>
<td>14</td>
<td>14 Fatalities</td>
</tr>
<tr>
<td>25 August 1985</td>
<td>Lewiston, MA</td>
<td>Be-99</td>
<td>ILS 4</td>
<td>8</td>
<td>8 Fatalities</td>
</tr>
<tr>
<td>20 August 1985</td>
<td>Gulkana, AK</td>
<td>LJ-24</td>
<td>VOR/TVOR 14</td>
<td>3</td>
<td>3 Fatalities</td>
</tr>
<tr>
<td>22 March 1985</td>
<td>Los Angeles, CA</td>
<td>SA-226</td>
<td>J. Wheels Up</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12 March 1985</td>
<td>Barter Island, AK</td>
<td>SA-227</td>
<td>I. Wheels Up</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>14 March 1984</td>
<td>Myrtle Beach, SC</td>
<td>DHC-6</td>
<td>Go-Around</td>
<td>2</td>
<td>2 Serious Injury</td>
</tr>
<tr>
<td>30 January 1984</td>
<td>Terre Haute, IN</td>
<td>Be-99</td>
<td>I. Wheels Up</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6 April 1983</td>
<td>Indianapolis, IN</td>
<td>SA-226</td>
<td>Departure</td>
<td>3</td>
<td>3 Fatalities</td>
</tr>
<tr>
<td>12 July 1982</td>
<td>Pueblo, CO</td>
<td>L-35A</td>
<td>ILS</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
CHARACTERISTICS OF VARIOUS MODELS OF GPWS EQUIPMENT

1. Basic Alert/Warnings (modes) applicable to all models:
 - MODE 1: Excessive sink rate close to terrain
 - MODE 2: Excessive closure rate towards terrain
 - MODE 3: Negative climb rate after take-off
 - MODE 4: Insufficient Terrain Clearance based on configuration
 - MODE 5: Significant fly up glide slope deviation on approach

2. Performance features of some GPWS models are:
 - Mark 1/2: Early, primitive GPWS system. Could not warn for many flight path into terrain situations, including flight path below the glide slope.
 - Warning was a warbling continuous tone (woop-woop).
 - *This system was installed on some 150 to 200 DC-8 / DC-9 / DC-10 aircraft outside of the United States. These units do not meet ICAO, U.S.A. or UK specified Minimum Performance Standards. Most have been replaced.*

 - Mark I: An early, now obsolete, GPWS system that met the specified Minimum Performance Standards of TSO-C92b and U.K. CAA Specification 14. This system could not provide a warning for some flight path towards terrain situations.
 - The average warning time for flight into mountainous terrain was seven (7) seconds.
 - Warning is a "Pull Up!" (or "Terrain") and a "Glide slope" alert
 - "Pull Up!" was heard often in some operational environments. Pilots often waited to determine the reason for the warning, which sometimes took too long to cross check and determine the cause.
 - *Over 4,000 of these systems were installed worldwide, mostly in the U.S.A. Many of these systems, in the U.S.A., have been replaced with the MK II or MK VII. About 1,100 remain in service in 1994.*
Mark II

An obsolete system now, but the MK II gave significant improvement in performance as compared to the MK I, exceeding both the U.S.A. and the UK specified Minimum Performance Standards.

- Airspeed/Mach utilized to expand and contract some of the warning envelopes to enhance the performance. The average warning time for flight into mountainous terrain increased to twelve (12) seconds from (7) seconds.

- Most warning envelopes were reshaped to reduce unwanted warnings. Later modifications, based on airline provided data, significantly reduced the possibility of warnings during Air Traffic Controlled radar vectoring off instrument approach routes and procedures.

- Alert messages ("Sink Rate", "Too Low", Terrain", etc.) replaced "Pull Up" giving the reason for the warning. The "Pull Up" message was retained only for very time critical recovery from flight into terrain. Airspeed enhanced warning envelopes (dependent on phase of flight) were also utilized to change the alert message format.

Over 5,000 of these systems are installed and are flying in revenue service around the world.

Mark III

- Digital bus interface version of the Mark II. Now also obsolete.

- Some further performance improvements, but because of radio altimeter sensor limitations, the MK III proved to have some additional unwanted warnings compared to the Mark II.

- A limited Envelope Modulation feature, in a terrain data table form was added to improve warning time and to also reduce terrain induced nuisance warnings at some twenty worldwide airports. Unfortunately, this table being incorporated in the software made the addition of new airports very difficult.

- Pin selectable limited voice menu, call outs and features.

Mark III's were installed on early B757's and B767's, the A300-600's, the A310's and A320's aircraft. Most early B757 and B767 Mark III installations have been upgraded to the MK V system.

Mark IV

This system was used on some special mission military aircraft.
Mark V

- This system has upgraded performance over the Mark III system.
- The Envelope Modulation feature was expanded and made easy to update via EE PROM programming at
 Of the 6,000 current world wide airports, a data base of only one hundred airports is in use. The airport data
 is available to the system via a look-up table that does not alter the operational software. This table
 can be expanded considerably if and when nuisance warnings, at a particular location, are brought to our
 attention and an analysis shows that the instrument and radar vectoring procedures give adequate terrain
 clearance.
- Pin selectable voice altitude call outs were expanded, and others such as "Bank Angle" added.
- To reduce the flight into terrain risk during non-precision approaches, an optional smart "500 feet" call out
 and procedure are used.
- Wind shear detection algorithm and "Wind Shear " message, were added with priority.
- Available aircraft performance (total energy) is used to modulate some of the warning envelopes.

This system replaced the Mark III unit. The Mark V is installed on most new aircraft. It is basic equipment for
all Airbus, Boeing new Fokker 100, BAE ATP and MD-11.

Mark VI

- This system's performance is similar to that of the Mark VII computer but designed especially for the special
 requirements of light business, regional turbo jet and turbo prop aircraft. Over 1200 aircraft in 1994
 have MK VI GPWS installations. The number is rapidly growing.

Mark VII

- Upgraded performance is similar to the Mark V computer, but for analog avionic interfaces.
- Latest wind shear detection algorithm was implemented and built-in dual recovery guidance was provided.
- Pin selectable menu of call outs is provided, such as "Bank Angle ".
- To reduce the flight into terrain risk during non-precision approaches, an optional smart "500 feet" call out
 and procedure is used by many of world wide airlines.

The latest versions of the MK VII offer an Envelope Modulation feature similar to the MK V. The Mark VII
was designed to upgrade all Mark 1/2, Mark I and Mark I1 system installations giving superior
performance and significantly reduced probability of unwanted warnings.
Enhanced GPWS V and Enhanced GPWS VII (EGPWS)

These new systems provide significantly improved performance over any past or present GPWS system. The EGPWS uses the existing MK V and VII aircraft interfaces. The basic GPWS independent functions are retained. The EGPWS has been designed to use the existing MK V and VII aircraft interfaces.

- "Look Ahead" algorithms utilize present, and predicted position are related to a worldwide terrain data base with aircraft climb performance to give a nominal one minute time alert to possible impact with threatening terrain.

- The system also provides a terrain output signal for use with cockpit Map Displays. The threatening Terrain Situation can be displayed on most existing color Weather Radar or EHSI displays.

- A terrain clearance floor is provided that surrounds the world's known civilian and military airfields to alert the pilots to possible premature descent into terrain or water independent of the aircraft configuration.

- The system also provides alerts to possible flight into significant obstacle/structures. This feature is only limited by the availability of the obstacle data.

- The EPWS comes in two computer versions, one to directly replace the MK V and the other to directly replace the MK VII, utilizing the existing interface wiring and installations of the world's airline fleet to advantage.
“Bank Angle” and other Forms of Alerting or Protection for Undetected Excessive Roll Angles

Aircraft have been lost when excessive roll angles have developed without detection by the flight crew. High undetected roll angles have resulted in high descent rates, during cruise buffet, loss of control, or scraped engine pods during landing. Some past incident/accident examples are shown in Table I. The risk of future incidents remain high.

These incidents have been caused by various factors:

- Undetected and uncommanded roll with autoflight or autopilot engaged (especially in cruise)
- Looking outside the cockpit at inadequate visual references during take-off climb or approach. Especially a problem at night with base turns circling and a lack of inside reference by the pilot to the panel attitude reference instruments. Other factors are looking for traffic, maneuvering for runway alignment, etc.
- Vertigo
- Expedited turns during take-off climb because of traffic, leading to uncoordinated flight control.
- Failed attitude reference display.

Many of these incidents arise because of lack of tactile sensory feedback. The tactile accelerations associated with coordinated steady high bank angle turns are often masked by the nose of the aircraft falling through with altitude loss.

To reduce the risk of such occurrences, various measures can be taken:

- Built in maximum bank limiters in “fly-by wire” automatic control systems.
- Enhance or emphasize high bank angles on the attitude display. On some displays, secondary data is dropped by the display to help the pilot focus on or correct the attitude problem.
- Visual and/or Aural Alerting when high or unusual roll angles are reached. Many forms are available; as an example, most GPWS equipment has options to annunciate “Bank Angle” when roll angles exceed \pm 40 degrees or smaller angles when close to the ground. This capability provides independent means of protection against autopilot and instrument failures.
PARTIAL LIST OF EXCESSIVE BANK ANGLE CFIT ACCIDENTS/CFTT INCIDENTS

<table>
<thead>
<tr>
<th>DATE</th>
<th>PLACE</th>
<th>AIRCRAFT TYPE</th>
<th>PHASE OF FLIGHT</th>
<th>CIRCUMSTANCES</th>
<th>FATALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various 1993-1992</td>
<td>Worldwide</td>
<td>Glass Cockpit</td>
<td>Enroute</td>
<td>Slow undetected roll</td>
<td>--</td>
</tr>
<tr>
<td>6 June 1992</td>
<td>Panama</td>
<td>B737-200</td>
<td>Enroute</td>
<td>Slow undetected roll to 90 degrees believed to be ADI or Autopilot</td>
<td>47</td>
</tr>
<tr>
<td>15 Feb 1992</td>
<td>Toledo, Ohio</td>
<td>DC-8-63</td>
<td>Missed Approach</td>
<td>Slow undetected roll; autopilot; night</td>
<td>4</td>
</tr>
<tr>
<td>12 Dec 1991</td>
<td>N.W.T. Canada</td>
<td>B747-100</td>
<td>Enroute</td>
<td>Slow undetected roll; autopilot FL 310 to FL 190 for recovery</td>
<td>--</td>
</tr>
<tr>
<td>1990</td>
<td>Montreal-Paris</td>
<td>B747-200</td>
<td>Enroute</td>
<td>Slow undetected roll (71 degrees)</td>
<td>--</td>
</tr>
<tr>
<td>30 Apr 1989</td>
<td>Miami-London</td>
<td>B747-200</td>
<td>Enroute</td>
<td>Slow undetected roll (52 degrees)</td>
<td>--</td>
</tr>
<tr>
<td>Various 30 +</td>
<td>Various</td>
<td>B747-100/200</td>
<td>Various</td>
<td>Slow undetected rolls - at night or IMC</td>
<td>--</td>
</tr>
<tr>
<td>12 Jan 1989</td>
<td>Dayton, Ohio</td>
<td>HS-748</td>
<td>Take-off climb</td>
<td>Slow roll to 50 degrees for turn during climbout; night</td>
<td>2</td>
</tr>
<tr>
<td>28 Oct 1988</td>
<td>Paris</td>
<td>B747-100</td>
<td>Final</td>
<td>Visual transition, alignment to runway at night, overbanked to 17 degrees at 100 ft.</td>
<td>--*</td>
</tr>
<tr>
<td>19 Feb 1988</td>
<td>Raleigh-Durham</td>
<td>Metro III</td>
<td>Take-off Climb</td>
<td>Expedited departure, overbanked to 45 degrees at 300 ft.</td>
<td>12</td>
</tr>
<tr>
<td>Dec 1987</td>
<td>Edmonton, Canada</td>
<td>DC-8-63F</td>
<td>Final</td>
<td>Visual transition at night to align with runway overbanked to 15 degrees at 150 ft.</td>
<td>--*</td>
</tr>
<tr>
<td>Nov 1986</td>
<td>London</td>
<td>B747-200</td>
<td>Final</td>
<td>Visual transition at night to align with runway.</td>
<td>--*</td>
</tr>
<tr>
<td>12 Nov 1980</td>
<td>Cairo</td>
<td>C-141</td>
<td>Turning base for Final</td>
<td>Overbanked at night visual - no lights on ground</td>
<td>13</td>
</tr>
<tr>
<td>1 Jan 1978</td>
<td>Bombay</td>
<td>B747</td>
<td>Departure climb</td>
<td>Rolled to 80 degrees at 1400 ft --ADI failure no flag - night</td>
<td>213</td>
</tr>
<tr>
<td>Oct 1977</td>
<td>Vancouver BC</td>
<td>B747</td>
<td>Turning base for Final</td>
<td>Slow roll to 50 degrees before detection in time</td>
<td>--</td>
</tr>
<tr>
<td>Sept 1977</td>
<td>Geneva (BA)</td>
<td>B747</td>
<td>Departure Climb</td>
<td>Roll slow but detected in time by F/O; ADI failure; no flag</td>
<td>--</td>
</tr>
</tbody>
</table>

* Significant Damage
DEVELOPMENT OF GROUND PROXIMITY WARNING SYSTEMS
(GPWS)

Don Bateman
Chief Engineer
Flight Safety Avionics
AlliedSignal, Inc., Redmond, WA, U.S.A.

Presented at the Royal Aeronautical Society
Controlled Flight Into Terrain - One Day Conference
London - 8 November 1994
DEVELOPMENT OF GROUND PROXIMITY WARNING SYSTEMS (GPWS)

Don Bateman
AlliedSignal Inc.
Redmond, Washington, USA

Abstract
Development of the GPWS in the early seventies and its installation into turbine powered commercial transport aircraft has significantly helped reduce Controlled Flight Into Terrain (CFIT) accidents. Today over 15,000 turbine transport aircraft in public commerce are fitted with this flight safety device. GPWS costs less than the exterior paint on the aircraft and easily repays its initial investment in less than two years. However, early GPWS had its limitations of unwanted warnings, late warnings, and no warnings when needed. Current Enhanced GPWS models will give the pilot much better awareness of flight into terrain situations, before a last moment mandatory escape maneuver is required, and will provide warnings in situations where the present system gives none. Greater immunity from unwanted warnings is also provided.

Controlled Flight Into Terrain (CFIT) Accidents and GPWS
In March 1931 a tri-motor Fokker, the Southern Cloud, took off on a flight from Sydney to Melbourne. It disappeared with its crew and passengers. All searching was in vain. The budding airline, ANA, could not bear the resulting negative publicity with its financial consequences and went into bankruptcy. In 1958, a surveyor discovered the wreckage near a summit in the Snowy mountains, 200 miles northwest of Melbourne.

Since the loss of the Southern Cloud, over 30,000 passengers and crew have lost their lives in terrain-related accidents. Flying a good airplane into the ground or water instead of the runway has resulted in about 60% of the total fatalities in public air transportation over the last ten years. With the advent of cockpit voice and data recorders in the 60's, it became evident that most of these CFIT accidents involved errors, not only in the cockpit, but often on the ground and in the procedures themselves. Flight procedures have evolved slowly to help reduce the risk, but the attitude of many in the industry has been that the pilots involved in such an accident were incompetent and should not have been flying in the first place. That attitude still persists today. "I would not have ever done anything so stupid!" was, and is, a common attitude.

Unfortunately, little thought or effort was given to building a broad pilot awareness of the CFIT hazard facing pilots and controllers. Very little training was given to pilots and controllers to help recognize CFIT "traps".

Today, many airlines are stressing pilot awareness programs that illustrate how a CFIT accident could happen to any pilot under the wrong fateful circumstances. This training is one of the most important cost effective safety measures that can be taken to reduce CFIT risk! Equipment such as GPWS takes a second place.

In the late 1960's, the introduction of the radio altimeter into large commercial jet aircraft as a pilot aid for reaching Category II Minimums also helped to reduce the CFIT accident risk. It made possible the simple concept of a GPWS, which originated in Europe at Scandinavian Airlines (SAS) in 1969. The concept was to give the pilots an alert based on abnormal aircraft flight path and abnormal terrain clearances with respect to the ground or water. The radio altimeter became the prime sensor. The system also utilized signals from other existing aircraft sensors, such as descent rate and glideslope deviation. My company, United Control at the time, became a pioneer in the development of the system.

The application and study of CFIT accident data, especially those derived from the aircraft flight path profile relative to the terrain, began to drive improvements in the system performance. With advent of the first EROM digital memory, a synthesized voice "Pull Up!" replaced the original aural tone. In 1971, GPWS began to be installed voluntarily by SAS, CPAir, Maersk Air, Braniff, Pan American and other airlines. By 1973 Boeing was offering GPWS as a recommended safety device on all aircraft models, and in early 1974 Boeing made it basic to all models.

In late 1974, during the initial stages of a VOR-DME approach to Runway 2, at Washington Dulles airport, a B727 struck 50 feet below the last major ridge between the aircraft and the runway, some 20 NM from the runway. Ninety-two lives were lost. Many of the passengers worked and lived in the Washington DC area. The resulting public and media outcry forced the FAA to
do something. Within two weeks, the FAA enacted operational rule FAR 121.360, requiring all large turbo-prop and jet aircraft to be fitted with GPWS within one year. Pilot training, mandatory reporting of warnings, or CFIT awareness programs were not required by the FAA.

The instant market created by the ruling was immediately filled by seven GPWS manufacturers, six of which had never built or flown such equipment. Performance meant little; the minimum to meet the rule. Price was all.

My company secured less than 25 percent of the US market, as many in the industry blamed my company, Boeing and Pan American for "forcing" GPWS on them: a useless annoyance they did not need.

Despite this very bad start for GPWS, with many nuisance warnings and many technical problems, CFIT losses in the USA Part 121 large turbo-prop and jet fleet began a significant and continuous drop (Ref. 1). As shown in Figure 1, the accident rate fell from an average of eight aircraft per year down to one aircraft every five years. The CFIT risk dropped from 2.2 aircraft per 10^6 flights to 0.07 aircraft per 10^6 flights! (During this time, the large US jet fleet increased from 2800 aircraft with 2.5 x 10^8 flights per year, to over 4800 aircraft with 7 x 10^8 flights per year.)

![Figure 1 - CFIT Accident History](image)

It would be an overstatement to claim GPWS is the sole contributor to this significant reduction. The continual investment by the FAA in expanding and upgrading the ATC radar and tools, such as ARTS III, Minimum Safe Altitude Warning System (MSAWS - a software add on to the radar), approach lighting, VASI, ILS, DME and other navigation aids, along with improved procedures, have all helped reduce the CFIT risk.

In sharp contrast, virtually none of the fleet of regional commuter (Part 135) turbine-powered aircraft with from 10 to 30 seats were equipped with a radio altimeter, let alone a GPWS. This fleet shared all of the improved ground aids and the ATC environment, but continued to lose an average of three aircraft per year in CFIT accidents. It took the FAA 20 years to extend GPWS requirements to Part 135 operations (10 seats to 30 seats). During that time, 33 aircraft were lost in CFIT accidents. All such aircraft are now fitted with a modern GPWS (but still with no requirements for training).

The largest CFIT losses now are found with Air Taxi aircraft, operating under Part 135 with less than ten seats. In the average year, eight twin turbo-prop Air Taxi aircraft are lost to CFIT.

An Assessment of the GPWS Record

Today there are approximately 15,000 civil transport aircraft worldwide fitted with some form of GPWS equipment. Half of this GPWS equipment is of 20 year-old vintage. The accumulated flight experience with GPWS since 1975 now exceeds 170 million flights and approximately 480 million flight hours. This is considerable experience for an avionics flight safety system. An assessment of the GPWS record reads as follows:

Positive Experience - North American Fleet. Where installed, GPWS has been effective in reducing CFIT risk:

- The demonstrated reduction in CFIT risk is about 20 times when using early generation GPWS equipment. For the latest GPWS equipment the reduction is about 50 times. GPWS has virtually eliminated many of types of terrain accidents which were so prevalent before 1975: undetected high descent rate, flight into mountainous terrain, descent back into the ground after takeoff, insufficient terrain clearance, and descent below the glideslope.

- If the pre-1975 average annual CFIT losses of eight large commercial jet aircraft per year had continued to 1993, we would have lost 150 aircraft and 7500 lives in CFIT accidents. Instead, the CFIT losses for the last 20 years have been seven aircraft and 187 lives. While aircraft accidents receive wide publicity, pilots and controllers rarely ever report CFIT incidents. Only a fraction of CFIT incidents ever become known. Incidents are most often reported when passengers or people on the ground become frightened. There were probably at least ten such incidents in North America last year, and five this year. A timely GPWS warning (even from primitive equipment) has been helpful in avoiding what might have become a CFIT accident.

- Many of the best airlines are educating their pilots to recognize and avoid potential CFIT traps. GPWS is
no panacea for eliminating CFIT accidents. In addition to GPWS, even better results can be obtained by making all pilots, controllers and managers aware of the CFIT hazard, and how any pilot or controller can be led into a trap. Flight standards and training need to be refocused and be shaped and emphasized to avoid these traps.

- The GPWS Minimum Operational Performance Standards (MOPS) written in 1975 and 1976 by the RTCA (DO-161a) and by the CAA (Specification 14) have served the industry well. The value of the MOPS has been proven over the last 19 years, and they should serve us well into the next century. Existing MOPS have not prevented evolutionary improvements in system performance, nor do they limit future improvements. Contrary to myth, there are no patents that prevent any manufacturer from meeting these well proven minimum standards.

- Analysis of reported GPWS alerts has led to the identification of a dozen airports where there were marginal terrain clearances for the published instrument approach procedures, as well as marginal radar vectoring altitudes. Many of these procedures have been improved by the FAA, making the procedure safer as well as compatible with GPWS.

- The incidence of unstabilized approaches has been reduced by a factor of five. GPWS alerts caused by these approaches have influenced pilot techniques in a positive manner (at the cost of some pilot resentment). (Refs 2 and 3)

- GPWS costs much less than the paint on a typical large transport aircraft. The average investment in GPWS equipment and its installation has been paid back within 1 to 3 years, based on replacement aircraft costs and average settlement costs on the lives lost. Few avionics safety systems have been as cost effective.

Negative Experience - North American Fleet. Since 1975, seven aircraft fitted with GPWS equipment have been lost to CFIT accidents (see Table 1).

1977 Salt Lake City DC-8
1978 Pensacola B727
1985 La Paz B727
1987 Kansas City B707
1989 Santa Maria B707
1989 Kuala Lumpur B747
1990 Unakaleet B737

Table 1 - U.S. CFIT Losses 1975 to 1993

It is instructive to examine the circumstances of these accidents in more detail:

- All seven CFIT loss were aircraft fitted with first generation, 1975 vintage, GPWS equipment (MK I). Much of this equipment has since been replaced with improved performance equipment. However, about 30% of the North American fleet is still fitted with MK I GPWS. This equipment does not inform the pilot of the reason for the “Pull Up!” (“Terrain!” on some aircraft), nor does it use aircraft speed logic for enhancing warning time (Ref. 4). It also has a relatively high unwanted “Pull Up!” warning rate.

- Identifying the cause of the warning allows the pilots to verify the specific cause and help reduce reaction time. This would have helped the flight crew at Pensacola recognize that inadvertent descent rate and insufficient terrain clearance over the water was the reason for the warning. At Santa Maria identifying the cause would have helped the pilots recognize that mountainous terrain was the reason for the warning. At Kuala Lumpur an aural message would have helped the pilots recognize the reason for the warning was that they were very close to the ground before reaching the Final Approach Fix (FAF).

- Later versions of GPWS would have significantly improved the warning times at Santa Maria, La Paz, and Salt Lake City, as shown in Table 2, had later generation equipment been installed:

<table>
<thead>
<tr>
<th>Location</th>
<th>Warning Time Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Lake City</td>
<td>13 seconds vs 9 seconds</td>
</tr>
<tr>
<td>La Paz</td>
<td>16 seconds vs 2 seconds</td>
</tr>
<tr>
<td>Santa Maria</td>
<td>27 seconds vs 6.3 seconds</td>
</tr>
</tbody>
</table>

Table 2 - Warning Time Improvement Using Airspeed Logic

Unfortunately, the original implementation of the airspeed logic also caused an increase in the number of unwanted warnings during initial approach in parts of Europe and Australia. This was particularly bothersome for those states which do not have a speed limit at the lower altitudes. British Airways provided flight data for these incidents, and this helped our designers to reduce unwanted warnings significantly without losing the extra warning time provided by airspeed logic.

- For the Kansas City ILS approach accident, the GPWS glideslope function apparently was inoperative; the suspected cause being an inoperative glideslope receiver (similar to the DC-9 Zurich accident in 1991). A typical GPWS installation uses the Captain’s glideslope receiver deviation and flag. GPWS is a “single thread” system, receiving only one radio altimeter, one set of air data signals, etc., all from the Captain’s side. This is a system
weakness in GPWS. At least two other incidents have occurred where the aircraft descended well below the glideslope. (A DC10 incident at Portland, Oregon is one example.) In each case the instrument procedure uses a VOR radial or DME value for determining the step down fixes along the approach path. Also in each case, the pilot flying was the co-pilot, and the Captain was monitoring with the #1 Navigation receiver in VOR-DME mode with no glideslope signal. In the modern glass cockpit architecture, the ILS (localizer and glideslope) receiver is independent of the VOR navigation receiver, and so there is less risk that the GPWS has no functioning glideslope deviation input.

The Unakaleet accident occurred from premature stable descent from an incorrect step down fix on a localizer-DME non-precision approach while in landing configuration. The GPWS gave no warning. This is a major weakness of GPWS systems for jet aircraft which normally change to landing configuration at the FAF, thus eliminating the ‘insufficient terrain clearance’ warning floors. Turbo-prop aircraft usually do not commit to landing flaps until the field is in sight. For this reason, GPWS has been more effective on turbo prop aircraft than turbojet aircraft. For a normal descent rate, with the aircraft in landing configuration and no glideslope, the GPWS cannot determine that there is no airport at the bottom of the descent path. On a worldwide basis, this ‘no warning’ situation for GPWS has occurred in about 40% of the cases of CFIT loss (see Figure 2).

The Worldwide Experience With GPWS (See Ref 6). By reviewing the world-wide CFIT losses over the last five years (1989 to 1993) for large commercial airline jet aircraft, the positives and negatives of GPWS experience correlate well with the previous discussion (see Table 3).

While many pilots grumble about “false warnings,” very few are formally reported in North America. The problem is real, but if the pilot has any reason to believe the warning could have possibly been caused by his or her flying, they don’t get reported. A false engine fire warning is readily reported, but GPWS warnings are probably under-reported by a factor of some 50 times. Lack of pilot reports and flight data has been a significant impediment to improving the system. Much of the progress towards the elimination of false or unwanted warnings is owed to flight data from a few European air carriers who have encouraged their pilots to report such events. A major source of nuisance warnings has been caused by radio altimeters losing track of the ground and not dropping the flag signal. It is usually difficult to correct problems of this kind, since the radio altimeter is often essential to the auto-land integrity, and modifications require extensive software validation time and expense. It has been demonstrated that by voting and averaging three radio altimeters, a significant reduction in unwanted warnings can be achieved. Other techniques, such as modulation of the GPWS alert envelopes at specific locations, have also been used effectively. A major reduction in unwanted warnings is achievable without the loss of GPWS warning when truly needed.
<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>Urumgi, China</td>
<td>MD-80</td>
</tr>
<tr>
<td></td>
<td>Sorong, Indonesia</td>
<td>F-28</td>
</tr>
<tr>
<td></td>
<td>Medellin, Columbia</td>
<td>B727-100</td>
</tr>
<tr>
<td></td>
<td>Abijian, Ivory Coast</td>
<td>B707-320</td>
</tr>
<tr>
<td>1992</td>
<td>Kano, Nigeria</td>
<td>707-320</td>
</tr>
<tr>
<td></td>
<td>Kathmandu, Nepal</td>
<td>A300-B4</td>
</tr>
<tr>
<td></td>
<td>Kathmandu, Nepal</td>
<td>A310</td>
</tr>
<tr>
<td></td>
<td>Cruzeiro do Sol, Brazil</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Athens, Greece</td>
<td>B707-320</td>
</tr>
<tr>
<td></td>
<td>Kano, Nigeria</td>
<td>DC-8</td>
</tr>
<tr>
<td></td>
<td>Strasbourg, France</td>
<td>A320</td>
</tr>
<tr>
<td>1991</td>
<td>Imphal, India</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Santa Barbara, Venezuela</td>
<td>DC-9-30</td>
</tr>
<tr>
<td>1990</td>
<td>Nairobi, Kenya</td>
<td>B707-320</td>
</tr>
<tr>
<td></td>
<td>Zurich, Switzerland</td>
<td>DC-9-30</td>
</tr>
<tr>
<td></td>
<td>Unalakleet, Alaska</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Bangalore, India</td>
<td>A320</td>
</tr>
<tr>
<td>1989</td>
<td>Hulien, Taiwan</td>
<td>B737-200</td>
</tr>
<tr>
<td></td>
<td>Tegucigalpa, Honduras</td>
<td>B727-200</td>
</tr>
<tr>
<td></td>
<td>Tripoli, Libya</td>
<td>DC-10</td>
</tr>
<tr>
<td></td>
<td>Paramaribo, Surinam</td>
<td>DC-8-62</td>
</tr>
<tr>
<td></td>
<td>Kuala Lumpur, Malaysia</td>
<td>B747</td>
</tr>
<tr>
<td></td>
<td>Santa Maria, Azores</td>
<td>B707-320</td>
</tr>
</tbody>
</table>

Table 3 - Commercial Large Jet Aircraft CFIT Accidents

For the past five years we have lost about five aircraft per year to CFIT accidents (excluding Soviet built aircraft). Approximately one half of these CFIT losses were aircraft not equipped with GPWS. Of the world’s fleet of 11,000 or so aircraft, 300 aircraft (3%) are not equipped with GPWS, and 50% of the CFIT losses are associated with this 3% of the fleet. Another thirty percent of CFIT accidents occur with the 470 or so ‘first generation’ jet aircraft (B707, DC-8, etc.) which today make up less than five percent of the world’s civil jet fleet. Those aircraft that have GPWS are fitted with early, primitive performance, equipment.

Of the fourteen losses where GPWS was installed, nine aircraft were fitted with early MK I GPWS for which warning times can be very short, or too late for recovery. Later generation GPWS would have more than doubled the warning time, and told the pilots the specific problem or reason for the “Pull Up!”

Four aircraft were in ‘no warning’ situations, i.e. landing configuration, no glideslope, stable descent into a place where there was no runway. This is a weakness that is partially addressed in current GPWS equipment by the use of a ‘Smart’ altitude callout such as “five hundred”, and with a specific cockpit procedure to go-around if the runway environment is not in view. A ‘Smart’ callout is not heard on normal ILS approaches, only on non-glabel slopes approaches (i.e. non-precision approaches)

This procedure is being utilized by some major airlines. In new systems, introduced this year, a Minimum Terrain Clearance Floor around the airport will be used (see below).

Enhanced GPWS (refs 7, 8, and 9)

Several practical and cost effective system performance improvements have been introduced into new GPWS equipment this year. These improvements are backward-compatible with the GPWS installations presently installed on most glass cockpit digital aircraft. The enhanced system uses existing sensors and signals as presently provided to the GPWS. The form factor, power, and weight of the new computer are essentially the same as for the original GPWS computer. The enhancements are in addition to the original GPWS functions, and do not compromise basic system performance.

Some of the improved performance features are:

Terrain Clearance Floor. This additional terrain clearance floor, based on aircraft position, is independent of landing gear and landing flap settings, and provides a “Too Low, Terrain!” alert to the pilot if there is insufficient terrain clearance on approach. This feature could help save one aircraft per year in worldwide commercial large jet operations.

About 1½ aircraft per year world wide impact short of the runway with no GPWS warnings during non-precision approaches. The median impact point has been 3¼ NM short of the runway. The terrain clearance floor provides a warning if during an ILS approach the glideslope equipment (airborne or ground) has failed or, for some reason, is not being used by the crew and the aircraft prematurely descends short of the runway.

The ‘floor’ lies below the nominal 300 feet per NM final approach slope (-2.8 degrees), and blankets the terrain or water around the airport at 75 feet AGL per NM. (see figure 3 and 4). The floor is based on distance to the runway and radio altitude, distance to the runway being computed from current aircraft position (lat/long) and stored position of the airport.
The 75 feet AGL per NM slope is well below the design criteria for terrain clearances and obstacles found in U.S. and ICAO standards, and provides an average of about 10 seconds of warning before impact.

The accuracy of the data defining aircraft position and the runway threshold determines the timeliness of the warnings, and also the margin against unwanted warnings. Aircraft position from FMS/GPS is weighted against quality factor and the distance of floor cutoff from the runway is automatically modulated to prevent unwanted warnings. The runway data required is readily available in digital format, and needs only a moderate amount of memory (approximately 32k Bytes) to cover the 5000 civil and military airports worldwide which have runways of 4000 feet or longer.

Airports and runway data do change with time, but relatively slowly when compared to navigation data. It is anticipated that updates of such data will be infrequent, perhaps once every two or three years.

“Terrain Ahead” Alerting And Warning. If pilots could be alerted earlier for Controlled Flight Towards Terrain (CFTT) situation, before the aircraft is into precipitous terrain, then the CFTT risk and need for maximum effort recovery in response to a GPWS warning is significantly reduced.

In 1982, AlliedSignal (then Sundstrand Data Control) began developing 'look ahead' algorithms that used the present position and projected flight path of the aircraft, together with stored terrain data, to predict a potential terrain threat ahead of the aircraft. Because commercial transport aircraft do not typically fly in very close proximity to terrain (except when landing), relatively low resolution elevation data is sufficient to provide effective terrain awareness (typically 100 feet vertical resolution, and from 1/2 NM to 8 NM or more horizontal resolution, depending on distance from the airport). However, even this level of terrain data storage taxed the technology available in the 80’s and made practical systems cost-prohibitive.

In the 90’s, flash memory technology has progressed to the point where it is now not only possible, but practical, to store the terrain data for the entire world within current generation digital GPWS computers. Special terrain data compression routines have been developed to further minimize memory requirements and reduce costs.

Error-tolerant algorithms have been developed that consider aircraft position, track, absolute altitude and flight path in relation to stored terrain data to determine if the projected flight path conflicts with terrain ahead of the aircraft. This feature has been coined ‘look ahead’ alerting, and offers a significant improvement in advance alerting times for flight into very precipitous terrain. The voice messages “Caution! Terrain!” and “Terrain Ahead! Pull Up!” are given if the projected time to impact is less than predetermined values. It was recognized from the outset that such a function must be carefully designed to avoid unwanted alerts in order to be effective especially for airports in mountainous areas. Distance from the airport, navigation data quality, and terrain database quality factor are used to automatically determine how far ahead of the aircraft the trajectory can be reliably projected and used. The design approach for the ‘look ahead’ alerting has been to lean towards the prevention of unwanted alerts. The existing tried and proven GPWS warning modes continue to independently monitor the aircraft’s flight path with respect to the terrain. In this manner, overall system effectiveness always meets or exceeds what is available and certified on aircraft operating today.
Two ‘look ahead’ algorithms are used to provide “Caution! Terrain!” and “Terrain Ahead! Pull Up!” alerting when needed (see Figure 5).

![Figure 5 - Look Ahead Volumes](image)

The “Caution! Terrain!” algorithm gives about 60 seconds of advance alerting for a potential flight path into terrain, while the “Terrain Ahead! Pull Up!” algorithm gives about 30 seconds of warning. Both algorithms are modulated by the terrain clearance floor around the airport. Both algorithms also look up a nominal 6 degrees of flight path climb angle to ensure that the alerts are timely. The “Terrain Ahead! Pull Up!” warning recovery procedure is identical to the existing GPWS recovery procedure. To validate the system, our test aircraft has been flown against worst case mountainous airports in North America. Many of North America’s worst CFIT accident flight paths and locations have also been flown to demonstrate warning times that greatly exceed the current GPWS warnings. It is interesting to note, however, that current GPWS terrain warnings can occur earlier than the new ‘look ahead’ alerts if the aircraft flies over preamble terrain.

With the end of the cold war, terrain data bases to support this function are readily available in digital form for a significant fraction of the airports around the world, especially in the Northern hemisphere. Some airports are in areas for which digital terrain data is not available, at least not for civil use. In the majority of these cases, terrain data is available in map form. AlliedSignal has acquired or currently is in the process of acquiring all digital data that is available, and we are digitizing map data (with help from airlines) for places where digital data is not available. Again, the relatively low resolution requirements for this terrain data make it practical to generate the databases. Areas around international airports and alternate airports worldwide are being incorporated into the “Enhanced GPWS” terrain database. In the event that terrain data for some areas is simply not available in any reliable form at this time, then that area can be added to the database later. Of course, aircraft operating in areas that are not covered by the terrain database will still benefit from the independent GPWS warning modes.

Database updating is supported in the Enhanced GPWS computer through a front panel PCMCIA port. Our customers will be provided with flash memory cards which can be plugged into the PCMCIA port to update the terrain database. The upload is both quick and simple.

Terrain Awareness Display. For enhancing the pilot’s awareness to potential threatening terrain in controlled flight towards terrain (CFIT) situations, a map display of the terrain situation is very helpful. The Enhanced GPWS is designed to provide an output which can be used to depict threatening terrain optionally on an EFIS Navigation Display or a dedicated Weather Radar indicator.

Adding terrain to a Navigation Display, while appearing to be a simple task, must meet several requirements:

- It must be accomplished in a clear, unambiguous manner, and be intuitively obvious to the pilot.
- It must require little, if any, pilot training.
- It must add a minimum of clutter to the existing display.
- It must not impair the display of basic navigation data
- It must integrate well and not be confused with presentations of weather (precipitation and turbulence), predictive windshear alerts and TCAS displays.
- It must not become an instrument to navigate by.
- It must be practical and cost effective.

Adding new information such as terrain to existing cockpit displays can be very expensive if it requires major changes the EFIS Symbol Generators. Adding a new display is in most cases out of the question. (The relative cost of installing identical equipment, such as TCAS II, into a “classic” (analog) aircraft and a glass cockpit is about $150,000 versus $450,000. The cost driver is the effort required in validating software changes in the symbol generators.)

One method of minimizing the changes to the cockpit and the EFIS symbol generators is to utilize the existing ARINC 453 Weather Radar data bus that is fed to the EFIS Navigation Display or the dedicated weather radar indicator. By proper use of colour and style of data presentation, the terrain display can be clearly differentiated from weather data. Very little change, if any, is required to the symbol generators.
Priority of information displayed, display range, when and how the pilot brings up such data are flight deck design considerations. One such Terrain Display is shown in Map Mode in Figure 6.

Figure 6 - Terrain Display

In our flight test and demonstration aircraft, threatening terrain can be displayed on the weather radar indicator. In the event of a 'look ahead' terrain alert, the terrain picture is presented and the display range is automatically set to 10 NM. Manual selection of terrain is also available to the pilots. The terrain is displayed referenced to the aircraft's altitude: terrain more than 2000 feet below the aircraft is not displayed, terrain closer than 2000 feet begins to be shown as low density pattern of yellow dots. As the terrain becomes closer to the aircraft, the density of the dots increases to a maximum value where the terrain is at or above the aircraft altitude. The display requires no mental calculations by the pilots in order for them to assess their relationship to threatening terrain. No charts or reference to instruments are required. Terrain depiction is free of elevation numbers and contours that add clutter. When the terrain threat is within the “Caution! Terrain!” range the conflicting terrain image turns solid yellow. (The terrain image is composed of a grid of overlapping rectangles, and is visually unique.) When the terrain threat progresses to the level of a “Terrain Ahead! Pull Up!” warning, the conflicting terrain image turns a solid red colour. As a successful recovery is made, the terrain image will change from red to solid yellow, and then to a dot pattern of progressively decreasing density until the altitude of the aircraft is more than 2000 feet above any terrain in the immediate 10 NM area, when the display will disappear entirely.

Some Conclusions

- Early GPWS equipment, in spite of its limitations, has been effective in reducing the CFIT risk, saving aircraft and lives. CFIT risk was reduced by about 20 times when the original GPWS equipment was installed, and by about 50 times when the latest GPWS is used.
- Significant improvements have been made to GPWS performance over the last 20 years.
- The greatest CFIT hazard remains the non-precision approach. About 40 percent of all CFIT losses are occurring during VOR-DME/LOC-DME approaches. For no-gleeslope approaches where full landing flaps are used, early generation GPWS provides little if any warning for stable descent into water or ground where there is no runway. This has not been a problem on turbo-prop aircraft, where landing flap is not usually selected until the field is in sight. GPWS is being upgraded to address this weakness.
- The recent availability of terrain data bases for civil use, and advances in solid state memory have made additional GPWS enhancements practical and cost effective. Earlier alerts can be given for flight paths into precipitous terrain, and flight paths short, or off, the airport. The threatening terrain can be displayed on most existing colour weather radar displays and or Electronic Flight Instrument System displays in a practical low cost manner.
- The Enhanced GPWS will again lower the CFIT accident risk significantly, probably to less than 0.01 aircraft per million flights. Perhaps this time, twenty years after the first installation of GPWS, there will be a bit more credibility in the estimate.
References

A

Academic Training Program, 4.1
Academic Training Syllabus, 4.2
Air Route Traffic System III, 3.5
Air traffic control (ATC), 2.1, 3.5, 3.9
 as a factor in CFIT, 3.10
 clearances, acceptance of, 2.2-3, 3.10, 4-B.5, 4-B.13, 4-C.12, 4-C.13
 incidents, 3.10, 3.11
 issues, 2.4
Airport terminal information system (ATIS), vii, 3.19
AlliedSignal, 3.4, 3.5
Altitude settings, 3.9
Altitude
 AGL altitude, vii, 4-A.3-7
 appropriate obstacle clearance minimum altitude, vii
 appropriate terrain clearance minimum altitude, vii
 awareness, 3.20, 4-C.28
 Barometric Altitude, 4-A.4
 Emergency Safe Altitude (EAS), x, 3.10, 4.4
 indicated altitude, vii
 Minimum Crossing Altitude (MCA), x
 Minimum Descent Altitude (MDA), x, 3.9, 3.19
 Minimum Enroute Altitude (MEA), vii, x, 2.3, 3.10
 Minimum IFR Altitude (MIA), vii
 Minimum Obstruction Clearance Altitude (MOCA), vii, x, 3.10
 Minimum Reception Altitude (MRA), x
 Minimum Safe Altitude (MSA), x, 3.10, 3.11, 3.20
 Minimum Sector Altitude, x, 2.3
 Minimum Vectoring Altitude (MVA), vii, x, 3.11
 MSL altitude, vii, 3.9
 Radio Altitude, 3.20, 4-A.2-6
 transition altitude, 3.20
Autoflight
 as a cause of CFIT, 3.16-17, 4-B.5, 4-B.7, 4-B.15, 4-C.20
 as a solution for CFIT, 3.19, 3.22, 4-B.7, 4-B.15, 4-B.17, 4-C.20, 4-C.26
Automatic direction finding (ADF), 4-B.5, 4-B.15
Autopilots
 use of, 2.2
Aviation Safety Reporting System (ASRS), 3.1
CFIT incident reports, 3.10, 3.11, 3.14, 3.16-17

B

Barometric altimeter, 2.6, 3.9-10
Barometric Altitude, 4-A.4
Barometric Descent Rate, 4-A.2
Briefings
 See Flight crew.

C

Callouts, 4-A.7, 4-B.7, 4-B.17, 4-C.29
Ceiling, vi
CFIT Task Force, 1.1, 4-E.1, 5.1, 5.17
 Participating organizations, 1.2
Charts, 2.3, 3.10, 3.14, 3.15, 3.21, 4-B.9, 4-B.19, 4-C.10, 4-C.31, 5.7
Checklists, 2.3, 3.20, 5.1, 5.7
Civil Aviation Authority, 3.5
Communication
 importance of, 3.10, 4-C.11
 responsibility for, 2.4, 4-B.5, 4-B.13
Controlled airspace, vii
Controlled Flight Into Terrain (CFIT)
 as a reason for accidents, 1.1, 3.2-3
 background material, 5.1
 causes; contributing factors, 2.1, 2.6, 3.8-17, 3.21, 4-B.3, 4-B.11, 4-C.6-7, 5.3, 5.5
 cost of implementation, 1.1
 data; statistics, 3.2-5, 3.12-16, 3.18, 3.21, 4-C.2-5
 definition, vii, 3.2, 4-B.3, 4-B.11, 4-C.1
 incident examples, 3.9, 3.10, 3.11, 3.16-17, 3.18
 potential effects, 1.1, 3.2-3
 solutions; prevention, 2.6, 3.5, 3.7, 3.8-22, 5.1
 traps, 3.21, 3.22, 4.4, 4-B.9, 4-B.19
Crew Resource Management (CRM), 2.4, 2.5

D

Decision altitude/height (DA/H), 3.19
 definition, vii
Decision height, vii
Decision Makers
 definition, 2.1
 necessity for support from, 2.1
 recommendations to, 2.2
Descent, approach, and landing as a factor in CFIT, 3.12, 3.13, 3.14, 3.19, 4-B.5, 4-B.15, 4-C.16
Direct (flight, route)
 definition, viii
Distance Measuring Equipment (DME)
 definition, viii
 See also VOR/DME.
Emergency Safe Altitude (ESA)
See Altitude.

Escape maneuver, 4.2, 4.4, 4.5, 4-B.9, 4-B.19, 4-D.1-2
Example CFIT Training Program, 2.5, 4.1

Federal Aviation Administration (FAA), 3.4-5
Final approach, viii
Final approach fix, viii
Fix, viii
Flight crew
altitude awareness, 3.20
as a cause of CFIT, 3.8, 3.11, 3.21, 4-C.5
as the final link in CFIT, 1.1, 3.21
briefings, 3.19, 3.22, 4-B.7, 4-B.17, 4-C.23-26, 4-C.34
complacency, 3.11, 4-B.5, 4-B.7, 4-B.13, 4-C.14
definition, viii
duties, allocation of, 2.3
responsibilities, 3.12, 4-C.15
traps, 3.21, 3.22, 4-B.9, 4-C.32-33
understanding of standard operating procedures, 3.12, 3.15
Flight data recorder, 2.2
definition, viii
Flight level, viii
Flight management computer (FMC), 3.17
Flight management system (FMS), 3.17
definition, viii
Flight Operations Quality Assurance Program, 2.2, 3.17
Flight Safety Foundation, 1.1, 1.2, 2.1, 4-E.1, 5.1, 5.7, 5.13

Glidepath, 3.18
definition, viii
Glide slope, 3.16, 3.18, 4-A.2, 4-A.6
definition, viii
Global Positioning System (GPS)
definition, viii
GPWS Warn (illuminated signal), 4-A.2-5
GPWS warning, 3.20-21, 4.3, 4.4, 4.5, 4.6, 4-B.9, 4-B.19, 4-C.30
GPWS warning modes, 4-A.2-7
Mode 1, 4-A.2
Mode 2, 4-A.3
Mode 3, 4-A.4
Mode 4, 4-A.5
Mode 5, 4-A.6
Mode 6, 4-A.7

Ground Proximity Warning System (GPWS)
concerns, 3.4, 3.5, 3.11
Flap Override switch, 4-A.3-5
history, 3.4-6
importance of, 4-C.30
improvements, 3.5-6
information for simulator briefings, 4-A.1-7
incident examples involving, 3.10, 3.11, 3.16, 3.18
positive results, 3.4-5, 3.17
recommendation for installation, 3.7
installation statistics, 3.7
updates, 2.5, 3.5, 3.20

Height above airport (HAA), ix
Height above touchdown (HAT), ix

IFR conditions, ix
Inertial Navigation System (INS), ix
Information, sharing, 2.5, 2.6
Initial approach fix (IAF), ix
Instructors Examination Guide, 4-B.1, 4-B.11
Instrument flight rules (IFR), ix
Instrument Landing System (ILS), 3.5, 3.14, 4-A.6, 4-B.5, 4-B.15
category definition, ix
definition, ix
Instrument meteorological conditions (IMC), 2.2, 2.3, 3.8, 3.10, 3.12, 3.19, 4.5
definition, ix
International Civil Aviation Organization (ICAO), 2.3, 3.5, 3.15
definition, ix
See also PANS-OPS.

Landing minimums, ix
Localizer, x

Management overview for, 1.1
responsibilities, 1.1, 3.12-13
Minimum Descent Altitude/Height (MDA/H), 3.19 See also Altitude.
Minimum Enroute Altitude (MEA)
See Altitude.
Minimum Obstruction Clearance Altitude (MOCA) See Altitude.
Minimum Safe Altitude (MSA)
See Altitude.
Minimum Sector Altitude
See Altitude.
Minimum Vectoring Altitude (MVA)
See Altitude.
Minimum Safe Altitude Warning System (MSAWS), 3.5, 3.17-18
Minimums, x
Missed approach, xi
Missed Approach Point, xi
MSL altitude
See Altitude.

N
Night, xi
Nonprecision approach procedure, 2.6, 3.14, 3.19, 3.22, 4-B.5, 4-B.15, 4-C.17, 4-C.33
definition, xi
Notice To Airmen (NOTAM), xi

O
Obstacle
definition, xi
Off course, xi
Off route vector, xi
Operational Navigation Chart, 3.10, 4-C.10
Operators
definition, xi, 3.1
guide to understanding and controlling CFIT, 3.1-22

P
PAN AM Flight Operations magazine, 3.17, 3.18
Precision Approach Procedure, xi
Procedure turn (PT), xi
Procedure turn inbound, xi
Procedures for Air Navigation Services - Aircraft Operations (PANS-OPS), 2.3, 2.6, 3.15, 4-C.18
Pull-up rate, 4-D.2

Q
QFE, 3.9, 4-C.9
QNE, 4-B.3, 4-B.13, 4-C.9
definition, xii
QNH, 3.9, 4.4, 4.5, 4-B.3, 4-B.13, 4-C.9
definition, xii
Quick access recorder, 2.2

R
Radar, xii
Radar contact, xii
Radar vectoring, xii
Radio altimeter, xii, 3.4, 3.10, 3.20, 4.5
Radio Altitude (height), 3.20, 4-A.2-6
See also Altitude.
RNAV approach, xii
Runway Profile Descent, xii
RNAV approach, xii
Runway and destination condition familiarization, 2.3, 3.20, 4-B.7, 4-B.17
RNAV approach, xii
Runway Profile Descent, xii

S
Safety, 2.1-2
Scandinavian Airlines System, 3.4
Sectional Navigation Chart, 3.10, 4-C.10
Simulators, 3.20, 4.1-6
evices, 4.4-5
fidelity, 4.6
implementation, 4.6
Simulator Training Program, 4.1-6
Sinkrate, 4-A.2
Situational awareness, 2.6, 3.8, 3.11, 4.1, 4-B.7, 4-B.17
See also CFIT, causes.
Special VFR conditions, xii
Stabilized approach, 2.3-4, 2.6, 3.16, 4-C.19
Standard instrument departure (SID), xii
Standard operating procedures (SOP), 2.4, 2.5, 3.12-13, 3.20, 3.21, 4-B.5, 4-B.15, 4-C.15
Standard terminal arrival (STAR), xii
Stick shaker, 3.21, 4.4, 4.5, 4.6, 4-D.2
Student Examination, 4-B.1, 4-B.3

T
Terminal Instrument Procedures (TERPS), 2.3, 2.6, 3.15, 4-C.18
Terrain Closure Rate, 4-A.3
Threshold, xii
Threshold crossing height, xii
Touchdown zone, xii
Traffic Alert and Collision Avoidance System (TCAS), xiii
Training, 2.5, 3.17, 3.21, 4.1
role of effective, 1.1, 3.21, 4-C.21
Transition altitude
See Altitude.
Transponder, xiii

U
Units of measurement for altimeter settings, 3.9, 3.20, 4-B.3, 4-B.7, 4-B.11, 4-B.13, 4-B.17, 4-C.8

V
Vector, xiii, 4.3
VHF Omnidirectional Radio Station (VOR), 3.14, 4-B.5, 4-B.15
definition, xiv
See also VOR/DME.
Visibility
 definition, xiii
 flight visibility, xiii
 ground visibility, xiii
 prevailing visibility, xiii
 runway visibility value (RVV), xiii
 runway visual range (RVR), xiii
 touchdown RVR, xiii
 mid-RVR, xiv
 rollout RVR, xiv
Visual approach, 4-B.5
 definition xiv
Visual Approach Slope Indicator (VASI), 3.5
 definition, xiii
Visual descent point (VDP), xiii
Visual flight rules (VFR)
 definition, xiv
Visual meteorological conditions (VMC), 3.21, 4.3, 4.4
 definition, xiv
VOR/Distance Measuring Equipment
 (VOR/DME), 3.5, 3.14, 4-B.5, 4-B.15, 4-C.17

W
Waypoint, 3.17
 definition, xiv